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Abstract

We give a complete description of maximal compatible partial orders on the mono-unary algebra (4, f).
where f : A — A is an arbitrary unary operation.
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1. Introduction

The well-known Szpilrajn theorem ([9]) asserts that any partial order <, (or ) on a
set A can be extended to a linear order <;. Recent work related to this early result
includes ([2, 3, 4, 6, 7]). As a consequence of Szpilrajn’s theorem we obtain that the
maximal partial orders (with respect to the containment relation) on A4 are exactly the
linear orders of 4. A general scheme for extending Szpilrajn’s theorem consists of
restricting attention to orders with some prescribed property, and requiring that the
linear extension also possess this property (see [1]). In particular, if f : 4 — 4
is a unary operation, then we can restrict our consideration to the so called compat-
ible partial orders of (A4, /), that is, to partial orders with the following property:
x <, yimplies f(x) <, f(y) forall x, y € 4. In the present paper we investigate
the compatible extensions of a given r in a partially ordered mono-unary algebra
(4. f, <,). Using f-prohibited pairs, for compatible partial orders we define the
notion of f-quasilinearity. Our main result states, that a compatible partial order
on (4, f) can always be extended to a compatible f-quasilinear partial order R. As
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a consequence, we obtain that the maximal compatible partial orders on (4. f) are
exactly the compatible f-quasilinear partial orders. It turns out, that a compatible
f-quasilinear partial order is linear if and only if the function / has no proper cycle
(acyclic according to the terminology of [8]). Thus the following main theorem of [8]
will appear as a special case of our Theorem 4.2.

Let f : A — A be an acyclic function (there is no ¢ € A such that f(c) # ¢
and f"(c) = c for some integer n > 2) andr C A x A a compatible partial order
on (A, [). Then there exists a compatible linear order R € A x A on (A, [) with
rc R

On the other hand, we shall make extensive use of the above result in proving
Theorem 4.2.

2. Components, cycles and distance

Let f: A — A be a function (unary operation on the set 4). We define the relation
~ , as follows: forx, y € A letx ~, yif f*(x) = f'(y) for some integers k > 0 and
[ > 0. It is straightforward to see that ~, is an equivalence on A. The equivalence
class [x], of an element x € A is called the f-component of x. Clearly, [x], € Aisa
subalgebra in (4, f), thatis, f([x],) € [x],. Anelement ¢ € 4 is called cyclic with
respect to f (or cyclic in (A4, f)), if f"(c) = ¢ for some integer m > 1. For a cyclic
element ¢,

n=n(c)=min{m|m=>1and /"(c) = c}

is called the period of ¢ or the length of the cycle C = {c, f(c),..., " '(¢)}); it is
easy to prove that C has exactly n elements, f(C) = C and f*(c) = f'(c) holds if
and only if £ — / is divisible by n. A pair (x, y) € 4 x A is called f-prohibited. if
we can find integers £ > 0,/ > 0 and m > 2 such that m is not a divisor of k — /, the
elements f*(x), f**'(x), ..., /" (x) are distinct and f**"(x) = f*(x) = f'(y).
For an f-prohibited pair (x, y) and an integer £ > 0 as above, we have y € [x],, and
f¥(x) is a cyclic element in [x], of period m. It is easy to verify, that a pair (x, y) is
f-prohibited, if and only if f*(x) = f/(y) is cyclic and f**'(x) # f**/(v) for some
integers k > 0 and / > 0 (the latter condition can be replaced by f*“(x) # f'(y) for
all integers ¢ > 0). The distance between an element y € [x], and a given cyclic
element ¢ € [x] is defined in part (1) of the following proposition, the proof of which
is straightforward and hence omitted.

PROPOSITION 2.1. Let y € [x]; and ¢ € [x], be a cyclic element of period n > 1.
Then we have the following.
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(1) There exists an integer t = 0 such that ['(y) = c. Let
d(y.c)=min{t | t = 0and f'(y) = c}

denote the distance of y from c.

(2) d(f(c),¢)=n—1andfory # c, we haved(f(y),c) =d(y,c)— L

(3) All cyclic elements of [x], arein C = {c, f(c),..., [ "=1(¢)} and each element
in C is cyclic of period n.

(4) If1 > 0 is an integer, then f'(y) = c holds if and only if | = d(y,c¢) and
[ —d(y, c) is divisible by n.

(5) (x,y)is f-prohibited if and only if d(x, c) — d(y, ¢) is not divisible by n.

PROPOSITION 2.2. If (A, f, <,) is a partially ordered mono-unary algebra, then we
have the following.
(1) Ifc € A is acvclic element of period n > 1, then C = {c, f(¢),..., "' (c)}is
an antichain with respect to <,.
(2) If(x,y) € A x A is an f-prohibited pair, then x and y are incomparable with
respect to <,.

PROOF. (1) Take ¢* = f'(¢) and t = j —i. Then f'(¢*) = f/(¢). Now
c* <, f'(c*) implies ¢* <, f'(cY) < fY(c*) < -+ < fM(c*) = ¢*, in con-
tradiction with ¢* # f*(c*). The reverse relation f'(c*) <, c¢* leads to a similar
contradiction,

(2) Let f*(x), ..., fFEm=1(x) be distinct elements and /**"(x) = f*(x) = f1(»)
for some integers k > 0,/ > 0 and m > 2 with m { k — [. The assumption x <, y

implies
@) = o)

forthe elements f**(x) and /**'(y) = f5(f'(») = f*(f*(x)) = f*(x) of the cycle
C ={f*x), f'(x),.... f¥""(x)}, which contradicts (1), since m { 2k — (k +1).
The case y <, x can be treated similarly. O

3. The order components of (A4, f, <,)

Let (4, f, <,) be a partially ordered mono-unary algebra. Consider the factor set
B = A/ ~/={[x] | x € ).

We define the relation <1, on B as follows: [x], <, [y],ifx, <, y, forsome x; € [x];
and y, € [y];.
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PROPOSITION 3.1. (1) <, is a quasiorder (reflexive and transitive) on B.
() Iflxly <, vly and [y, <, [x]; for the f-components [x], # [y],, then there
is no cyclic element ¢ € [x]; U [v]; of periodn = 1.

PrROOF. (1) In order to see transitivity, suppose [x]; <, [y]; <, [z];. Then
x; <, » and y; <, z for some x; € [x];, i1, ¥] € [¥]y and z, € [z],. Since
yi ~ ¥, we can find integers k£ > 0 and / > 0 such that f/*(y,) = f'(y}). However,

Y1) < fFon) = fO)) < fz),

for f*(x,) € [x]; and f'(z)) € [z];, 50 [x]; <, [2];.

(2) Suppose that [x], <, [¥], <, [x]/, [x]; # [¥], and, without loss of generality,
¢ € [x] isacyclic elementofperiodn > 1. There existx;, x; € [x]and y;, y» € [y];
with the properties x; <, y; and y; <, x,. By part (1) of Proposition 2.1,

f6xy) = = f(xy)

for some integers #; > 0 and 1, > 0. Since f"(y,) ~; f“(y>), we can find integers
k > 0and/ > 0 such that

LU0 = LU 0n))-
The compatibility of <, gives
A = A UM x)) < FAU00) = F1U°00) < (2 (x) = flo),

where f*(c) and f(c) are cyclic elements. Applying part (1) of Proposition 2.2, we
obtain that f*(c) = f*(f" (1)) = f'(c) in contradiction with [x], N [y], =@. O

The relation =, is defined on B = 4/ ~ as follows: forx,y € A let[x], =, [¥];
if [x]; <, [v]; and [y], <, [x];. Itis well-known that starting from the quasiorder
<,, the above definition provides an equivalence on B. We define the order component
ofxin (4, f, <,) by

W= U Dbl

yed and [v] ;= [x]/

Clearly, [x], € (x) € 4 and (x) is a subalgebra in (4, f), which corresponds to the
=, equivalence class [[x]/]=, of [x], in B. Itis easy to see that {(x) | x € A} isa
partition of 4.

If ¢ € (x) is a cyclic element, then part (2) of Proposition3.1 gives that (x) = [x],.
We make use of the partial order <, on B/ =,, which can be derived from <, in a
natural way: (x) <, (y)if [x], <, [¥].
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LEMMA 3.2. Let (4, f, <,) be a partially ordered mono-unary algebra. If x € A
and there is no cyclic element in (x), then there exists a linear order p on (x) with the
Jollowing properties:

(1) p is compatible on ((x}, f).
(2) pis an extension of <, on the elements of (x).

PROOF. The absence of cyclic elements ensures that f : (x) —> (x) is acyclic,
preserving the partial order N ((x) x (x)). A straightforward application of the Main
Theorem in [8] gives the existence of the desired p. O

LEMMA 3.3. Let (A4, f, <,) be apartially ordered mono-unary algebra, x € A and
¢ € (x) a cyclic element of period n > 1. Then there exists a partial order p on
(x) = [x], with the following properties:

(1) p is compatible on ([x],, 1),
(2) p is an extension of <, on the elements of [x],
) [xly=EUE\U---UE,_, is a pairwise disjoint union, where each set

E;={u € [x]; | d(u,c)—iis divisible byn}, 0<i<n-—1,

is a chain with respect to p, and for i # j the elements of E; x E ; are f-prohibited
pairs.

PROOF. Let E = [x], and consider the equivalence relation ¢ = A e U(C x O)
on E, where Ag is the diagonal of £ x E and C = {c. f(c). ..., /""'(c)} is the set of
cyclic elements in E. Clearly, [u], = {u} ifu € E\ C and [u], = C ifu € C. Using
the factor set £* = E /¢, define a function f* : E* — E* and arelation r* C E* x E*
as follows: f*([u],) = [f(u)]. and r* is the transitive closure of the reflexive relation

s = {([ul, [v]:) | u,v € E andu’ <, v for some o’ € [u],. V' € [v], }.

Then f* is well-defined since f(C) C C. It is immediate from the definitions that F
preserves s, whence /* preserves r*. We claim, that 7* is a partial order on E*. It is
enough to show that there is no proper cycle in E* with respect to s. If a proper cycle

[ul]es [ul’.]ss 3 s[uk]e‘s[ullt
does not contain C, then we have
Iy Sr i3 Sr e Sr Uy =r U

implying that u; = u, = - = u,, a contradiction. If C appears in a proper cycle,
then we can exhibit a segment of it as

Cs[v]es[vales - - - s[v].sC,
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where vy, va, ..., vy ¢ C. Now we have
¢ SVS WS S0 s, C”

for some ¢/, ¢” € C. Applying part (1) of Proposition 2.2 gives that ¢’ = ¢”. Thus the
elements v, = v, = -+ = v, = ¢ = ¢” are in C, a contradiction. The only cyclic
element of (E*, f/*)is C and f*(C) = C, so we can apply the Main Theorem of [8]
to the partially ordered algebra (E*, /*, r*), in order to get a compatible linear order
p*on (E*, *) withr* C p*. We claim that

p={w,v)|uvekE, (ul,vl,) € p’andn | d(u,c) —d(v, c)}

is one of the desired relations on £.

The reflexive and transitive properties of p can be easily verified. Let (4, v) € p and
(v,u) € p. Then ([u]., [v],) € p* and ([v],, [u];) € p* imply [u], = [v]., whence
u=voru,veC.Ifu,veC,then we also have u = v since n | d(u, ¢) — d(v, ¢),
proving antisymmetry.

Suppose (#, v) € p. Then ([u]..[v],) € p* and the compatibility of p* provides
that

(Lf @), [f()]e) = (f*([u)e), £ ([v]) € p".

Using part (2) of Proposition 2.1, we obtain n | d(f(u), ¢) — d(f(v), ¢) as a conse-
quence of the divisibility n | d(u, ¢) — d(v, ¢), proving that ( f(u), f(v)) € p.

Suppose u,v € E and u <, v. Then first we get ([u]..[v].) € s and next
([ule, [v],) € r* € p*. Ifn { d(u,c) —d(v,c), then (u,v) is f-prohibited by
part (5) of Proposition 2.1, contradicting part (2) of Proposition 2.2. Thus we have
n|d(u,c)—d(,c)and (1, v) € p, proving r < p.

Foru, v € E;, the divisibility n | d(u, ¢) —d(v, ¢) follows from n | d(u, ¢) — i and
n | d(v,c)—i. Since p* is linear, either ([u], [v],) € p* or ([v],, [u];) € p* holds.
Thus we have either (u, v) € p or (v, u) € p, proving that £; is a chain with respect
to p.

Ifi # jand (u,v) € E; x E;, thenn | d(u,c) —i and n | d(v,c) — j imply
that d(u. ¢) — d(v, ¢) is not divisible by n, so by part (5) of Proposition 2.1, (u. v) is
f-prohibited. O

REMARK 3.4. According to [5, Proposition 3.6], the convexity of the antichain C
implies that e = Az U (C x C) is an order congruence of (E, f,r N (E x E)).

4. The main results

A compatible partial order R on a mono-unary algebra (4, f) is called f-quasili-
near, if (x, y) € R or (y,x) € R for all non f-prohibited pairs (x,y) € 4 x 4. In
view of part (2) of Proposition 2.2, we have the following simple observation.
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PROPOSITION 4.1. If a compatible partial order R on a mono-unary algebra (A, f)
is f-quasilinear, then it is maximal (with respect to containment) among the compat-
ible partial orders of (A, ).

THEOREM 4.2. If (4, f. <,) is a partially ordered mono-unary algebra, then there
exists a compatible partial order R on (A, f) with the following properties:

(1) R is an extension of r,
(2) R is f-quasilinear.

PROOF. Let <, be an arbitrary linear extension of the partial order <, on the set
B/ =, of order components in (4, f, <,), where B = A/ ~,. Letx € A. If there
is no cyclic element in (x), then fix a compatible linear order p;,, on (x) with the
properties described in Lemma 3.2. If there is a cyclic element of period » = 1 in (x),
then fix a compatible partial order p,, on (x) = [x], with the properties described in
Lemma 3.3. We claim that

R={(x,y) €4 xA|(x) < (y)and (x,) € p in case of (x) = (y)}

satisfies (1) and (2).

The reflexive, antisymmetric and transitive properties of R can be easily verified.
In order to prove the compatibility of R, it is enough to note that (f(x)) = (x) and
that p,, is a compatible partial order on ((x), f).

Suppose x <, y. Then [x], <, [v];, whence we obtain (x) <, (y) as well
as (x) <, (¥). In the case of (x) = (y), the relation (x,y) € p follows from
rN((x) x (x)) € pu. Thus we have (x, y) € R, proving » € R. Therefore (1) holds.

Suppose now x, y € A are incomparable elements with respect to R. Then the
linearity of <, implies that (x) = (), (x, ¥) € py and (v, x) € py,. Since py Is
not linear, the order component (x) must contain a cyclic element ¢ of period n > 2.
In view of the properties of p, described in Lemma 3.3, we obtain that x € E; and
y € E;forsomei, j € {0,1,...,n—1} withi # j. Now the last property of the £;’s
guarantees that (x, y) is an f-prohibited pair. Thus (2) holds. O

COROLLARY 4.3. A compatible partial order R on (A, f) is maximal (with respect
to containment) if and only if R is f-quasilinear.
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