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In finance risk capital allocation raises important questions both from theoretical and 

practical points of view. How to share risk of a portfolio among its subportfolios? How to 

reserve capital in order to hedge existing risk and how to assign this to different business 

units?  

We use an axiomatic approach to examine risk capital allocation, that is we call for 

fundamental properties of the methods. Our starting point is Csóka and Pintér (2011) who 

show by generalizing Young (1985)'s axiomatization of the Shapley value that the 

requirements of Core Compatibility, Equal Treatment Property and Strong Monotonicity are 

irreconcilable given that risk is quantified by a coherent measure of risk.  

In this paper we look at these requirements using analytic and simulations tools. We examine 

allocation methods used in practice and also ones which are theoretically interesting. Our 

main result is that the problem raised by Csóka and Pintér (2011) is indeed relevant in 

practical applications, that is it is not only a theoretical problem. We also believe that through 
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Kockázatfelosztási módszerek tulajdonságai: 

magbeliség, egyenlően kezelés és erős monotonitás 

 

Balog Dóra – Bátyi Tamás László 

Csóka Péter – Pintér Miklós  

 

 

 

Összefoglaló 

 

A pénzügyekben a kockázatfelosztás elméleti és gyakorlati szempontból is érdekes kérdéseket 

vet fel. Hogyan osszuk el egy portfólió kockázatát annak alportfóliói között? Mennyi tőkét 

tartalékoljunk a meglévő kockázatunk fedezéséhez, és ezt hogyan osszuk fel különböző üzleti 

egységek között? 

Cikkünkben axiomatikus módszerrel elemezzük a kockázatfelosztást, vagyis a különböző 

módszerek alaptulajdonságait vizsgáljuk. Kiindulópontunk Csóka és Pintér (2011) cikke, akik 

a Young (1985) cikkben található Shapley-érték axiomatizációt általánosítva megmutatják, 

hogy a magbeliség, az egyenlően kezelés és az erős monotonitás tulajdonságok a 

kockázatfelosztás során összeegyeztethetetlenek, ha koherens kockázati mértékkel mérjük a 

kockázatot.  

Ezeket a tulajdonságokat analitikus és szimulációs eszközökkel vizsgáljuk a gyakorlatban 

használt és elméletileg érdekes módszereken.  Fő eredményünk az, hogy a Csóka és Pintér 

(2011) által felvetett összeegyeztethetetlenség a gyakorlatban is releváns, nem csak elméleti  

probléma.  Bízunk abban, hogy a módszerek vizsgálata a gyakorlati szakemberek számára is 

hasznos tanácsokkal szolgál. 

 

Tárgyszavak: koherens kockázati mértékek, kockázatfelosztás, Shapley-érték, mag, 

szimuláció 

 

JEL kód: C71, G10 
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Abstract

In finance risk capital allocation raises important questions both
from theoretical and practical points of view. How to share risk of a
portfolio among its subportfolios? How to reserve capital in order to
hedge existing risk and how to assign this to different business units?

We use an axiomatic approach to examine risk capital allocation,
that is we call for fundamental properties of the methods. Our start-
ing point is Csóka and Pintér (2011) who show by generalizing Young
(1985)’s axiomatization of the Shapley value that the requirements
of Core Compatibility, Equal Treatment Property and Strong Mono-
tonicity are irreconcilable given that risk is quantified by a coherent
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simulations tools. We examine allocation methods used in practice
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and also ones which are theoretically interesting. Our main result is
that the problem raised by Csóka and Pintér (2011) is indeed relevant
in practical applications, that is it is not only a theoretical problem.
We also believe that through the characterizations of the examined
methods our paper can serve as a useful guide for practitioners.

Keywords: Coherent Measures of Risk, Risk Capital Allocation,
Shapley value, Core, Simulation

JEL Classification: C71, G10.

1 Introduction

Proper measurement of risk is essential for banks, insurance companies, port-
folio managers and other units exposed to financial risk. In this paper we
consider the class of coherent measures of risk 1 (Artzner, Delbaen, Eber,
and Heath, 1999), which are defined by four natural axioms: Monotonicity,
Translation Invariance, Positive Homogeneity and Subadditivity. Coherent
measures of risk are broadly accepted in the literature, for a further theo-
retical foundation of the notion see Csóka, Herings, and Kóczy (2007) and
Acerbi and Scandolo (2008).

Subadditivity captures the notion of diversification: if a financial unit
(portfolio) consists of more subunits (subportfolios), then the sum of the
risks of the subunits is at least as much as the risk of the main unit. The
risk of the main unit should be allocated to the subunits (resulting in risk
savings) using a risk allocation method. This process is called risk capital
allocation and has the following applications (see for instance Denault (2001);
Kalkbrener (2005); Valdez and Chernih (2003); Buch and Dorfleitner (2008);
Homburg and Scherpereel (2008); Kim and Hardy (2009); Csóka, Herings,
and Kóczy (2009)):

1. financial institutions divide their capital reserves among business units,

2. strategic decision making regarding new business lines,

3. product pricing,

4. (individual) performance measurement,

5. forming risk limits,

6. risk sharing among insurance companies.

1As a further reading on risk measures we suggest Krokhmala, Zabarankin, and Uryasev
(2011).
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The Shapley value Shapley (1953) is a well established method in coop-
erative game theory for allocating gains and costs. By generalizing Young
(1985)’s axiomatization of the Shapley value Csóka and Pintér (2011) show
that when using any coherent measure of risk there is no risk capital alloca-
tion method satisfying three fairness requirements at the same time: Core
Compatibility, Equal Treatment Property and Strong Monotonicity. The
description of the properties is as follows.

Core Compatibility ensures that the risk of the main unit is allocated
in such a way that no subset (coalition) of subunits is allocated more risk
capital than it would be implied by its own risk. Otherwise the given subunit
coalition would strongly argue against the allocation and block it, or at least
think that it is not fair. Core Compatibility means that the allocation is
in the core of the resulting cooperative game. Equal Treatment Property
requires that subunits having the very same risk contributions (alone and also
when joining to any subset of other subunits) are treated in the same way,
that is the same risk capital is allocated to each of them. It is even possible
that applying a method not satisfying Equal Treatment Property might have
legal consequences. Strong Monotonicity requires that if a subunit weakly
reduces its stand-alone risk and also its risk contribution to all the subsets of
the other subunits, then its allocated capital should not increase. This way
weakly better relative performance is weakly rewarded, thus the subunits are
not motivated to increase their risk.

As there is no risk capital allocation method that satisfies all the above
given properties at the same time when risk is calculated by a coherent mea-
sure of risk, we analyze seven allocation methods to find out how they are
related to the three fairness requirements. The seven methods are: Activity
based method (Hamlen, Hamlen, and Tschirthart (1977)), Beta method (see
for instance Homburg and Scherpereel (2008)), Incremental method (see for
instance Jorion (2007)), Cost gap method (Driessen and Tijs (1986)), Eu-
ler method (see for instance Buch and Dorfleitner (2008)), Shapley method
(Shapley, 1953) and the Nucleolus method (Schmeidler, 1969).

We use two different approaches. First, we discuss analytically which
properties are met by the different methods. Our results are as follows: from
the seven methods, two methods, well-known from game theory, the Shapley
and the Nucleolus methods show the best performance, as both of them
satisfy two of the three properties. In case of the Shapley method we have
to give up Core Compatibility, while Strong Monotonicity is not met by the
Nucleolus method. Then, we analyze Core Compatibility for all the methods
using simulations. We examine how often it is fulfilled for normal and also
for fat tailed (see for instance (Cont, 2001)) return distributions. Our results
are presented in the tables of Section 4.
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Since Csóka and Pintér (2011) show that for risk capital allocation sit-
uations the only allocation method satisfying Equal Treatment Property,
Strong Monotonicity and Efficiency (allocating all the risk of the main unit)
is the Shapley method, violation of Core Compatibility in case of the Shapley
method calls for special attention. Our simulations results show that Core
Compatibility is violated by the Shapley method in a significant number
of the cases in every examined simulation setting. Hence we conclude that
the theoretical problem raised by Csóka and Pintér (2011), the impossibil-
ity of the existence of an ideal risk capital allocation method, is not only
theoretically important, but it is also a relevant practical problem. Thus
all of the examined methods have their own advantages and disadvantages.
Practitioners have to decide on the applied method in each single situation,
considering which method fits best the actual setting. Our analytical and
simulation results are intended to help in this decision.

The setup of our paper is as follows: in the next section we define the
notions used in our analysis. In Section 3 we introduce the seven examined
methods, while we present our results in the last section.

2 Preliminaries

In this paper, for the sake of simplicity, we will assume that the subunits
can be described by random variables defined on a finite probability field
(Ω,M, P ). We will denote random variables as X : Ω → R. As we have
a finite number of states, we can think of the random variables as vectors
(their components are the elements of Ω). The set of the random variables
defined on the fixed finite probability field (Ω,M, P ) is denoted by X .

We analyze the following financial situation. A financial unit (for instance
a bank, a portfolio, etc.) consists of a finite number of subunits. The set of
the subunits are denoted by N = {1, 2, . . . , n}. Every financial unit can be
described using a random variable, for subunit i it is random variable Xi. In
other words, the vector Xi shows the possible profits of subunit i for a given
time period (negative values mean losses). We are also interested in subsets
of subunits, a coalition S ⊆ N is described by XS =

∑
i∈S Xi, where the

value of the empty sum is the 0 function (vector).
The function ρ : X → R is called a measure of risk. A measure of

risk assigns a number to every random variable, it defines the risk of every
coalition. This notion of risk can also be taken as the minimum level of capital
(cash) to be added to the portfolio. In this paper we restrict ourselves to
coherent measures of risk (Artzner et al, 1999). In our simulations we use
the k%-Expected Shortfall measure of risk (Acerbi and Tasche, 2002), which
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is the average of the worst k percentage of the losses. At last, the notion
risk capital allocation situation, RCAS is used for the vectors describing the
financial subunits and the measure of risk together, so Xρ

N = {N, {Xi}i∈N , ρ}
is a risk capital allocation situation. The class of risk capital allocation
situations with the set of subunits N will be denoted by RCASN .

Example 2.1. Consider risk capital allocation situation Xρ
N where set Ω =

{ω1, ω2, ω3, ω4}, M denotes all subsets of Ω and P is such that P ({ω1}) =
P ({ω2}) = P ({ω3}) = P ({ω4}) = 1

4
. We have three subunits, N = {1, 2, 3},

and the applied measure of risk ρ is the 25%-Expected Shortfall, which in
this case (and for all k ∈ [0, 25]) equals the maximum loss. The vectors Xi

are shown in the following Table 1.

Ω/XS X1 X2 X3 X{1,2} X{1,3} X{2,3} X{1,2,3}
ω1 −10 −10 0 −20 −10 −10 −20
ω2 −3 −4 −100 −7 −103 −104 −107
ω3 −6 0 −99 −6 −105 −99 −105
ω4 0 −6 −99 −6 −99 −105 −105

ρ(XS) 10 10 100 20 105 105 107

Table 1: The risk capital allocation situation Xρ
N

The lowermost row contains the risk of each coalition. Note that a sig-
nificant diversification effect arises when the three subunits form a coalition:

ρ(XN) = 107 < 120 =
∑
i∈N

ρ(Xi) .

As in the above example, two questions arise in most of the risk capital
allocation situations. How to allocate the diversification benefits among the
subunits? What properties should the applied allocation method have?

The function ϕ : RCASN → RN is called risk capital allocation method
(allocation method for short). A risk capital allocation method determines
the allocated risk for each subunit in the particular risk capital allocation
situation. We define three properties of allocation methods.

Definition 2.2. The risk capital allocation method ϕ satisfies

1. Core Compatibility (Core Compatibility) if for each risk capital alloca-
tion situation Xρ

N ∈ RCASN the equality ρ(XN) =
∑

i∈N ϕi(X
ρ
N) holds,

and for all coalition S ⊂ N we have that ρ(XS) ≥
∑

i∈S ϕi(X
ρ
N),
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2. Equal Treatment Property if for all risk capital allocation situation
Xρ
N ∈ RCASN and subunits i, j ∈ N the equations ρ(XS∪{i})−ρ(XS) =

ρ(XS∪{j})− ρ(XS), S ⊆ N \ {i, j} imply that ϕi(X
ρ
N) = ϕj(X

ρ
N),

3. Strong Monotonicity if for all risk capital allocation situations Xρ1
N , Y

ρ2
N ∈

RCASN and subunit i ∈ N the inequalities ρ1(XS∪{i}) − ρ1(XS) ≤
ρ2(YS∪{i})− ρ2(YS), S ⊆ N imply that ϕi(X

ρ
N) ≤ ϕi(Y

%
N).

The properties can be explained as follows. Core Compatibility is satisfied
if a risk allocation is stable: the risk of the main unit is fully allocated and
no coalitions of the subunits would like to object their allocated risk capital
by saying that their risk is less than the sum of the risks allocated to the
members of the particular coalition. Equal Treatment Property makes sure
that equivalent subunits are treated equally, that is if two subunits make the
same risk contribution to all coalitions not containing them (also to the empty
set, meaning that their stand-alone risks are the same), then the rule should
allocate the very same risk capital to the two subunits. Strong Monotonicity
requires that if the contribution of risk of a subunit to all the coalitions of
subunits is not decreasing, then its allocated risk capital should not decrease
either. Hence, as an incentive compatibility notion, the subunits are not
motivated to increase their contribution of risk.

Then, the following theorem holds.

Theorem 2.3 (Csóka and Pintér (2011)). Considering risk capital allocation
situations with coherent measures of risk there is no risk capital allocation
method meeting the conditions of Core Compatibility, Equal Treatment Prop-
erty and Strong Monotonicity at the same time.

Next, we look at different methods and check which property they violate.
The main goal of this paper is to find out how relevant this problem is
in practice, considering return distributions having empirically observable
characteristics. This question is answered in Section 4.

3 Risk capital allocation methods

In this section we present the seven risk capital allocation methods that we
examine in this paper. In case of the first four methods we follow Homburg
and Scherpereel (2008). The fifth method, the Euler method has different
versions, we take the most “general” one. The last two methods, the Shapley
(Shapley, 1953) and the Nucleolus method (Schmeidler, 1969) are well-known
in game theory.
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3.1 Activity based method

The method was first introduced by Hamlen et al (1977). It allocates the
joint risk to the subunits in proportion to their own risk. For a risk capital
allocation situation Xρ

N ∈ RCASN and subunit i ∈ N the Activity based
method allocates

ϕABi (Xρ
N) =

ρ(Xi)∑
j∈N

ρ(Xj)
ρ(XN) .

A really serious drawback of the method is that it does not consider the
dependence structure of the subunits, that is it does not allocate smaller risk
capital to those subunits that are hedging the others.

3.2 Beta method

Let Xρ
N ∈ RCASN be a risk capital allocation situation and let Cov(Xi, XN)

denote the covariance between the random variables describing the financial
position of subunit i ∈ N and the main financial unit. Let the beta of unit i
be βi = Cov(Xi,XN )

Cov(XN ,XN )
. Then for a risk capital allocation situation Xρ

N ∈ RCASN
and subunit i ∈ N the Beta method allocates

ϕBi (Xρ
N) =

βi∑
j∈N

βj
ρ(XN) .

We have to mention that the Beta method is not always defined. If for
instance the realization vector of the main unit has the same elements in all
states of nature, then all of the betas are zeros, so the above given formula
can not be applied.

3.3 Incremental method

The Incremental method (see for instance Jorion (2007)) defines the risk
capital allocated to a subunit in proportion to its individual “risk increment”,
which is its contribution of risk to the main unit. For a risk capital allocation
situation Xρ

N ∈ RCASN and subunit i ∈ N the Incremental method allocates

ϕNi (Xρ
N) =

ρ(XN)− ρ(XN\{i})∑
j∈N

ρ(XN)− ρ(XN\{j})
ρ(XN) .

We also have to mention that this method is not always defined, for
example when we consider the risk capital allocation situation generated by
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the identity matrix multiplied by minus one, then for each subunit i we have
ρ(XN)− ρ(XN\{i}) = 0, so the above given formula can not be applied.

3.4 Cost gap method

After a smaller amendment of the Incremental method, we get the Cost gap
allocation rule introduced by Driessen and Tijs (1986). First of all, let us
define for each subunit i ∈ N its smallest cost gap γi as follows:

γi = min
S⊆N, i∈S

∣∣∣∣∣ρ(XS)−
∑
j∈S

(ρ(XN)− ρ(XN\{j}))

∣∣∣∣∣ .
The term behind the minimum operator is the cost gap of coalition S,

showing the difference between the risk of the coalition and the sum of the
risk contributions of its members to the grand coalition; it is in fact the non-
separable risk (cost) of coalition S. By modifying the Incremental method
in such a way that the non-separable risk of the grand coalition is shared
proportionally to the cost gap of each player, we get the Cost gap method.
Formally, for a risk capital allocation situation Xρ

N ∈ RCASN and subunit
i ∈ N the Cost gap method is defined as follows: If

∑
j∈N

γj = 0, then

ϕCGi (Xρ
N) = ρ(XN)− ρ(XN\{i}),

otherwise

ϕCGi (Xρ
N) = ρ(XN)− ρ(XN\{i})

+
γi∑

j∈N
γj

(
ρ(XN)−

∑
j∈N

(ρ(XN)− ρ(XN\{j}))

)
.

3.5 Euler method

The Euler method, also called gradient method or marginal contribution to
risk, is a popular method both in the literature and in practice. Despite its
popularity, the method is not canonically defined, that is, different versions
of the Euler method are used in the literature. In this paper we introduce a
notion of Euler method which is quite general, and reflects the main intuitions
behind the method.

For a risk capital allocation situation Xρ
N ∈ RCASN and subunit i ∈ N

we define the Euler method as it allocates
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ϕEi (Xρ
N) = ρ′(XN , Xi) ,

where ρ′(XN , Xi) is the directional derivative of ρ at XN along Xi. In case of
the directional derivative of ρ at XN exists along each Xi, i ∈ N , the Euler
method is defined.

In some papers the Euler method is used in a different, more restric-
tive way. The derivatives are not directional derivatives, but partial deriva-
tives. In this case for any risk capital allocation situation Xρ

N ∈ RCASN
and subunit i ∈ N the allocated risk by the Euler method is the following:
ϕEi (Xρ

N) = ρ′i(XN), where ρ′i(XN) is the partial derivative of the measure of
risk ρ at XN along Xi.

Notice that, if for all i ∈ N the measure of risk ρ is directionally dif-
ferentiable at XN along both Xi and −Xi, then ρ′i(XN) is defined. Buch
and Dorfleitner (2008) show that in this case the Euler method satisfies Core
Compatibility. However, many coherent measures of risk fail to meet this
differentiability condition, for instance (as we will show it in Example 4.5)
in general the Expected Shortfall does not meet this condition.

Moreover, by the partial derivative definition the Euler method coincides
with the Aumann-Shapley value (Aumann and Shapley, 1974), and it can
be extended to cases where it is not defined, in a way that it preserves Core
Compatibility (Boonen, De Waegenaere and Norde, 2012); of course this
extension differs from the one (directional derivative) we use in this paper.

3.6 Shapley method

The Shapley method (Shapley, 1953) gives the risk capital allocated to the
subunits as follows: for a risk capital allocation situation Xρ

N ∈ RCASN and
subunit i ∈ N

ϕShi (Xρ
N) =

∑
S⊆N\{i}

|S|!(|N | − |S| − 1|)!
|N |!

(ρ(XS∪{i})− ρ(XS)) ,

where |S| denotes the number of elements of S.

3.7 Nucleolus method

The Nucleolus method (Schmeidler, 1969) defines the risk capital allocated to
the subunits as follows: for a risk capital allocation situation Xρ

N ∈ RCASN
and subunit i ∈ N

9



ϕNci (Xρ
N) = {x ∈ I(Xρ

N) : E(x) ≥lex E(y) for all y ∈ I(Xρ
N)} ,

where I(Xρ
N) = {x ∈ RN :

∑
j∈N xj = ρ(XN) and for all j ∈ N, xj ≤

ρ(Xj)}, E(x) = (· · · ≥ ρ(XS) −
∑

i∈S xi ≥ · · · )S⊂N , and ≥lex denotes the
lexicographic ordering.

We conclude this section with the continuation of Example 2.1.

Example 3.1 (Example 2.1 continued.). Table 2 shows the allocated risk cap-
ital by the above given seven methods for the risk capital allocation situation
of Example 2.1.

Method/Subunit 1 2 3
Activity based 8.9167 8.9167 89.1667

Beta −8.7390 −8.2969 124.0359
Incremental 2.3516 2.3516 102.2967

Cost gap 6.4138 6.4138 94.1724
Euler 3 4 100

Shapley 6.5 6.5 94
Nucleolus 6 6 95

Table 2: The allocated risk capital of Example 2.1.

In this example, in case of the Beta method the betas are −0.0817,
−0.0775 and 1.1592 respectively, while in case of the Cost gap method the
gammas are 8, 8 and 13 respectively.

4 Properties of the allocation methods

In this section we present our analytical and simulations results. It is im-
portant that we use a general coherent measure of risk, that is we test the
fairness requirements for any coherent measure of risk.

4.1 Analytic results

Table 3 summarizes our analytical results. The interpretation of the table
is as follows: the

√
sign means that the method in the given row meets the

fairness property of the column. Before we detail our results, we note that
the result of Csóka and Pintér (2011) (see Theorem 2.3) implies that none of
the methods meets all the three fairness requirements.
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Method / Property Core Compatibility Equal Treatment Property Strong Monotonicity
Activity based ∅

√
∅

Beta ∅ ∅ ∅
Incremental ∅

√
∅

Cost gap ∅
√

∅
Euler ∅ ∅ ∅

Shapley ∅
√ √

Nucleolus
√ √

∅

Table 3: Properties of the methods

Let us move to the detailed results. The definition of the Activity based
method implies that it satisfies Equal Treatment Property, and as our sim-
ulations results show (Section 4.2) it does not satisfy Core Compatibility.
Regarding Strong Monotonicity we provide the following example.

Example 4.1. Let us consider risk capital allocation situations Xρ
N and Y ρ

N ,
where for both cases we have Ω = {ω1, ω2},M denotes all subsets of Ω, and
P is such that P ({ω1}) = P ({ω2}) = 1

2
. Moreover, we have two subunits,

N = {1, 2}, and the applied measure of risk, ρ is the 50%-Expected Shortfall
(the maximum loss again). The vectors Xi and Yi and their sums are in
Table 4.

Ω/XS X1 X2 X{1,2}
ω1 0 −11 −11
ω2 −10 0 −10

ρ(XS) 10 11 11

Ω/YS Y1 Y2 Y{1,2}
ω1 0 −20 −20
ω2 −9 0 −9

ρ(YS) 9 20 20

Table 4: The Activity based and the Beta methods do not satisfy Strong
Monotonicity.

Here ρ(X1) = 10 ≥ 9 = ρ(Y1) and ρ(XN) − ρ(X2) = 0 ≥ 0 = ρ(YN) −
ρ(Y2), but ϕAB1 (Xρ

N) = 10
21

11 < 9
29

20 = ϕAB1 (Y ρ
N), so the Activity based

method does not satisfy Strong Monotonicity.

The Beta method does not meet any of the considered fairness require-
ments. Example 3.1 shows that it does not satisfy Equal Treatment Property,
as it allocates different amounts of capital to subunits 1 and 2. The simu-
lation results also show that it is does not satisfy Core Compatibility, while
regarding Strong Monotonicity we provide the following example:
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Example 4.2. Consider the situation of Example 4.1. Then ρ(X1) = 10 ≥ 9 =
ρ(Y1) and ρ(XN)− ρ(X2) = 0 ≥ 0 = ρ(YN)− ρ(Y2), but ϕB1 (Xρ

N) = −110 <
−16.36 = ϕB1 (Y ρ

N), so the Beta method does not meet Strong Monotonicity.

In case of the Incremental method it can also be seen from the defining
formula that it satisfies Equal Treatment Property and the simulation results
also show that it does not satisfy Core Compatibility. We examine Strong
Monotonicity in the following example.

Example 4.3. Let us consider risk capital allocation situations Xρ
N and Y ρ

N ,
where for both cases we have Ω = {ω1, ω2},M denotes all subsets of Ω, and
P is such that P ({ω1}) = P ({ω2}) = 1

2
. Moreover, we have two subunits,

N = {1, 2}, and the applied measure of risk, ρ is the 50%-Expected Shortfall
(the maximum loss again). The vectors Xi and Yi and their sum are in Table
5.

Ω/XS X1 X2 X{1,2}
ω1 −2 −9 −11
ω2 −9 0 −9

ρ(XS) 9 9 11

Ω/YS Y1 Y2 Y{1,2}
ω1 −2 −7 −9
ω2 −9 0 −9

ρ(YS) 9 7 9

Table 5: The Incremental method does not satisfy Strong Monotonicity.

Here ρ(X1) = 9 = ρ(Y1) and ρ(XN) − ρ(X2) = 2 = ρ(YN) − ρ(Y2), but
ϕN1 (Xρ

N) = 11
2
< 9 = ϕN1 (Y ρ

N), so the Incremental method does not satisfy
Strong Monotonicity.

The Cost gap method is very similar to the Incremental method, by
definition it also meets Equal Treatment Property and the simulation results
also show that it does not satisfy Core Compatibility. Regarding Strong
Monotonicity we provide the following example:

Example 4.4. Let us consider risk capital allocation situations Xρ
N and Y ρ

N ,
where for both cases in the probability field (Ω,M, P ) we have that Ω =
{ω1, ω2},M denotes all subsets of Ω, and P is such that P ({ω1}) = P ({ω2})
= 1

2
, we have two subunits, N = {1, 2}, and the applied measure of risk, ρ is

the 50%-Expected Shortfall (the maximum loss again). The vectors Xi and
Yi and their sum are shown in Table 6.

Here ρ(X1) = ρ(Y1) and ρ(XN) − ρ(X2) = 2 = ρ(YN) − ρ(Y2), but
ϕCG1 (Xρ

N) = 11
2
> 9

2
= ϕCG1 (Y ρ

N), so the Cost gap method does not fulfill
Strong Monotonicity.

In case of the Euler method Buch and Dorfleitner (2008) proved that
for differentiable coherent measures of risk the Euler method satisfies Core
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Ω/XS X1 X2 X{1,2}
ω1 −2 −9 −11
ω2 −9 0 −9

ρ(XS) 9 9 11

Ω/YS Y1 Y2 Y{1,2}
5ω1 −9 −1 −11
ω2 0 −11 −11

ρ(YS) 9 11 11

Table 6: The Cost gap method does not satisfy Strong Monotonicity.

Compatibility. However, Example 2.1 shows that it does not meet Equal
Treatment Property, and generally the method does not satisfy any of the
fairness requirements.

Example 4.5. Consider the situations of Example 4.3, then ρ(X1) = 9 = ρ(Y1)
and ρ(XN) − ρ(X2) = 2 = ρ(YN) − ρ(Y2), but ϕE1 (Xρ

N) = 2 < 9 = ϕE1 (Y ρ
N).

Moreover, ϕE2 (Y ρ
N) = 7, that is ϕE1 (Y ρ

N) + ϕE2 (Y ρ
N) = 16 > 9 = ρ(YN), so

the Euler method satisfies neither Equal Treatment Property, nor Strong
Monotonicity, nor Core Compatibility. Core Compatibility fails since in this
example the measure of risk is not differentiable.

The properties of the Shapley method are described in Csóka and Pintér
(2011), they show that it is the only efficient method (allocating all the risk
of the main unit) while meeting both Equal Treatment Property and Strong
Monotonicity, but not Core Compatibility. It is also well-known that the
Nucleolus method meets Equal Treatment Property and Core Compatibility,
but Young (1985) shows a counterexample (p. 69), where it does not meet
Strong Monotonicity2.

Summarizing our results we can say that the best performing methods are
the game theoretic methods: the Shapley method and the Nucleolus method,
as both of them satisfy exactly two of the three fairness requirements.

4.2 Simulation results

How often is in practice one of the properties of Core Compatibility, Equal
Treatment Property and Strong Monotonicity violated? As the Shapley
method is the only efficient method meeting both Equal Treatment Prop-
erty and Strong Monotonicity (Csóka and Pintér, 2011), checking its average
Core Compatibility for return distributions having empirically observable
characteristics can give an answer.

In the simulations we model the returns of a financial unit (for instance a
bank) consisting of, at first, three, then four subunits (for instance divisions),

2Actually, Young (1985)’s counterexample says more, it shows that Core Compati-
bility and Strong Monotonicity contradict each other (for more about this contradiction
regarding risk allocation games see Csóka and Pintér (2011))
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assuming each has invested into assets worth $100 million. We generate re-
turn time series using random correlation matrices. As a first approach, we
use normal distribution, but we also run the simulations with Student’s t-
distribution (henceforth t-distribution). From the simulated returns changes
in the invested values, from them risks of the coalitions (1 %-Expected Short-
fall) can be calculated.

It is necessary to include the t-distribution, since in practice extremely
low and high returns occur more often than it is implied by the normal
distribution. That is, the tails of the distribution are heavier than of the
normal distribution (Cont, 2001). This is called the stylized fact of heavy
tails, first observed by Mandelbrot (1963) on cotton prices. The parameter of
the t-distribution, the degrees of freedom (from now on ν) shows how heavy
the tails are. The lower the degrees of freedom the heavier the tails are. We
run the simulations using t-distributions with ν = 3 (following the “cubic
law of returns”) and with ν = 10 (lighter tail). To analyze at the effects of
the fact tail we check average Core Compatibility of all the seven methods,
except the Nucleolus method and the Euler method defined by Boonen et al.
(2012), since we know that they satisfy Core Compatibility all the time.

In order to get the return series we first generate correlation matrices
(more precisely, first Cholesky matrices) and the standard deviations of the
assets. For each correlation matrix we generate a lower triangular matrix
consisting of elements uniformly distributed on the interval (−1, 1). We
multiply this by its transpose and we normalize the matrix – this way we
get the correlation matrix. The standard deviations are generated from the
interval (0.01, 0.04) by using uniform distribution.

Then, we generate at first three, then four independent normally and t-
distributed time series (with a mean of zero and a variance of one) consisting
of 1000 elements, that we multiply by the Cholesky matrices and the standard
deviations. This way finally we get multivariate normal and t-distributions.
We generate Cholesky matrices 100000 times and for all Cholesky matrices
a random return series consisting of 1000 elements. In the determination
of the iteration number we consider both the running time (3-6 minutes for
each setting) and the stability of the0 results (the precision is around 0.3 %).
We choose to generate return series consisting of 1000 elements, because it
equals four years of return data (assuming to have 250 trading days a year)
considered to be enough for more or less exact risk assessment.

Our aim, similarly to Homburg and Scherpereel (2008) is to determine
the proportion of the examined cases resulting allocations in the core. Nev-
ertheless, contrary to them, we choose a coherent measure of risk, Expected
Shortfall, not Value at Risk and we do not consider only the normal distri-
bution. Furthermore, we examine more risk capital allocation methods than
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they do. Naturally, the closer is the ratio of Core Compatibility to 100% the
better the method is.

Table 7 shows the rounded results for three players.

Method/Distribution Normal t-distr. (ν = 10) t-distr. (ν = 3)
Activity based 26.2% 26.5% 27.6%

Beta 80.8% 74.3% 57.8%
Incremental 20.3% 19.5% 19.4%

Cost gap 99.8% 99.7% 99.1%
Euler 100% 100% 100%

Shapley 59.3% 57.1% 57.1%
Nucleolus 100% 100% 100%

Table 7: Average Core Compatibility in case of three subunits

As Table 7 shows the Cost gap, the Euler and the Nucleolus methods
perform much better than the other four methods. The Incremental and the
Activity based methods show relatively poor performance, but the Shapley
and the Beta methods also obey the criterion of Core Compatibility in a
large proportion of the cases.

Table 8 shows our simulation results for four players.

Method/Distribution Normal t-distr. (ν = 10) t-distr. (ν = 3)
Activity based 10.2% 10.7% 11.6%

Beta 73.5% 65.1% 47.5%
Incremental 6.7% 6.4% 6.1%

Cost gap 97.6% 97% 95.5%
Euler 100% 100% 100%

Shapley 39.6% 38.6% 39.1%
Nucleolus 100% 100% 100%

Table 8: Average Core Compatibility in case of four subunits

Comparing the ratios of core allocations with four players to our previ-
ous results with three players we can generally say that the ratio of core
allocations is weakly decreasing as we increase the number of players. The
intuition might be that with more players the core itself gets smaller.

Let us consider the tendencies with respect to the fatness of the tails.
Starting at the normal distribution and decreasing the degrees of freedom
of the t-distribution we get fatter tails. The fatter the tails the lower the
Core Compatibility of the methods tends to be, except for the activity based
method and the Shapley method in case of four subunits. Thus the more

15



extreme events usually generate more extreme claims of the coalitions, which
are usually harder to satisfy.

Using the 5%-Expected Shortfall there is at most 2 % change in Core
Compatibility, except for the Beta method where we can have 10-20 % higher
numbers.

The results of the simulations with four players outline the fact that
if we look for a suitable method for practical applications regarding Core
Compatibility, the only possible candidates are the Cost gap, the Euler and
the Nucleolus methods. The low ratio of the Shapley method shows that the
impossibility of fair risk allocation is indeed a practical problem (compare it
to Theorem 2.3).

Our general conclusion is the following. Even if we are not mainly in-
terested in Core Compatibility, we have only a few relevant alternatives left.
Our analytic results in Table 3 show that only two methods satisfy more than
one of the three axioms: the Shapley and the Nucleolus methods. As the
Shapley method is the only efficient method meeting both Equal Treatment
Property and Strong Monotonicity (Csóka and Pintér, 2011), the low ratio
of the Shapley method’s Core Compatibility means that in practical appli-
cations we really have to give up one of the three fairness requirements, so
there is no ideal risk allocation method in practice either.
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