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ABSTRACT. For an n X n matrix A over an arbitrary unitary ring R, we
obtain the following Cayley-Hamilton identity with right matrix coefficients:

Mol + Co)+ AT +C) + -+ A" Ay 1T+ Cpp 1) + A"(0M] + Cy,) = 0,

where A\g + A\ z+- -+ A,_12" 1 +nlz™ is the right characteristic polynomial
of Ain R[z], I € M, (R) is the identity matrix and the entries of the n x n
matrices Cy, 0 <4 <n are in [R, R]. If R is commutative, then

00201:~-~: n—lZCn:O

and our identity gives the n! times scalar multiple of the classical Cayley-
Hamilton identity for A.
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1. Introduction. The Cayley-Hamilton theorem and the corresponding
trace identity play a fundamental role in proving classical results about the
polynomial and trace identities of the n x n matrix algebra M,,(K) over a field
K. In case of char(K) = 0, Kemer’s pioneering work (see [2], [3]) on the T-ideals
of associative algebras revealed the importance of the identities satisfied by the
n X n matrices over the Grassmann (exterior) algebra

E = K (vi,v2,...,0;,- - | vjvj +vju; =0 for all 1 <i < j)

generated by the infinite sequence of the anticommutative indeterminates (v;);>1.
Accordingly, the importance of matrices over non-commutative rings is an evidence
in the theory of Pl-rings, nevertheless this fact has been obvious for a long time
in other branches of algebra (structure theory of semisimple rings, K-theory,
quantum matrices, etc.). Thus a Cayley-Hamilton type identity for such matrices
seems to be of general interest.

For n x n matrices over a Lie-nilpotent ring R a Cayley-Hamilton type
identity with one sided scalar coefficients (left or right) was found in [9] (see also
in [10]), if R satisfies the PI

[H . [[1‘1,1‘2],:53], .. ']7wm]7xm+l] = 07

then the degree of this identity is n"*. Since E is Lie nilpotent with m = 2, the
above mentioned identity for a matrix A € M, (E) is of degree n. In [1] Domokos
presented a slightly modified version of this identity in which the coefficients are
invariant under the conjugate action of GL, (K).

In the general case (when R is an arbitrary non-commutative ring) Paré
and Schelter proved (see [4]) that any matrix A € M,(R) satisfies a monic
identity in which the leading term is A* for some integer k < 22""" and the
other summands are of the form rqAriArs...r_1Ar; with rqg,r1,...,7 € R and
0 <1< k-—1. An explicit monic identity for 2 x 2 matrices arising from the
argument of [4] and a detailed study of the ideal in R (x) = R * k[z] consisting
of the polynomials which have as a root the generic n x n matrix X = [z;;] was
given by Robson in [8] (R = k (x;;) is the free associative algebra over a field k
and R (x) = R * k[z] is the free associative k-algebra in one more indeterminate
x). Further results in this direction can be found in [5], [6] and [7].

The aim of the present paper is to define the right characteristic polynomial

p(x) =X+ Nz +---+ Apo12™ 71 4 nlz”

in R[z] of an n x n matrix A € M,,(R) and to derive a corresponding identity for
A (here R is an arbitrary unitary ring). We obtain a Cayley-Hamilton identity
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with right matrix coefficients of the following form:
(Mol +Co) + AMI+C1) + -+ A" (Aot L + Cpoy) + A (0 + Cy) = 0,

where I € M, (R) is the identity matrix and the entries of the n x n matrices Cj,
0 < i < n are in the additive subgroup [R, R] of R generated by the commutators
[z,y] = zy —yx with z,y € R (a more precise description of the entries in the C;’s
can be deduced from the proof). Note that a similar identity with left matrix
coeflicients can be obtained analogously. If R is commutative, then

and our identity gives the n! times scalar multiple of the classical Cayley-Hamilton
identity for A.

We shall make extensive use of the results of [9], in order to provide a self
contained treatment, we recall all the necessary prerequisites from [9].

2. The characteristic polynomial. Let R be an arbitrary unitary
ring, the preadjoint of an n X n matrix

A:[aij],aijER,lgi,an

is defined as A* = [a},] € M,,(R), where
Ups = Z SEN(P)Ar(1)p(r(1)) - - - Cr(s—1)p(r(s—=1)) Cr(s+1)p(r(s+1)) - - - Cr(n)p(r(n))
P

and the sum is taken over all permutations 7 of the set {1,...,s—1,s+1,...,n}
and p of the set {1,2,...,n} with p(s) = r. The right determinant of A is the
trace of the product matrix AA*:

rdet(A) = tr(AA").
Our development is based on the following crucial result of [9].

Theorem 2.1. The product AA* € M, (R) can be written in the following
form:
AA* =b I+ C,
where by is the (1,1) entry in AA* = [b;;] and C = [c;;] is an n x n matriz with

ci1 = 0 and each ¢;5, 1 < i,j < n is a sum of commutators of the form [u,v]
(u,v € R).
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Remark 2.2. The proof of Theorem 2.1 yields that each ¢;;, 1 < 14,5 < n,
(i,7) # (1,1) is a sum of commutators of the form [+a’, a”], where a’ and a” are
products of certain entries of A.

Corollary 2.3. For the product AA* € M,(R) we have:
nAA* = tr(AA)I + C',

where C' = [c};] is an n x n matriz with tr(C') = 0 and each c;,
a sum of commutators of the form [u,v] (u,v € R).

1<4,7<nis

Proof. The claim easily follows from
C' =nAA* —tr(AANIT
=n(bnl + C) —tr(AA*)I
= (nbyy — tr(AA*))I +nC
= ((b11 = b11) + (b11 — ba2) + - -+ + (b11 — bpn)) L +nC
=(—cog — -+ — )l +nC. O

Let R[x] denote the ring of polynomials of the single commuting indeter-
minate x, with coefficients in R. The right characteristic polynomial of A is the
right determinant of the n x n matrix 21 — A in M,,(R[z]):

p(x) = te((zl — A) (2l — A)*) = Ao + Ma + -+ + Agmae® !+ Az € Ra].

Proposition 2.4. If p(x) = Ao+ Mz + -+ + Ag_12%7 1 + N\ga? is the
right characteristic polynomial of the n x n matrix A € M,(R) then d = n and
Mg =nl.

Proof. Take (xI — A)* = [h;;(x)] and consider the trace of the product
matrix (zI — A)(z] — A)*:

px)= Y (2l — A)ijhji(x)

1<i,j<n

= (z—a)hi (@) + -+ @ = apn)hnn (@) + D (—ai)hyi(e).

1<i,j<n,i#j

In view of the definition of the preadjoint, we can see that the degree of h;j(x)
is n — 2 if i # j and the leading monomial of h;;(z) is (n — 1)!lz"~!. Thus the
leading monomial n!z™ of p(z) comes from

(r —a11)hi1(x) + -+ (. — apn) hnn (). O
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Proposition 2.5. If the ring R is commutative, then we have
p(z) = nldet(xl — A)

for the right characteristic polynomial p(x) of the n x n matriz A € M, (R). Thus
p(x) is the n! times scalar multiple of the ordinary characteristic polynomial of A.

Proof. Now we have
p(z) = tr((xl — A)(xl — A)*) = tr((z — A)(n — 1)ladj(zI — A))
=tr((n — 1)!det(zf — A)I) =n(n — 1)! det(zI — A).
We used the fact that now (z/ — A)* can be expressed as
(xI —A)* = (n—1ladj(zl — A)

by the ordinary adjoint of 21 — A (see also in [9]). O

3. The Cayley-Hamilton identity.

Theorem 3.1. If p(x) = Ao + Mz + - + A\p_12" " + nla™ is the right
characteristic polynomial of the n x n matriz A € My, (R), then we can construct
n x n matrices C;, 0 < i < n with entries in [R, R] such that

()\0[ + Co) + A()\ll + 01) + -+ An_l()\n—ll + Cn—l) + An(n'I =+ Cn) = 0.

Proof. We use the natural isomorphism between the rings M, (R[z]) and
M, (R)[z]. The application of Corollary 2.3 gives that

n(zI — A)(By + Biz + -+ + By_12" 1) = p(a)I + C'(x),
where
(xI — A)* = [hij()] = Bo+ Biz + -+ + Bp_1z™ "

with Bg, B1,...,Bn_1 € M,(R) (see the proof of Proposition 2.4) and C’(x)
is an n x n matrix with entries in [R[z], R[z]] (and tr(C’(x)) = 0). Since for

s q
f(x) = > uya” and g(z) = Y vyt in R[z] the commutator
v=1 /J,:l

[f (@) g(@)] = f(2)g(x) — g(2) f(x) = Y _[upa”,vua] =) [u, v ]z

v,p @
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is a polynomial with coefficients in [R, R|, we can write that
C,(SC) =Co+Cixz+ -+ Cpa™,

where Cy, C1,...,C, are n X n matrices with entries in [R, R]. The matching of
the coefficients of the powers of x in the above matrix equation gives that

—nABy = Aol + Cy,
nBy —nABy = M1+ Cq,

nBn_o —nAB,_1 = 11 + Ch—1,
nB,_1 =nlI+ C,,.

The left multiplication of nB; 1 —nAB; = \;I + C; by A* (B_1 = B,, = 0) gives
the following sequence of matrix equations:

—nABgy = Mol + Cy,
nABgy — nA2B1 = A\ + ACY,

nA" 'B,_9 —nA"B,_1 = A" \,_1 + A" C, 1,
nA"B,_1 = A"n! + A"C,,.

Thus we obtain that
Mol +Co) + AMI+C) + -+ A" YNyt I + Cpq) + A0 + Cp) =
=(—nABg)+(nABy—nA’By)+- - -+ (nA" ' B,_o—nA"B,_1)+(nA"B,_1)=0.0

In view of the construction of the C;’s in the above proof, it is reasonable
to call

P(z) = n(zl — A)(zI — A)* = p(z)I + Cy+ Crxz + - -+ + Cpz"
the generalized right characteristic polynomial of A € M, (R). Thus we have

np(x) = tr(P(x)).

Proposition 3.2. If R is an algebra over a field K of characteristic zero
and T € GL,(K) then we have

prar-1(z) = pa(z) and Prap-1(z) = TPa(z)T™"
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for the right characteristic polynomial pa(x) € R[z] and the generalized right
characteristic polynomial Pa(z) € My(R)[z] of A € M, (R).

and

Proof. In [1] Domokos proved that (TAT~!)* = TA*T~!, whence

Prap—1(z) =n(xl — TAT V) (xI — TAT1)*
=nT(xl — AT YT (xl — A)T~1)*
=nT(xl — A)T'T(xI — A)*T~!
= Tn(xl — A)(zI — A)*T~!
= TPy(z)T~!

nprar-1(x) = tr(TPa(2)T™") = tr(Pa()) = npa(x)

1
follows. Since — € K, we conclude that ppap-1(z) = pa(z). O

[1]

2]

n
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