CAYLEY-HAMILTON THEOREM FOR MATRICES OVER AN ARBITRARY RING

Jenő Szigeti*

Communicated by V. Drensky

Abstract. For an $n \times n$ matrix A over an arbitrary unitary ring R, we obtain the following Cayley-Hamilton identity with right matrix coefficients:
$\left(\lambda_{0} I+C_{0}\right)+A\left(\lambda_{1} I+C_{1}\right)+\cdots+A^{n-1}\left(\lambda_{n-1} I+C_{n-1}\right)+A^{n}\left(n!I+C_{n}\right)=0$,
where $\lambda_{0}+\lambda_{1} x+\cdots+\lambda_{n-1} x^{n-1}+n!x^{n}$ is the right characteristic polynomial of A in $R[x], I \in M_{n}(R)$ is the identity matrix and the entries of the $n \times n$ matrices $C_{i}, 0 \leq i \leq n$ are in $[R, R]$. If R is commutative, then

$$
C_{0}=C_{1}=\cdots=C_{n-1}=C_{n}=0
$$

and our identity gives the n ! times scalar multiple of the classical CayleyHamilton identity for A.

[^0]1. Introduction. The Cayley-Hamilton theorem and the corresponding trace identity play a fundamental role in proving classical results about the polynomial and trace identities of the $n \times n$ matrix algebra $M_{n}(K)$ over a field K. In case of $\operatorname{char}(K)=0$, Kemer's pioneering work (see [2], [3]) on the T-ideals of associative algebras revealed the importance of the identities satisfied by the $n \times n$ matrices over the Grassmann (exterior) algebra

$$
\left.E=K\left\langle v_{1}, v_{2}, \ldots, v_{i}, \cdots\right| v_{i} v_{j}+v_{j} v_{i}=0 \text { for all } 1 \leq i<j\right\rangle
$$

generated by the infinite sequence of the anticommutative indeterminates $\left(v_{i}\right)_{i \geq 1}$. Accordingly, the importance of matrices over non-commutative rings is an evidence in the theory of PI-rings, nevertheless this fact has been obvious for a long time in other branches of algebra (structure theory of semisimple rings, K-theory, quantum matrices, etc.). Thus a Cayley-Hamilton type identity for such matrices seems to be of general interest.

For $n \times n$ matrices over a Lie-nilpotent ring R a Cayley-Hamilton type identity with one sided scalar coefficients (left or right) was found in [9] (see also in [10]), if R satisfies the PI

$$
\left[\left[\left[\ldots\left[\left[x_{1}, x_{2}\right], x_{3}\right], \ldots\right], x_{m}\right], x_{m+1}\right]=0,
$$

then the degree of this identity is n^{m}. Since E is Lie nilpotent with $m=2$, the above mentioned identity for a matrix $A \in M_{n}(E)$ is of degree n^{2}. In [1] Domokos presented a slightly modified version of this identity in which the coefficients are invariant under the conjugate action of $G L_{n}(K)$.

In the general case (when R is an arbitrary non-commutative ring) Paré and Schelter proved (see [4]) that any matrix $A \in M_{n}(R)$ satisfies a monic identity in which the leading term is A^{k} for some integer $k \leq 2^{2^{n-1}}$ and the other summands are of the form $r_{0} A r_{1} A r_{2} \ldots r_{l-1} A r_{l}$ with $r_{0}, r_{1}, \ldots, r_{l} \in R$ and $0 \leq l \leq k-1$. An explicit monic identity for 2×2 matrices arising from the argument of [4] and a detailed study of the ideal in $R\langle x\rangle=R * k[x]$ consisting of the polynomials which have as a root the generic $n \times n$ matrix $X=\left[x_{i j}\right]$ was given by Robson in [8] ($R=k\left\langle x_{i j}\right\rangle$ is the free associative algebra over a field k and $R\langle x\rangle=R * k[x]$ is the free associative k-algebra in one more indeterminate $x)$. Further results in this direction can be found in [5], [6] and [7].

The aim of the present paper is to define the right characteristic polynomial

$$
p(x)=\lambda_{0}+\lambda_{1} x+\cdots+\lambda_{n-1} x^{n-1}+n!x^{n}
$$

in $R[x]$ of an $n \times n$ matrix $A \in M_{n}(R)$ and to derive a corresponding identity for A (here R is an arbitrary unitary ring). We obtain a Cayley-Hamilton identity
with right matrix coefficients of the following form:

$$
\left(\lambda_{0} I+C_{0}\right)+A\left(\lambda_{1} I+C_{1}\right)+\cdots+A^{n-1}\left(\lambda_{n-1} I+C_{n-1}\right)+A^{n}\left(n!I+C_{n}\right)=0,
$$

where $I \in M_{n}(R)$ is the identity matrix and the entries of the $n \times n$ matrices C_{i}, $0 \leq i \leq n$ are in the additive subgroup $[R, R]$ of R generated by the commutators $[x, y]=x y-y x$ with $x, y \in R$ (a more precise description of the entries in the C_{i} 's can be deduced from the proof). Note that a similar identity with left matrix coefficients can be obtained analogously. If R is commutative, then

$$
C_{0}=C_{1}=\cdots=C_{n-1}=C_{n}=0
$$

and our identity gives the n ! times scalar multiple of the classical Cayley-Hamilton identity for A.

We shall make extensive use of the results of [9], in order to provide a self contained treatment, we recall all the necessary prerequisites from [9].
2. The characteristic polynomial. Let R be an arbitrary unitary ring, the preadjoint of an $n \times n$ matrix

$$
A=\left[a_{i j}\right], a_{i j} \in R, 1 \leq i, j \leq n
$$

is defined as $A^{*}=\left[a_{r s}^{*}\right] \in M_{n}(R)$, where

$$
a_{r s}^{*}=\sum_{\tau, \rho} \operatorname{sgn}(\rho) a_{\tau(1) \rho(\tau(1))} \ldots a_{\tau(s-1) \rho(\tau(s-1))} a_{\tau(s+1) \rho(\tau(s+1))} \ldots a_{\tau(n) \rho(\tau(n))}
$$

and the sum is taken over all permutations τ of the set $\{1, \ldots, s-1, s+1, \ldots, n\}$ and ρ of the set $\{1,2, \ldots, n\}$ with $\rho(s)=r$. The right determinant of A is the trace of the product matrix $A A^{*}$:

$$
\mathrm{rdet}(A)=\operatorname{tr}\left(A A^{*}\right) .
$$

Our development is based on the following crucial result of [9].
Theorem 2.1. The product $A A^{*} \in M_{n}(R)$ can be written in the following form:

$$
A A^{*}=b_{11} I+C,
$$

where b_{11} is the $(1,1)$ entry in $A A^{*}=\left[b_{i j}\right]$ and $C=\left[c_{i j}\right]$ is an $n \times n$ matrix with $c_{11}=0$ and each $c_{i j}, 1 \leq i, j \leq n$ is a sum of commutators of the form $[u, v]$ $(u, v \in R)$.

Remark 2.2. The proof of Theorem 2.1 yields that each $c_{i j}, 1 \leq i, j \leq n$, $(i, j) \neq(1,1)$ is a sum of commutators of the form $\left[\pm a^{\prime}, a^{\prime \prime}\right]$, where a^{\prime} and $a^{\prime \prime}$ are products of certain entries of A.

Corollary 2.3. For the product $A A^{*} \in M_{n}(R)$ we have:

$$
n A A^{*}=\operatorname{tr}\left(A A^{*}\right) I+C^{\prime},
$$

where $C^{\prime}=\left[c_{i j}^{\prime}\right]$ is an $n \times n$ matrix with $\operatorname{tr}\left(C^{\prime}\right)=0$ and each $c_{i j}^{\prime}, 1 \leq i, j \leq n$ is a sum of commutators of the form $[u, v](u, v \in R)$.

Proof. The claim easily follows from

$$
\begin{aligned}
C^{\prime} & =n A A^{*}-\operatorname{tr}\left(A A^{*}\right) I \\
& =n\left(b_{11} I+C\right)-\operatorname{tr}\left(A A^{*}\right) I \\
& =\left(n b_{11}-\operatorname{tr}\left(A A^{*}\right)\right) I+n C \\
& =\left(\left(b_{11}-b_{11}\right)+\left(b_{11}-b_{22}\right)+\cdots+\left(b_{11}-b_{n n}\right)\right) I+n C \\
& =\left(-c_{22}-\cdots-c_{n n}\right) I+n C .
\end{aligned}
$$

Let $R[x]$ denote the ring of polynomials of the single commuting indeterminate x, with coefficients in R. The right characteristic polynomial of A is the right determinant of the $n \times n$ matrix $x I-A$ in $M_{n}(R[x])$:

$$
p(x)=\operatorname{tr}\left((x I-A)(x I-A)^{*}\right)=\lambda_{0}+\lambda_{1} x+\cdots+\lambda_{d-1} x^{d-1}+\lambda_{d} x^{d} \in R[x] .
$$

Proposition 2.4. If $p(x)=\lambda_{0}+\lambda_{1} x+\cdots+\lambda_{d-1} x^{d-1}+\lambda_{d} x^{d}$ is the right characteristic polynomial of the $n \times n$ matrix $A \in M_{n}(R)$ then $d=n$ and $\lambda_{d}=n!$.

Proof. Take $(x I-A)^{*}=\left[h_{i j}(x)\right]$ and consider the trace of the product matrix $(x I-A)(x I-A)^{*}$:

$$
\begin{aligned}
p(x) & =\sum_{1 \leq i, j \leq n}(x I-A)_{i j} h_{j i}(x) \\
& =\left(x-a_{11}\right) h_{11}(x)+\cdots+\left(x-a_{n n}\right) h_{n n}(x)+\sum_{1 \leq i, j \leq n, i \neq j}\left(-a_{i j}\right) h_{j i}(x) .
\end{aligned}
$$

In view of the definition of the preadjoint, we can see that the degree of $h_{i j}(x)$ is $n-2$ if $i \neq j$ and the leading monomial of $h_{i i}(x)$ is $(n-1)!x^{n-1}$. Thus the leading monomial $n!x^{n}$ of $p(x)$ comes from

$$
\left(x-a_{11}\right) h_{11}(x)+\cdots+\left(x-a_{n n}\right) h_{n n}(x) .
$$

Proposition 2.5. If the ring R is commutative, then we have

$$
p(x)=n!\operatorname{det}(x I-A)
$$

for the right characteristic polynomial $p(x)$ of the $n \times n$ matrix $A \in M_{n}(R)$. Thus $p(x)$ is the $n!$ times scalar multiple of the ordinary characteristic polynomial of A.

Proof. Now we have

$$
\begin{aligned}
p(x) & =\operatorname{tr}\left((x I-A)(x I-A)^{*}\right)=\operatorname{tr}((x I-A)(n-1)!\operatorname{adj}(x I-A)) \\
& =\operatorname{tr}((n-1)!\operatorname{det}(x I-A) I)=n(n-1)!\operatorname{det}(x I-A) .
\end{aligned}
$$

We used the fact that now $(x I-A)^{*}$ can be expressed as

$$
(x I-A)^{*}=(n-1)!\operatorname{adj}(x I-A)
$$

by the ordinary adjoint of $x I-A$ (see also in [9]).

3. The Cayley-Hamilton identity.

Theorem 3.1. If $p(x)=\lambda_{0}+\lambda_{1} x+\cdots+\lambda_{n-1} x^{n-1}+n!x^{n}$ is the right characteristic polynomial of the $n \times n$ matrix $A \in M_{n}(R)$, then we can construct $n \times n$ matrices $C_{i}, 0 \leq i \leq n$ with entries in $[R, R]$ such that

$$
\left(\lambda_{0} I+C_{0}\right)+A\left(\lambda_{1} I+C_{1}\right)+\cdots+A^{n-1}\left(\lambda_{n-1} I+C_{n-1}\right)+A^{n}\left(n!I+C_{n}\right)=0 .
$$

Proof. We use the natural isomorphism between the rings $M_{n}(R[x])$ and $M_{n}(R)[x]$. The application of Corollary 2.3 gives that

$$
n(x I-A)\left(B_{0}+B_{1} x+\cdots+B_{n-1} x^{n-1}\right)=p(x) I+C^{\prime}(x),
$$

where

$$
(x I-A)^{*}=\left[h_{i j}(x)\right]=B_{0}+B_{1} x+\cdots+B_{n-1} x^{n-1}
$$

with $B_{0}, B_{1}, \ldots, B_{n-1} \in M_{n}(R)$ (see the proof of Proposition 2.4) and $C^{\prime}(x)$ is an $n \times n$ matrix with entries in $[R[x], R[x]]$ (and $\operatorname{tr}\left(C^{\prime}(x)\right)=0$). Since for $f(x)=\sum_{\nu=1}^{s} u_{\nu} x^{\nu}$ and $g(x)=\sum_{\mu=1}^{q} v_{\mu} x^{\mu}$ in $R[x]$ the commutator

$$
[f(x), g(x)]=f(x) g(x)-g(x) f(x)=\sum_{\nu, \mu}\left[u_{\nu} x^{\nu}, v_{\mu} x^{\mu}\right]=\sum_{\nu, \mu}\left[u_{\nu}, v_{\mu}\right] x^{\nu+\mu}
$$

is a polynomial with coefficients in $[R, R]$, we can write that

$$
C^{\prime}(x)=C_{0}+C_{1} x+\cdots+C_{n} x^{n}
$$

where $C_{0}, C_{1}, \ldots, C_{n}$ are $n \times n$ matrices with entries in $[R, R]$. The matching of the coefficients of the powers of x in the above matrix equation gives that

$$
\begin{aligned}
-n A B_{0} & =\lambda_{0} I+C_{0}, \\
n B_{0}-n A B_{1} & =\lambda_{1} I+C_{1}, \\
\vdots & \\
n B_{n-2}-n A B_{n-1} & =\lambda_{n-1} I+C_{n-1}, \\
n B_{n-1} & =n!I+C_{n} .
\end{aligned}
$$

The left multiplication of $n B_{i-1}-n A B_{i}=\lambda_{i} I+C_{i}$ by $A^{i}\left(B_{-1}=B_{n}=0\right)$ gives the following sequence of matrix equations:

$$
\begin{aligned}
-n A B_{0} & =\lambda_{0} I+C_{0} \\
n A B_{0}-n A^{2} B_{1} & =A \lambda_{1}+A C_{1}, \\
\vdots & \\
n A^{n-1} B_{n-2}-n A^{n} B_{n-1} & =A^{n-1} \lambda_{n-1}+A^{n-1} C_{n-1}, \\
n A^{n} B_{n-1} & =A^{n} n!+A^{n} C_{n}
\end{aligned}
$$

Thus we obtain that

$$
\begin{gathered}
\left(\lambda_{0} I+C_{0}\right)+A\left(\lambda_{1} I+C_{1}\right)+\cdots+A^{n-1}\left(\lambda_{n-1} I+C_{n-1}\right)+A^{n}\left(n!I+C_{n}\right)= \\
=\left(-n A B_{0}\right)+\left(n A B_{0}-n A^{2} B_{1}\right)+\cdots+\left(n A^{n-1} B_{n-2}-n A^{n} B_{n-1}\right)+\left(n A^{n} B_{n-1}\right)=0 .
\end{gathered}
$$

In view of the construction of the C_{i} 's in the above proof, it is reasonable to call

$$
P(x)=n(x I-A)(x I-A)^{*}=p(x) I+C_{0}+C_{1} x+\cdots+C_{n} x^{n}
$$

the generalized right characteristic polynomial of $A \in M_{n}(R)$. Thus we have

$$
n p(x)=\operatorname{tr}(P(x))
$$

Proposition 3.2. If R is an algebra over a field K of characteristic zero and $T \in G L_{n}(K)$ then we have

$$
p_{T A T^{-1}}(x)=p_{A}(x) \text { and } P_{T A T^{-1}}(x)=T P_{A}(x) T^{-1}
$$

for the right characteristic polynomial $p_{A}(x) \in R[x]$ and the generalized right characteristic polynomial $P_{A}(x) \in M_{n}(R)[x]$ of $A \in M_{n}(R)$.

Proof. In [1] Domokos proved that $\left(T A T^{-1}\right)^{*}=T A^{*} T^{-1}$, whence

$$
\begin{aligned}
P_{T A T^{-1}}(x) & =n\left(x I-T A T^{-1}\right)\left(x I-T A T^{-1}\right)^{*} \\
& =n T(x I-A) T^{-1}\left(T(x I-A) T^{-1}\right)^{*} \\
& =n T(x I-A) T^{-1} T(x I-A)^{*} T^{-1} \\
& =T n(x I-A)(x I-A)^{*} T^{-1} \\
& =T P_{A}(x) T^{-1}
\end{aligned}
$$

and

$$
n p_{T A T^{-1}}(x)=\operatorname{tr}\left(T P_{A}(x) T^{-1}\right)=\operatorname{tr}\left(P_{A}(x)\right)=n p_{A}(x)
$$

follows. Since $\frac{1}{n} \in K$, we conclude that $p_{T A T^{-1}}(x)=p_{A}(x)$.

REFERENCES

[1] M. Domokos. Cayley-Hamilton theorem for 2×2 matrices over the Grassmann algebra. J. Pure Appl. Algebra 133 (1998), 69-81.
[2] A. R. Kemer. Varieties of \mathbb{Z}_{2}-graded algebras. Math. USSR Izv. 25 (1985), 359-374.
[3] A. R. Kemer. Ideals of Identities of Associative Algebras. Translations of Math. Monographs vol. 87, 1991, AMS Providence, Rhode Island.
[4] R. Paré, W. Schelter. Finite extensions are integral. J. Algebra 53 (1978), 477-479.
[5] K. R. Pearson. A lower bound for the degree of polynomials satisfied by matrices. J. Aust. Math. Soc., Ser. A 27 (1979), 430-436.
[6] K. R. Pearson. Degree 7 monic polynomials satisfied by a 3×3 matrix over a noncommutative ring. Commun. Algebra 10 (1982), 2043-2073.
[7] K. R. Pearson. The Robson cubics generate all polynomials satisfied by the general 2×2 matrix. Commun. Algebra 10 (1982), 2075-2084.
[8] J. C. Robson. Polynomials satisfied by matrices. J. Algebra 55 (1978), 509-520.
[9] J. Szigeti. New determinants and the Cayley-Hamilton theorem for matrices over Lie nilpotent rings. Proc. Amer. Math. Soc. 125, 8 (1997), 2245-2254.
[10] J. Szigeti. On the characteristic polynomial of supermatrices. Israel J. Math. 107 (1998), 229-235.

Institute of Mathematics
University of Miskolc
Miskolc, Hungary 3515
e-mail: jeno.szigeti@uni-miskolc.hu Received July 15, 2006

[^0]: 2000 Mathematics Subject Classification: 15A15, 15A24, 15A33, 16S50.
 Key words: The preadjoint and the right characteristic polynomial of an $n \times n$ matrix, the commutator subgroup $[R, R]$ of a ring R.
 *The author was supported by OTKA of Hungary, grant no. T43034 and K61007.

