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Abstract. The general ideas introduced in [8] are adopted in order to in-
vestigate the quasi cones and the cones of a ring. Using the finite extension
property for cones, we answer the question, when a partial order in a partially
ordered ring has a compatible linear extension (equivalently, when the positive
cone is contained in a full cone). It turns out, that if there is no such extension,
then it is caused by a finite system of polynomial like equations satisfied by
some elements of a certain finite subset of the ring and some positive elements.
As a consequence, we prove that a partial order can be linearly extended if
and only if it can be linearly extended on every finitely generated subring.

1. INTRODUCTION

A central problem in the theory of ordered algebraic structures is to find nec-
essary and sufficient conditions for the existence of a compatible linear extension
of a given compatible partial order. The first step to answer the above question in
arbitrary algebraic structures was taken in [8]. Surprisingly, the general approach
presented in this paper provided new results even in such classical structures as
semigroups and groups. Unfortunately, the results of [8] can not be directly ap-
plied to obtain linear extensions of partial orders in rings.

A partial order ≤ on the base set R of a ring (R, +, ·, 0) is called compatible,
if x ≤ y, x′ ≤ y′ and 0 ≤ z imply that

x + x′ ≤ y + y′ and xz ≤ yz , zx ≤ zy

for all x, x′, y, y′, z ∈ R. A partially ordered ring is a pair (R,≤) of a ring R and
a compatible partial order ≤ on R. Since the multiplication of the ring does not
entirely preserve the partial order relation, the use of the main theorems in [8] is
impossible.

There is a one to one correspondence between the compatible partial orders
and the cones of a ring. A similar correspondence can be established between the
compatible quasi orders an the so called quasi cones. The main aim of the present
paper is to adopt the general ideas introduced in [8], in order to investigate the quasi
cones and the cones of a ring. Instead of the linear extensions of a partial order, we
shall consider the full extensions of a cone. Our development is self contained and
based on the use of the so called finite extension property of a (quasi) cone. We shall
see, that if a cone can not be extended to a full cone, then it is caused by a finite

1991 Mathematics Subject Classification. 06F25.
Key words and phrases. quasi cones, cones and full cones in a ring, finite extension property.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42925906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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subset of the ring and a certain system of polynomial like equations satisfied by
some elements of this finite set and of the given cone. As a consequence, we derive
a complete answer to the question of existence of a compatible linear extension in a
partially ordered ring. The remarkable fact, that a partial order has a compatible
linear extension if and only if it has a compatible linear extension on every finitely
generated subring is also proved.

Any compatible linear order can be simply viewed as a compatible linear ex-
tension of the trivial partial order (identity). In view of this observation, we obtain
a necessary and sufficient condition for the existence of a compatible linear order
on an arbitrary ring. Note, that for domains (unitary rings without zero divisors),
we have classical results about the existence of a compatible linear order: it is
equivalent to the fact, that the sum of (non-zero) even elements can not be equal
to zero (see [5]). A more refined result in [9] states, that the existence of a com-
patible linear order on a skew field is equivalent to the fact, that the sum of finite
products of (non-zero) square elements can not be equal to −1. Unfortunately, our
condition in Theorem 2.11. contains not only one prohibited equation (as the above
cited conditions), but a prohibited system of equations. An obvious reason of this
situation is the different approach, probably an other one is the possible presence
of zero divisors.

2. CONES WITH THE FINITE EXTENSION PROPERTY

A subset Q ⊆ R in a ring (R, +, ·, 0) is called quasi cone, if 0 ∈ Q and Q is closed
with respect to the addition and the multiplication of the ring, i.e. x + y ∈ Q and
xy ∈ Q holds for any choice of the elements x, y ∈ Q. A quasi cone Q ⊆ R is a
cone, if x ∈ Q and −x ∈ Q imply x = 0 for all x ∈ R. If Q ⊆ R is a quasi cone and
Q ⊆ P for some cone P ⊆ R, then Q is also a cone. The following properties of a
quasi cone are equivalent:

(1) For m ≥ 1 and x1, x2, ..., xm ∈ Q the equality x1 + x2 + ... + xm = 0
implies that x1 = x2 = ... = xm = 0.

(2) Q is a cone.

A well-known fact is, that any cone P induces a compatible partial order ≤P on R:

x ≤P y ⇐⇒ y − x ∈ P.

Clearly, any compatible partial order ≤ on R is induced by a unique cone, which is
the cone of its positive elements: ≤ coincides with ≤P , where

P = {x ∈ R | 0 ≤ x} .

Let P ′ be an other cone of R, then ≤P ′ is an extension of ≤P if and only if P ⊆ P ′.
If S ⊆ R is a subring, then P ∩S is a cone of S and the induced partial order ≤P∩S

on S is the same as ≤P considered between the elements of S. We say that a cone
P ⊆ R is full (or linear) if either x ∈ P or −x ∈ P holds for all x ∈ R. It is easy to
see, that a compatible partial order ≤ on R is a linear order if and only if the cone
of its positive elements is full.
We shall make use of the following operations on a subset A ⊆ R of a ring R: AΣ

denotes the set of all sums a1 +a2 + ...+am and AΠ denotes the set of all products
a1a2...am, where m ≥ 1 and ai ∈ A for all 1 ≤ i ≤ m. The quasi cone [A] ⊆ R
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generated by A is the intersection of all quasi cones of R containing A, that is
[A] = (AΠ)Σ (if a ∈ R, then we write [a] instead of [{a}]). Let

Qucone(R) =
{
Q ⊆ R | 0 ∈ Q , QΣ ⊆ Q and QΠ ⊆ Q

}

denote the set of all quasi cones of R, then the relation ⊆ provides a natural
lattice structure on Qucone(R). The infimum and supremum of the quasi cones
Qi ∈Qucone(R), i ∈ I are as follows

∧
i∈I

Qi = ∩
i∈I

Qi and ∨
i∈I

Qi = [ ∪
i∈I

Qi].

Let H ⊆ R \ {0} be a subset, a function δ : H −→ R is called an orientation of H,
if δ(a) ∈ {a,−a} for all a ∈ H. If P ⊆ R is a cone, then we say that δ : H −→ R is
a P -extending orientation, if for z ∈ P and for any choice of functions

ui : {1, 2, ..., ni, ni + 1} −→ P ∪ {1∗} and hi : {1, 2, ..., ni} −→ H, 1 ≤ i ≤ k

an equality of the form

z +
k∑

i=1

ui(1)δ(hi(1))ui(2)δ(hi(2))...ui(ni)δ(hi(ni))ui(ni + 1) = 0

implies that

z = 0 and ui(1)hi(1)ui(2)hi(2)...ui(ni)hi(ni)ui(ni + 1) = 0

for all 1 ≤ i ≤ k (if ui(t) = 1∗ then ui(t) is the empty symbol in the above products).
Since

ui(1)δ(hi(1))ui(2)δ(hi(2))...ui(ni)δ(hi(ni))ui(ni + 1) =
= ±ui(1)hi(1)ui(2)hi(2)...ui(ni)hi(ni)ui(ni + 1),

we obtain that each summand of the above sum is zero.

2.1.Lemma. If R is a ring, Q ⊆ R is a quasi cone, H ⊆ R \ {0} a subset and
δ : H −→ R is an orientation, then the following conditions are equivalent.

(1) The quasi cone Q ⊆ R is a cone and δ is Q-extending.
(2) The supremum

Qδ(H) = Q ∨
(
∨

a∈H
[δ(a)]

)

in Qucone(R) is a cone.
(3) There exists a cone P ⊆ R such that Q ∪ δ(H) ⊆ P .

Proof. (1) =⇒ (2) : Since Qδ(H) is a quasi cone, it is enough to prove that
x ∈ Qδ(H) and −x ∈ Qδ(H) imply x = 0. It is easy to verify, that

Qδ(H) =
[
Q ∪

(
∪

a∈H
[δ(a)])

)]
= [Q ∪ {δ(a) | a ∈ H}] =

(
(Q ∪ {δ(a) | a ∈ H})Π

)Σ

.

The cone Q is multiplicatively closed, whence we obtain that an element of

(Q ∪ {δ(a) | a ∈ H})Π

is either in Q or is of the form

v(1)g1v(2)g2...v(n)gnv(n + 1),

where n ≥ 1 is an integer,

v : {1, 2, ..., n, n + 1} −→ Q ∪ {1∗}
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is a function and gt = δ(at) for some at ∈ H. Thus an element of Qδ(H) can be
written as

x = u +
k∑

i=1

ui(1)δ(hi(1))ui(2)δ(hi(2))...ui(ni)δ(hi(ni))ui(ni + 1)

with u ∈ Q and functions

ui : {1, 2, ..., ni, ni + 1} −→ Q ∪ {1∗} , hi : {1, 2, ..., ni} −→ H, 1 ≤ i ≤ k.

We also have

−x = u′ +
l∑

j=1

u′j(1)δ(h′j(1))u′j(2)δ(h′j(2))...u′j(mj)δ(h′j(mj))u′j(mj + 1)

with u′ ∈ Q and functions

u′j : {1, 2, ...,mj ,mj + 1} −→ Q ∪ {1∗} , h′j : {1, 2, ..., mj} −→ H, 1 ≤ j ≤ l.

Since u + u′ ∈ Q, the Q-extending property of δ and

0 = x + (−x) = (u + u′)+

+

(
k∑

i=1

ui(1)δ(hi(1))ui(2)δ(hi(2))...ui(ni)δ(hi(ni))ui(ni + 1)

)
+

+




l∑

j=1

u′j(1)δ(h′j(1))u′j(2)δ(h′j(2))...u′j(mj)δ(h′j(mj))u′j(mj + 1)




ensure, that u + u′ = 0 and

ui(1)hi(1)ui(2)hi(2)...ui(ni)hi(ni)ui(ni + 1) = 0,

u′j(1)h′j(1)u′j(2)h′j(2)...u′j(mj)h′j(mj)u′j(mj + 1) = 0
for all 1 ≤ i ≤ k and 1 ≤ j ≤ l. Now u, u′ ∈ Q, whence we obtain first u = u′ = 0
and then x = 0.
(2) =⇒ (3) : Since Q ∪ δ(H) ⊆ Qδ(H), we can take P = Qδ(H).
(3) =⇒ (1) : The fact, that Q is a cone, immediately follows from Q ⊆ P . Consider
an element z ∈ Q and the functions

ui : {1, 2, ..., ni, ni + 1} −→ Q ∪ {1∗} , hi : {1, 2, ..., ni} −→ H, 1 ≤ i ≤ k

such that

z +
k∑

i=1

ui(1)δ(hi(1))ui(2)δ(hi(2))...ui(ni)δ(hi(ni))ui(ni + 1) = 0.

Now Q ∪ δ(H) ⊆ P implies that z ∈ P and that each (non-empty) factor of the
product

ui(1)δ(hi(1))ui(2)δ(hi(2))...ui(ni)δ(hi(ni))ui(ni + 1)
is in P . Thus the product itself is also an element of P . The cone properties of P
ensure, that all summands (including z) in the above sum are equal to 0. Hence

ui(1)hi(1)ui(2)hi(2)...ui(ni)hi(ni)ui(ni + 1) = 0

for all 1 ≤ i ≤ k and so δ is Q-extending. ¤

The quasi cone Q ⊆ R has the finite extension property (FEP), if for any finite
subset H ⊆ R \ {0}, there exists a cone P ⊆ R such that Q ⊆ P and either a ∈ P
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or −a ∈ P holds for all a ∈ H. In view of Lemma 2.1., it is easy to see that the
FEP of Q is equivalent to the following equivalent conditions:

• The quasi cone Q is a cone and for any finite subset H ⊆ R \ {0}, there
exists a Q-extending orientation δ : H −→ R.

• For any finite subset H ⊆ R \ {0}, there exists an orientation δ : H −→ R
such that the supremum

Qδ(H) = Q ∨
(
∨

a∈H
[δ(a)]

)

in Qucone(R) is a cone.
• For any finite subset H ⊆ R \ {0}, there exists a cone P ⊆ R such that

Q ∪ δ(H) ⊆ P for some orientation δ : H −→ R.

2.2.Lemma. Let 0 6= a ∈ R and Q ⊆ R be a quasi cone of the ring R with the
FEP. Then one (or both) of the following quasi cones has the FEP:

Qa = Q ∨ [a] and Q−a = Q ∨ [−a].

Proof. Suppose that neither Qa nor Q−a has the FEP. Then we have finite subsets
H1, H2 ⊆ R \ {0}, such that for any choice of the orientations δ′ : H1 −→ R and
δ′′ : H2 −→ R the sets Qa ∪ δ′(H1) and Q−a ∪ δ′′(H2) are not contained in the
cones of R. Consider the finite subset

H1 ∪H2 ∪ {a} ⊆ R \ {0} ,

the FEP of Q provides a cone P ⊆ R, such that

Q ∪ δ(H1 ∪H2 ∪ {a}) ⊆ P

for some orientation
δ : H1 ∪H2 ∪ {a} −→ R.

If δ(a) = a, then a ∈ P implies that [a] ⊆ P , whence we obtain first Q ∪ [a] ⊆ P
and next Qa = Q ∨ [a] ⊆ P . Now we have Qa ∪ δ′(H1) ⊆ P with δ′ = δ ¹ H1, a
contradiction. If δ(a) = −a, then we get Q−a ∪ δ′′(H2) ⊆ P with δ′′ = δ ¹ H2, an
other contradiction. ¤

2.3.Lemma. Let R be a ring and Qw ⊆ R, w ∈ W is a chain (with respect to ⊆)
of quasi cones of R, such that all Qw have the FEP. Then ∪

w∈W
Qw is a quasi cone

of R with the FEP.

Proof. It is easy to see that ∪
w∈W

Qw is a cone of R, so we have to prove only

the FEP. Suppose that Q = ∪
w∈W

Qw has no FEP, then there exists a finite set

H ⊆ R \ {0} such that there is no Q-extending orientation δ : H −→ R. In
consequence, for each orientation δ : H −→ R, we can find an element zδ ∈ Q and
functions

uδ
i : {1, 2, ..., ni(δ), ni(δ) + 1} −→ Q∪{1∗} , hδ

i : {1, 2, ..., ni(δ)} −→ H, 1 ≤ i ≤ k(δ)

such that

zδ +
k(δ)∑

i=1

uδ
i (1)δ(hδ

i (1))uδ
i (2)δ(hδ

i (2))...uδ
i (ni(δ))δ(hδ

i (ni(δ)))uδ
i (ni(δ) + 1) = 0
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and

zδ 6= 0 or uδ
t (1)hδ

t (1)uδ
t (2)hδ

t (2)...uδ
t (nt(δ))hδ

t (nt(δ))uδ
t (nt(δ) + 1) 6= 0

for some 1 ≤ t ≤ k(δ). Since the function uδ
i takes only finitely many values in

Q ∪ {1∗}, there exists an index w(δ, i) ∈ W with the property, that

uδ
i : {1, 2, ..., ni(δ), ni(δ) + 1} −→ Qw(δ,i) ∪ {1∗} .

Now zδ ∈ Qw(δ,♦) for some w(δ,♦) ∈ W and
{
Qw(δ,i) | δ is an orientation of H, i ∈ {♦, 1, 2, ..., k(δ)}}

is a finite subset of the chain {Qw | w ∈ W}, thus we can find an orientation σ :
H −→ R and an element j ∈ {♦, 1, 2, ..., k(σ)}, such that Qw(δ,i) ⊆ Qw(σ,j) for any
choice of δ and i ∈ {♦, 1, 2, ..., k(δ)}. Now

zδ ∈ Qw(σ,j) and uδ
i : {1, 2, ..., ni(δ), ni(δ) + 1} −→ Qw(σ,j) ∪ {1∗}

for all δ and 1 ≤ i ≤ k(δ). It follows, that there is no orientation δ : H −→ R,
which is Qw(σ,j)-extending. Thus we obtained the contradiction, that Qw(σ,j) does
not have the FEP. ¤

2.4.Theorem. Let P ⊆ R be a cone of the ring R, then the following conditions
on P are equivalent:

(1) P has the FEP.
(2) P has a full extension, i.e. there exists a full cone T ⊆ R of R such that

P ⊆ T .

Proof. (1) =⇒ (2) : Take

Q = {Q | P ⊆ Q ⊆ R, Q is a quasi cone of R with the FEP} ,

then Lemma 2.3. enables us to use Zorn’s Lemma to obtain a maximal element
T in the partially ordered set (Q,⊆). We claim that T is a full cone. Since the
elements of Q are cones, it is enough to prove that either a ∈ T or −a ∈ T holds
for all a ∈ R. If 0 6= a ∈ R, then Lemma 2.2. ensures that one of the joins

Ta = T ∨ [a] and T−a = T ∨ [−a]

is a quasi cone of R with the FEP. Since P ⊆ T ⊆ Ta and P ⊆ T ⊆ T−a, we obtain
that either Ta ∈ Q or T−a ∈ Q. The maximality of T in (Q,⊆) implies that Ta = T
in the first case and T−a = T in the second case. In view of a ∈ Ta and −a ∈ T−a,
we get that T is full.
(2) =⇒ (1) : Now P ⊆ T and for any subset H ⊆ R \ {0}, we have either a ∈ T or
−a ∈ T for all a ∈ H, thus P has the FEP. ¤

2.5.Corollary. Let R be a ring, then the following conditions are equivalent:
(1) The zero cone {0} of R has the FEP.
(2) There exists a full cone of R.

Using P -extending orientations, the reformulation of Theorem 2.4. gives an answer
to the problem of the existence of a (compatible) linear extension of a compatible
partial order ≤ of a ring R.
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2.6.Theorem. Let (R,≤) be a partially ordered ring with positive cone P , then the
following conditions are equivalent:

(1) For any finite subset H ⊆ R\{0}, there exists an orientation δ : H −→ R
such that for any choice of an element z ∈ P and functions

ui : {1, 2, ..., ni, ni + 1} −→ P ∪ {1∗} , hi : {1, 2, ..., ni} −→ H, 1 ≤ i ≤ k

an equality of the form

z +
k∑

i=1

ui(1)δ(hi(1))ui(2)δ(hi(2))...ui(ni)δ(hi(ni))ui(ni + 1) = 0

implies that

z = 0 and ui(1)hi(1)ui(2)hi(2)...ui(ni)hi(ni)ui(ni + 1) = 0

for all 1 ≤ i ≤ k.
(2) There exists a full cone T ⊆ R of R such that P ⊆ T (thus the compatible

linear order ≤T is an extension of ≤).

2.7.Corollary. Let R be a ring, then the following conditions are equivalent:
(1) For any finite subset H ⊆ R\{0}, there exists an orientation δ : H −→ R

such that for any choice of functions hi : {1, 2, ..., ni} −→ H, 1 ≤ i ≤ k
an equality of the form

k∑

i=1

δ(hi(1))δ(hi(2))...δ(hi(ni)) = 0

implies that
hi(1)hi(2)...hi(ni) = 0

for all 1 ≤ i ≤ k.
(2) There exists a compatible linear order ≤ of R.

2.8.Theorem. Let P ⊆ R be a cone of the ring R, then the following conditions
are equivalent:

(1) For any finitely generated subring S ⊆ R of R, the cone P ∩ S of S
has a full extension, i.e. there exists a full cone TS ⊆ S of S such that
P ∩ S ⊆ TS.

(2) The cone P has a full extension, i.e. there exists a full cone T ⊆ R of R
such that P ⊆ T .

Proof. (1) =⇒ (2) : Suppose that there is no full cone T of R with P ⊆ T . The
application of Theorem 2.6. provides a finite subset H ⊆ R, such that for each
orientation δ : H −→ R we can find an element zδ ∈ P and functions

uδ
i : {1, 2, ..., ni(δ), ni(δ) + 1} −→ P∪{1∗} , hδ

i : {1, 2, ..., ni(δ)} −→ H, 1 ≤ i ≤ k(δ)

such that

zδ +
k(δ)∑

i=1

uδ
i (1)δ(hδ

i (1))uδ
i (2)δ(hδ

i (2))...uδ
i (ni(δ))δ(hδ

i (ni(δ)))uδ
i (ni(δ) + 1) = 0

and

zδ 6= 0 or uδ
t (1)hδ

t (1)uδ
t (2)hδ

t (2)...uδ
t (nt(δ))hδ

t (nt(δ))uδ
t (nt(δ) + 1) 6= 0
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for some 1 ≤ t ≤ k(δ). Now consider the subring S ⊆ R of R, generated by the
finite set
{
zδ | δ : H −→ R is an orientation

}∪{
uδ

i (j) | 1 ≤ j ≤ ni(δ) + 1, 1 ≤ i ≤ k(δ)
}∪H,

then H −→ S and H −→ R orientations coincide, zδ ∈ P ∩ S for all orientations
δ : H −→ S and

uδ
i : {1, 2, ..., ni(δ), ni(δ) + 1} −→ (P ∩ S) ∪ {1∗} for 1 ≤ i ≤ k(δ).

In view of Theorem 2.6., the finite set H and the above equalities ensure, that there
is no full cone TS ⊆ S of S with P ∩ S ⊆ TS . Thus we obtained a contradiction.
(2) =⇒ (1) : We can take TS = T ∩ S. ¤

2.9.Corollary. Let (R,≤) be a partially ordered ring, then the following conditions
are equivalent:

(1) For any finitely generated subring S ⊆ R of R, the partial order ≤ con-
sidered on S has a compatible linear extension on S.

(2) There exists a compatible linear order on R extending ≤.

2.10.Corollary. Let R be a ring, then the following conditions are equivalent:

(1) For any finitely generated subring S ⊆ R of R, there exists a compatible
linear order on S.

(2) There exists a compatible linear order on R.

Let
H = {x1, x2, ..., xm}

be a subset of the ring R. If x1, x2, ..., xm ∈ R \ {0} are distinct elements and
h : {1, 2, ..., n} −→ H is a function, then the sign type of the product h(1)h(2)...h(n)
is (j1, j2, ..., jt), where 1 ≤ j1 < j2 < ... < jt ≤ m (a subset of {1, 2, ..., m}) such
that xj has an odd number of occurrences among h(1), h(2), ..., h(n) if and only if
j ∈ {j1, j2, ..., jt} (note that the empty subset is also a sign type).
A sum of the form

k∑

i=1

hi(1)hi(2)...hi(ni)

with the functions hi : {1, 2, ..., ni} −→ H, 1 ≤ i ≤ k is called sign homogenous
(over H) of type (j1, j2, ..., jt), if the sign type of each product hi(1)hi(2)...hi(ni)
is (j1, j2, ..., jt). If

hi(1)hi(2)...hi(ni) 6= 0

for some 1 ≤ i ≤ k, then the above sum is called non-trivial. An empty sum is zero
and considered to be trivial and sign homogenous with respect to any sign type.

2.11.Theorem. Let R be a ring, then the following conditions are equivalent:

(1) There are distinct elements x1, x2, ..., xm ∈ R \ {0} such that for each
function

ε : {1, 2, ..., m} −→ {0, 1}
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and for each sign type (j1, j2, ..., jt) we can find a sign homogenous sum
sε(j1, j2, ..., jt) of type (j1, j2, ..., jt) over {x1, x2, ..., xm} with the property,
that for any fixed ε at least one of sε(j1, j2, ..., jt) is non trivial and

∑

(j1,j2,...,jt)

(−1)ε(j1)+ε(j2)+...+ε(jt)sε(j1, j2, ..., jt) = 0

holds for all ε (the sum runs over all sign types).
(2) There is no compatible linear order on R.

Proof. (2) =⇒ (1) : According to Corollary 2.7., the fact that there is no compat-
ible linear order on R is equivalent to the existence of a finite subset

H = {x1, x2, ..., xn} ⊆ R \ {0}
such that for each orientation δ : H −→ R we can find functions

hδ
i : {1, 2, ..., ni(δ)} −→ H , 1 ≤ i ≤ k(δ)

satisfying
k(δ)∑

i=1

δ(hδ
i (1))δ(hδ

i (2))...δ(hδ
i (ni(δ))) = 0

and {
i | 1 ≤ i ≤ k(δ) and hδ

i (1)hδ
i (2)...hδ

i (ni(δ)) 6= 0
} 6= ∅.

Clearly, for any ε : {1, 2, ...,m} −→ {0, 1} and 1 ≤ j ≤ m we can take δ(xj) =
(−1)ε(j)xj . Now

δ(hδ
i (1))δ(hδ

i (2))...δ(hδ
i (ni(δ))) = (−1)ε(j1)+ε(j2)+...+ε(jt)hδ

i (1)hδ
i (2)...hδ

i (ni(δ)),

where (j1, j2, ..., jt) is the sign type of the product hδ
i (1)hδ

i (2)...hδ
i (ni(δ)). On col-

lecting the products of similar sign types, we obtain that
k(δ)∑

i=1

δ(hδ
i (1))δ(hδ

i (2))...δ(hδ
i (ni(δ))) =

∑

(j1,j2,...,jt)

(−1)ε(j1)+ε(j2)+...+ε(jt)sε(j1, j2, ..., jt),

where sε(j1, j2, ..., jt) is the sum of all products hδ
i (1)hδ

i (2)...hδ
i (ni(δ)) of sign type

(j1, j2, ..., jt). Thus the proof of (2) =⇒ (1) is complete.
(1) =⇒ (2) : Let ≤ be a compatible linear order on R, a function

ε : {1, 2, ..., m} −→ {0, 1}
can be defined in such a way, that we have (−1)ε(j)xj ≥ 0 for all 1 ≤ j ≤ m. Then

(−1)ε(j1)+ε(j2)+...+ε(jt)s(j1, j2, ..., jt) ≥ 0

holds for any sign homogenous sum s(j1, j2, ..., jt) of type (j1, j2, ..., jt). The sum
of positive elements in a ring R can be equal to zero if each summand is zero. Thus
an equality of the form

∑

(j1,j2,...,jt)

(−1)
ε(j1)+ε(j2)+...+ε(jt)

sε(j1, j2, ..., jt) = 0,

with sign homogenous sums sε(j1, j2, ..., jt) of type (j1, j2, ..., jt), implies that

sε(j1, j2, ..., jt) = 0
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for all sign types (j1, j2, ..., jt). Since the summands in sε(j1, j2, . . . , jt) are of the
same sign with respect to ≤, we obtain that all these summands are equal to zero.
The above property of ε contradicts to (1). ¤

2.12.Example. Let E = Q 〈v1, v2, ... | vivj + vjvi = 0〉 be the Grassmann (exte-
rior) algebra generated by the pairwise anticommutative generators v1, v2, .... For a
function ε : {1, 2} −→ {0, 1} and for the sign types ∅, (1) , (2) , (1, 2) we define the
sign homogenous sums over H = {v1, v2} as follows: sε(∅), sε(1), sε(2) are empty
sums and

sε(1, 2) = v1v2 + v2v1 = 0.

Since v1v2 6= 0 6= v2v1, the sum sε(1, 2) is non trivial. Now

(−1)0sε(∅) + (−1)ε(1)sε(1) + (−1)ε(2)sε(2) + (−1)ε(1)+ε(2)sε(1, 2) = 0

holds for all ε, thus the application of the above Theorem 2.11. yields, that there
is no compatible linear order on E.

2.13.Theorem. Let R be a commutative ring, then the following conditions are
equivalent:

(1) There are distinct elements x1, x2, ..., xm ∈ R \ {0} such that for each
function

ε : {1, 2, ..., m} −→ {0, 1}
and for each sign type (j1, j2, ..., jt) we can find a sum dε(j1, j2, ..., jt) of
squares of the form (xl1

1 xl2
2 ...xlm

m )2 with the property, that for any fixed ε
at least one of the products

xj1xj2 ...xjt(x
l1
1 xl2

2 ...xlm
m )2

is not zero and∑

(j1,j2,...,jt)

(−1)ε(j1)+ε(j2)+...+ε(jt)xj1xj2 ...xjtdε(j1, j2, ..., jt) = 0

holds for all ε (the sum runs over all sign types).
(2) There is no compatible linear order on R.

Proof. In a commutative ring R any product of sign type (j1, j2, ..., jt) over
{x1, x2, ..., xm} can be written as

h(1)h(2)...h(n) = xj1xj2 ...xjt(x
l1
1 xl2

2 ...xlm
m )2,

where h : {1, 2, ..., n} −→ H is a function and l1 ≥ 0, l2 ≥ 0, ..., lm ≥ 0 are integers.
Thus Theorem 2.13. is an immediate consequence of Theorem 2.11. ¤

The following simple proposition together with Theorem 2.6. can be used to deter-
mine the intersection of the full extensions of a given cone.

2.14.Proposition. Let P ⊆ R be a cone of the ring R and 0 6= a ∈ R, then the
following conditions are equivalent:

(1) The element a is contained in any full extension of P , i.e. a ∈ T holds
for any full cone T of R with P ⊆ T ⊆ R.

(2) The quasi cone P ∨ [−a] has no FEP.
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Proof. (1) =⇒ (2) : If a ∈ T holds for some cone T ⊆ R, then −a /∈ T . Thus
we have P ∨ [−a] " T for all full cones T of R (either P " T or P ⊆ T implies
−a /∈ T ). On applying Theorem 2.4., we obtain that P ∨ [−a] has no FEP.
(2) =⇒ (1) : If P ∨ [−a] has no FEP, then there is no full extension of P ∨ [−a] by
Theorem 2.4. Thus P ∨ [−a] " T holds for all full cones T of R. In consequence,
we get first −a /∈ T and then a ∈ T for all full cones T with P ⊆ T (−a ∈ T and
P ⊆ T would imply P ∨ [−a] ⊆ T ). ¤
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