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CAYLEY-HAMILTON THEOREM FOR MATRICES OVER

AN ARBITRARY RING

Jenő Szigeti*

Communicated by V. Drensky

Abstract. For an n × n matrix A over an arbitrary unitary ring R, we
obtain the following Cayley-Hamilton identity with right matrix coefficients:

(λ0I + C0) + A(λ1I + C1) + · · ·+ An−1(λn−1I + Cn−1) + An(n!I + Cn) = 0,

where λ0 +λ1x+ · · ·+λn−1x
n−1+n!xn is the right characteristic polynomial

of A in R[x], I ∈ Mn(R) is the identity matrix and the entries of the n × n

matrices Ci, 0 ≤ i ≤ n are in [R, R]. If R is commutative, then

C0 = C1 = · · · = Cn−1 = Cn = 0

and our identity gives the n! times scalar multiple of the classical Cayley-
Hamilton identity for A.
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1. Introduction. The Cayley-Hamilton theorem and the corresponding
trace identity play a fundamental role in proving classical results about the
polynomial and trace identities of the n × n matrix algebra Mn(K) over a field
K. In case of char(K) = 0, Kemer’s pioneering work (see [2], [3]) on the T-ideals
of associative algebras revealed the importance of the identities satisfied by the
n × n matrices over the Grassmann (exterior) algebra

E = K 〈v1, v2, . . . , vi, · · · | vivj + vjvi = 0 for all 1 ≤ i < j〉

generated by the infinite sequence of the anticommutative indeterminates (vi)i≥1.
Accordingly, the importance of matrices over non-commutative rings is an evidence
in the theory of PI-rings, nevertheless this fact has been obvious for a long time
in other branches of algebra (structure theory of semisimple rings, K-theory,
quantum matrices, etc.). Thus a Cayley-Hamilton type identity for such matrices
seems to be of general interest.

For n × n matrices over a Lie-nilpotent ring R a Cayley-Hamilton type
identity with one sided scalar coefficients (left or right) was found in [9] (see also
in [10]), if R satisfies the PI

[[[. . . [[x1, x2], x3], . . . ], xm], xm+1] = 0,

then the degree of this identity is nm. Since E is Lie nilpotent with m = 2, the
above mentioned identity for a matrix A ∈ Mn(E) is of degree n2. In [1] Domokos
presented a slightly modified version of this identity in which the coefficients are
invariant under the conjugate action of GLn(K).

In the general case (when R is an arbitrary non-commutative ring) Paré
and Schelter proved (see [4]) that any matrix A ∈ Mn(R) satisfies a monic
identity in which the leading term is Ak for some integer k ≤ 22n−1

and the
other summands are of the form r0Ar1Ar2 . . . rl−1Arl with r0, r1, . . . , rl ∈ R and
0 ≤ l ≤ k − 1. An explicit monic identity for 2 × 2 matrices arising from the
argument of [4] and a detailed study of the ideal in R 〈x〉 = R ∗ k[x] consisting
of the polynomials which have as a root the generic n × n matrix X = [xij ] was
given by Robson in [8] (R = k 〈xij〉 is the free associative algebra over a field k

and R 〈x〉 = R ∗ k[x] is the free associative k-algebra in one more indeterminate
x). Further results in this direction can be found in [5], [6] and [7].

The aim of the present paper is to define the right characteristic polynomial

p(x) = λ0 + λ1x + · · · + λn−1x
n−1 + n!xn

in R[x] of an n×n matrix A ∈ Mn(R) and to derive a corresponding identity for
A (here R is an arbitrary unitary ring). We obtain a Cayley-Hamilton identity



Cayley-Hamilton theorem for matrices over an arbitrary ring 271

with right matrix coefficients of the following form:

(λ0I + C0) + A(λ1I + C1) + · · · + An−1(λn−1I + Cn−1) + An(n!I + Cn) = 0,

where I ∈ Mn(R) is the identity matrix and the entries of the n×n matrices Ci,
0 ≤ i ≤ n are in the additive subgroup [R,R] of R generated by the commutators
[x, y] = xy−yx with x, y ∈ R (a more precise description of the entries in the Ci’s
can be deduced from the proof). Note that a similar identity with left matrix
coefficients can be obtained analogously. If R is commutative, then

C0 = C1 = · · · = Cn−1 = Cn = 0

and our identity gives the n! times scalar multiple of the classical Cayley-Hamilton
identity for A.

We shall make extensive use of the results of [9], in order to provide a self
contained treatment, we recall all the necessary prerequisites from [9].

2. The characteristic polynomial. Let R be an arbitrary unitary
ring, the preadjoint of an n × n matrix

A = [aij ] , aij ∈ R , 1 ≤ i, j ≤ n

is defined as A∗ = [a∗rs] ∈ Mn(R), where

a∗rs =
∑

τ,ρ

sgn(ρ)aτ(1)ρ(τ(1)) . . . aτ(s−1)ρ(τ(s−1))aτ(s+1)ρ(τ(s+1)) . . . aτ(n)ρ(τ(n))

and the sum is taken over all permutations τ of the set {1, . . . , s−1, s+1, . . . , n}
and ρ of the set {1, 2, . . . , n} with ρ(s) = r. The right determinant of A is the
trace of the product matrix AA∗:

r det(A) = tr(AA∗).

Our development is based on the following crucial result of [9].

Theorem 2.1. The product AA∗ ∈ Mn(R) can be written in the following
form:

AA∗ = b11I + C,

where b11 is the (1, 1) entry in AA∗ = [bij ] and C = [cij ] is an n× n matrix with
c11 = 0 and each cij, 1 ≤ i, j ≤ n is a sum of commutators of the form [u, v]
(u, v ∈ R).
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Remark 2.2. The proof of Theorem 2.1 yields that each cij , 1 ≤ i, j ≤ n,
(i, j) 6= (1, 1) is a sum of commutators of the form [±a′, a′′], where a′ and a′′ are
products of certain entries of A.

Corollary 2.3. For the product AA∗ ∈ Mn(R) we have:

nAA∗ = tr(AA∗)I + C ′,

where C ′ = [c′ij ] is an n × n matrix with tr(C ′) = 0 and each c′ij, 1 ≤ i, j ≤ n is
a sum of commutators of the form [u, v] (u, v ∈ R).

P r o o f. The claim easily follows from

C ′ = nAA∗ − tr(AA∗)I

= n(b11I + C) − tr(AA∗)I

= (nb11 − tr(AA∗))I + nC

= ((b11 − b11) + (b11 − b22) + · · · + (b11 − bnn))I + nC

= (−c22 − · · · − cnn)I + nC. �

Let R[x] denote the ring of polynomials of the single commuting indeter-
minate x, with coefficients in R. The right characteristic polynomial of A is the
right determinant of the n × n matrix xI − A in Mn(R[x]):

p(x) = tr((xI − A)(xI − A)∗) = λ0 + λ1x + · · · + λd−1x
d−1 + λdx

d ∈ R[x].

Proposition 2.4. If p(x) = λ0 + λ1x + · · · + λd−1x
d−1 + λdx

d is the
right characteristic polynomial of the n × n matrix A ∈ Mn(R) then d = n and
λd = n!.

P r o o f. Take (xI − A)∗ = [hij(x)] and consider the trace of the product
matrix (xI − A)(xI − A)∗:

p(x) =
∑

1≤i,j≤n

(xI − A)ijhji(x)

= (x − a11)h11(x) + · · · + (x − ann)hnn(x) +
∑

1≤i,j≤n,i 6=j

(−aij)hji(x).

In view of the definition of the preadjoint, we can see that the degree of hij(x)
is n − 2 if i 6= j and the leading monomial of hii(x) is (n − 1)!xn−1. Thus the
leading monomial n!xn of p(x) comes from

(x − a11)h11(x) + · · · + (x − ann)hnn(x). �
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Proposition 2.5. If the ring R is commutative, then we have

p(x) = n! det(xI − A)

for the right characteristic polynomial p(x) of the n×n matrix A ∈ Mn(R). Thus
p(x) is the n! times scalar multiple of the ordinary characteristic polynomial of A.

P r o o f. Now we have

p(x) = tr((xI − A)(xI − A)∗) = tr((xI − A)(n − 1)!adj(xI − A))

= tr((n − 1)! det(xI − A)I) = n(n − 1)! det(xI − A).

We used the fact that now (xI − A)∗ can be expressed as

(xI − A)∗ = (n − 1)!adj(xI − A)

by the ordinary adjoint of xI − A (see also in [9]). �

3. The Cayley-Hamilton identity.

Theorem 3.1. If p(x) = λ0 + λ1x + · · · + λn−1x
n−1 + n!xn is the right

characteristic polynomial of the n× n matrix A ∈ Mn(R), then we can construct
n × n matrices Ci, 0 ≤ i ≤ n with entries in [R,R] such that

(λ0I + C0) + A(λ1I + C1) + · · · + An−1(λn−1I + Cn−1) + An(n!I + Cn) = 0.

P r o o f. We use the natural isomorphism between the rings Mn(R[x]) and
Mn(R)[x]. The application of Corollary 2.3 gives that

n(xI − A)(B0 + B1x + · · · + Bn−1x
n−1) = p(x)I + C ′(x),

where
(xI − A)∗ = [hij(x)] = B0 + B1x + · · · + Bn−1x

n−1

with B0, B1, . . . , Bn−1 ∈ Mn(R) (see the proof of Proposition 2.4) and C ′(x)
is an n × n matrix with entries in [R[x], R[x]] (and tr(C ′(x)) = 0). Since for

f(x) =
s∑

ν=1
uνx

ν and g(x) =
q∑

µ=1
vµxµ in R[x] the commutator

[f(x), g(x)] = f(x)g(x) − g(x)f(x) =
∑

ν,µ

[uνx
ν , vµxµ] =

∑

ν,µ

[uν , vµ]xν+µ
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is a polynomial with coefficients in [R,R], we can write that

C ′(x) = C0 + C1x + · · · + Cnxn,

where C0, C1, . . . , Cn are n × n matrices with entries in [R,R]. The matching of
the coefficients of the powers of x in the above matrix equation gives that

−nAB0 = λ0I + C0,

nB0 − nAB1 = λ1I + C1,

...

nBn−2 − nABn−1 = λn−1I + Cn−1,

nBn−1 = n!I + Cn.

The left multiplication of nBi−1 − nABi = λiI + Ci by Ai (B−1 = Bn = 0) gives
the following sequence of matrix equations:

−nAB0 = λ0I + C0,

nAB0 − nA2B1 = Aλ1 + AC1,

...

nAn−1Bn−2 − nAnBn−1 = An−1λn−1 + An−1Cn−1,

nAnBn−1 = Ann! + AnCn.

Thus we obtain that

(λ0I + C0) + A(λ1I + C1) + · · · + An−1(λn−1I + Cn−1) + An(n!I + Cn) =

=(−nAB0)+(nAB0−nA2B1)+· · ·+(nAn−1Bn−2−nAnBn−1)+(nAnBn−1)=0.�

In view of the construction of the Ci’s in the above proof, it is reasonable
to call

P (x) = n(xI − A)(xI − A)∗ = p(x)I + C0 + C1x + · · · + Cnxn

the generalized right characteristic polynomial of A ∈ Mn(R). Thus we have

np(x) = tr(P (x)).

Proposition 3.2. If R is an algebra over a field K of characteristic zero
and T ∈ GLn(K) then we have

pTAT−1(x) = pA(x) and PTAT−1(x) = TPA(x)T−1
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for the right characteristic polynomial pA(x) ∈ R[x] and the generalized right
characteristic polynomial PA(x) ∈ Mn(R)[x] of A ∈ Mn(R).

P r o o f. In [1] Domokos proved that (TAT −1)∗ = TA∗T−1, whence

PTAT−1(x) = n(xI − TAT−1)(xI − TAT−1)∗

= nT (xI − A)T−1(T (xI − A)T−1)∗

= nT (xI − A)T−1T (xI − A)∗T−1

= Tn(xI − A)(xI − A)∗T−1

= TPA(x)T−1

and

npTAT−1(x) = tr(TPA(x)T−1) = tr(PA(x)) = npA(x)

follows. Since
1

n
∈ K, we conclude that pTAT−1(x) = pA(x). �
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