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Abstract The aim of the present paper is to investigate the half-spaces in the 1
convexity structure of all quasiorders on a given set and to use them in an alternative 2
approach to classical order dimension. The main result states that linear orders 3
can almost always be replaced by half-space quasiorders in the definition of the 4
dimension of a partially ordered set. 5
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1 Introduction 8

Within the framework of the general theory of abstract convexity (van de Vel [9]), 9
strict quasiorders (irreflexive and transitive relations) on a set A can be thought of 10
as convex subsets of {(x, y) ∈ A × A | x �= y}: 11

(1) {(x, y) ∈ A × A | x �= y} is a strict quasiorder, 12
(2) Any intersection of strict quasiorders is a strict quasiorder, 13
(3) Any nested union of strict quasiorders is a strict quasiorder. 14
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In general, a half-space is defined as a convex subset of the base set with a convex15
set complement. Abstract convexity theory addresses questions such as the repre-16
sentation of convex sets as intersections of half-spaces. For technical reasons, instead17
of the strict quasiorders in {(x, y) ∈ A × A | x �= y}, we shall consider the ordinary18
(reflexive) quasiorders in A × A (there is a natural one to one correspondence19
between them). We can use half-space quasiorders to define the half-space dimension20
of a quasiordered set, in a similar way as linear orders are used to define the order21
dimension of a partially ordered set. The aim of the present paper is to investigate22
the half-space quasiorders and to study the above dimension concept for quasiorders,23
along the lines of the classical theory of order dimension (see e.g. [1, 2, 7, 8]). Our24
main result (Theorem 2.16) states that linear orders can almost always be replaced25
by half-space quasiorders in the definition of the order dimension. Since there are26
considerably more half-spaces than linear orders, establishing upper bounds on order27
dimension can be easier using representations of partial orders as intersections of28
half-spaces. In order to demonstrate this, we give a simple proof for the “difficult”29
part of the classical Dushnik–Miller theorem (in [2]) about the dimension of the30
direct product of chains.31

In Section 2 we provide some simple characterizations of half-spaces and examine32
the relationship between half-spaces and linear orders. A standard construction33
together with a complete description of half-spaces is also given. In the rest of Section34
2, we show the tight connection between half-space dimension and classical order35
dimension. It turns out, that the half-space dimension and the order dimension of a36
partially ordered set can be different only for half-space partial orders.37

In Section 3 we deal with direct products. First we prove that the direct product of38
quasiorders can be a half-space only in one exceptional situation. Then we use half-39
spaces to obtain the exact upper bound for the dimension in the above mentioned40
theorem of Dushnik and Miller.41

2 Half-Spaces and the Dimension of Quasiordered Sets42

A quasiorder γ on the set A is a reflexive and transitive relation:43

�A = {(a, a) | a ∈ A} ⊆ γ ⊆ A × A

and (x, y) ∈ γ , (y, z) ∈ γ imply (x, z) ∈ γ for all x, y, z ∈ A. The containment re-44
lation ⊆ provides a natural complete lattice structure on the set Quord(A) of all45
quasiorders on A: (Quord(A),∨,∩). If γ is a partial order, then we frequently use46
the standard notations x ≤γ y and x <γ y for (x, y) ∈ γ and for (x, y) ∈ γ , x �= y. For47
a relation γ , the inverse of γ is γ −1 = {(y, x) | (x, y) ∈ γ } and for a quasiorder the48
intersection γ ∩ γ −1 is an equivalence on A. The equivalence class of an element49
a ∈ A is denoted by [a]γ∩γ −1 , thus50

A/(γ ∩ γ −1) = {[a]γ∩γ −1 | a ∈ A}.
It is well known that γ induces a natural partial order rγ (in order to avoid repeated51
indices, we write ≤γ instead of ≤rγ

) on the above quotient set: for a, b ∈ A52

[a]γ∩γ −1 ≤γ [b ]γ∩γ −1 if and only if (x, y) ∈ γ for some x ∈ [a]γ∩γ −1 and y ∈ [b ]γ∩γ −1 .
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Also [a]γ∩γ −1 ≤γ [b ]γ∩γ −1 holds if and only if (x, y) ∈ γ for all x ∈ [a]γ∩γ −1 and for all 53
y ∈ [b ]γ∩γ −1 . 54

A quasiorder α ⊆ A × A is said to be a half-space on A if it has a “strong” 55
complement in the lattice (Quord(A),⊆), i.e. if α ∪ β = A × A and α ∩ β = �A hold 56
for some quasiorder β ⊆ A × A. Clearly, this complement β is also a half-space 57
and it is uniquely determined by α: β = �A ∪ ((A × A) \ α). It follows, that α is a 58
half-space if and only if �A ∪ ((A × A) \ α) is transitive. The simplest examples of 59
half-spaces are linear orders, the identity �A and the full relation A × A on any 60
set A. Complementary half-spaces are put into a pair of the form α 	 β and can be 61
characterized in the lattice (Quord(A),∨,∩) as follows. 62

Proposition 2.1 For any quasiorders α, β ∈Quord(A) the following are equivalent: 63

(1) α 	 β is a pair of complementary half-spaces, i.e. α ∩ β = �A and α ∪ β = 64
A × A. 65

(2) α ∩ β = �A and (α ∩ γ ) ∨ (β ∩ γ ) = γ for all γ ∈Quord(A). 66
(3) α ∩ β = �A and (α ∩ γ ) ∪ (β ∩ γ ) = γ for all γ ∈Quord(A). 67

Proof (1) =⇒ (2): 68

γ = (A × A) ∩ γ = (α ∪ β) ∩ γ = (α ∩ γ ) ∪ (β ∩ γ ) ⊆ (α ∩ γ ) ∨ (β ∩ γ ) ⊆ γ.

(2) =⇒ (1): Suppose that α ∪ β �= A × A, then (a, b) /∈ α ∪ β for some a, b ∈ A. 69
Since γ (a, b) = �A ∪ {(a, b)} is a quasiorder on A, we have 70

(α ∩ γ (a, b)) ∨ (β ∩ γ (a, b)) = γ (a, b)

in contradiction with α ∩ γ (a, b)) = β ∩ γ (a, b) = �A. 71
(1) =⇒ (3) and (3) =⇒ (2) trivially. �� 72

For a half-space α the inverse relation α−1 is also a half-space, if α 	 β for 73
α, β ∈Quord(A), then α−1 	 β−1. If B ⊆ A is a subset, then the restriction of a 74
quasiorder to B yields a quasiorder on B and a similar statement holds for half- 75
spaces, α 	 β implies that α ∩ (B × B) 	 β ∩ (B × B). This observation leads to 76
another characterization of half-spaces, which will be repeatedly used in the sequel. 77

Proposition 2.2 For a quasiorder α ∈Quord(A) the following are equivalent: 78

(1) α is a half-space. 79
(2) α ∩ (B × B) is a half-space (on B) for any three element subset B ⊆ A. 80
(3) For any x, y, z ∈ A the relations (x, y) /∈ α, (y, x) /∈ α and (x, z) ∈ α, z �= x imply 81

that (y, z) ∈ α. 82
(4) For any x, y, z ∈ A the relations (z, y) /∈ α, (y, z) /∈ α and (x, z) ∈ α, x �= z imply 83

that (x, y) ∈ α. 84

Proof (1) =⇒ (2): This is a special case of our claim preceding Proposition 2.2. 85
(2) =⇒ (3): Let (x, y) /∈ α, (y, x) /∈ α and (x, z) ∈ α, z �= x for the elements 86

x, y, z ∈ A and take the three element subset B = {x, y, z} of A. Suppose that 87
(y, z) /∈ α and consider the complementary half-space δ ⊆ B × B of α ∩ (B × B). 88
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Now89

(α ∩ (B × B)) ∪ δ = B × B

implies that (x, y) ∈ δ and (y, z) ∈ δ, whence (x, z) ∈ (α ∩ (B × B)) ∩ δ = �B can be90
derived in contradiction with z �= x.91

(3) =⇒ (4): Let (z, y) /∈ α, (y, z) /∈ α and (x, z) ∈ α, x �= z for the elements92
x, y, z ∈ A and suppose that (x, y) /∈ α. Clearly, (y, x) ∈ α would imply (y, z) ∈ α,93
a contradiction. Thus (x, y) /∈ α, (y, x) /∈ α and (x, z) ∈ α, x �= z, whence we obtain94
that (y, z) ∈ α, a contradiction. It follows that (x, y) ∈ α.95

(4) =⇒ (1): In order to see the transitivity of β = �A ∪ ((A× A) \ α) let (x, y) ∈ β,96
(y, z) ∈ β, x �= y and suppose that (x, z) /∈ β. We have either (z, y) /∈ α or (z, y) ∈ α.97
In the first case (z, y) /∈ α, (y, z) /∈ α and (x, z) ∈ α, x �= z would imply that (x, y) ∈98
α ∩ β = �A, a contradiction. In the second case (x, z) ∈ α and (z, y) ∈ α would imply99
that (x, y) ∈ α ∩ β = �A, a contradiction again. Thus we have (x, z) ∈ β. ��100

Proposition 2.3 If α is a half-space quasiorder on A, then the induced partial order101
rα is a half-space on A/(α ∩ α−1).102

Proof We can use part (3) in Proposition 2.2. If ([x]α∩α−1 , [y]α∩α−1) /∈ rα ,103
([y]α∩α−1 , [x]α∩α−1) /∈ rα and ([x]α∩α−1 , [z]α∩α−1) ∈ rα , [z]α∩α−1 �= [x]α∩α−1 , then we have104
(x, y) /∈ α, (y, x) /∈ α and (x, z) ∈ α, z �= x. Since α is a half-space, we obtain first105
(y, z) ∈ α and then ([y]α∩α−1 , [z]α∩α−1) ∈ rα . ��106

Proposition 2.4 If γ ⊆ A × A is a quasiorder and γ ⊆ α for some half-space α on A,107
then there exists a half-space τ on A, such that γ ⊆ τ ⊆ α and τ ∩ τ−1 = γ ∩ γ −1.108

Proof Let R be a linear extension of the induced partial order rγ and define the109
relation τ ⊆ A × A as follows:110

τ = α \ {(a, b) ∈ α ∩ α−1 | [b ]γ∩γ −1 <R [a]γ∩γ −1}.
Since (x, y) ∈ γ implies that (x, y) ∈ α and [x]γ∩γ −1 ≤R [y]γ∩γ −1 , we obtain that111
(x, y) ∈ τ . Thus γ ⊆ τ ⊆ α and γ ∩ γ −1 ⊆ τ ∩ τ−1. If (x, y) ∈ τ ∩ τ−1, then the112
relations [y]γ∩γ −1 <R [x]γ∩γ −1 and [x]γ∩γ −1 <R [y]γ∩γ −1 are not satisfied, whence113
[x]γ∩γ −1 = [y]γ∩γ −1 and (x, y) ∈ γ ∩ γ −1 can be derived. It follows, that τ ∩ τ−1 ⊆114
γ ∩ γ −1 and hence τ ∩ τ−1 = γ ∩ γ −1.115

In order to see the transitivity of τ take (x, y) ∈ τ and (y, z) ∈ τ . Now (x, y) ∈116
α and (y, z) ∈ α imply that (x, z) ∈ α. Suppose that (x, z) /∈ τ , whence (x, z) ∈ α ∩117
α−1 and [z]γ∩γ −1 <R [x]γ∩γ −1 follow. The relations (y, z) ∈ α and (z, x) ∈ α imply that118
(y, x) ∈ α and hence (x, y) ∈ α ∩ α−1. Similarly, (z, x) ∈ α and (x, y) ∈ α imply that119
(y, z) ∈ α ∩ α−1. In view of (x, y) ∈ τ and (y, z) ∈ τ we have [x]γ∩γ −1 ≤R [y]γ∩γ −1 and120
[y]γ∩γ −1 ≤R [z]γ∩γ −1 , whence we obtain that [x]γ∩γ −1 ≤R [z]γ∩γ −1 , a contradiction.121

In order to prove that τ is a half-space we can use part (3) of Proposition 2.2.122
Take x, y, z ∈ A such that (x, y) /∈ τ , (y, x) /∈ τ and (x, z) ∈ τ , z �= x. Now (x, y) /∈ τ123
implies that either (x, y) /∈ α or (x, y) ∈ α ∩ α−1 with [y]γ∩γ −1 <R [x]γ∩γ −1 . Similarly,124
(y, x) /∈ τ implies that either (y, x) /∈ α or (y, x) ∈ α ∩ α−1 with [x]γ∩γ −1 <R [y]γ∩γ −1 .125
It is easy to check that the only possibility to have (x, y) /∈ τ and (y, x) /∈ τ at the same126
time is the case when (x, y) /∈ α and (y, x) /∈ α. Since α is a half-space, (x, y) /∈ α,127
(y, x) /∈ α and (x, z) ∈ α, z �= x imply that (y, z) ∈ α. Suppose that (y, z) ∈ α ∩ α−1,128
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then (x, z) ∈ α and the transitivity of α imply that (x, y) ∈ α, a contradiction. Thus 129
we have (y, z) /∈ α ∩ α−1, whence (y, z) ∈ τ follows. �� 130

Proposition 2.5 Let the partial order α on A be a half-space. If λ is a linear order on 131
A, then 132

α[λ] = α ∪ (λ \ (α ∪ α−1))

is a linear extension of α on A and α = α[λ] ∩ α[λ−1]. 133

Proof In order to see the transitivity of α[λ] take (x, y) ∈ α[λ] and (y, z) ∈ α[λ] with 134
x �= y �= z. Clearly, (x, y) ∈ α and (y, z) ∈ α imply (x, z) ∈ α. If (x, y) ∈ α and (y, z) ∈ 135
λ \ (α ∪ α−1), then (y, z) /∈ α, (z, y) /∈ α and (x, y) ∈ α, x �= y, whence (x, z) ∈ α can 136
be derived by part (4) of Proposition 2.2. Similarly, (x, y) ∈ λ \ (α ∪ α−1) and (y, z) ∈ 137
α imply (x, z) ∈ α by part (3) of Proposition 2.2. If we have (x, y) ∈ λ \ (α ∪ α−1) and 138
(y, z) ∈ λ \ (α ∪ α−1), then (x, y) ∈ λ and (y, z) ∈ λ imply (x, z) ∈ λ. Since (x, y) /∈ 139
α ∪ α−1 and (y, z) /∈ α ∪ α−1 imply that (x, y) ∈ β ∩ β−1 and (y, z) ∈ β ∩ β−1 (here β 140
is the complementary half-space of α), the transitivity of β ∩ β−1 gives that (x, z) ∈ 141
β ∩ β−1, i.e. that (x, z) /∈ α ∪ α−1. It follows that (x, z) ∈ λ \ (α ∪ α−1). 142

Suppose that (x, y) ∈ α[λ] and (y, x) ∈ α[λ], then (x, y) ∈ α and (y, x) ∈ λ \ (α ∪ 143
α−1) is impossible. Similarly, (x, y) ∈ λ \ (α ∪ α−1) and (y, x) ∈ α is also impossible. 144
Thus we have either (x, y) ∈ α, (y, x) ∈ α or (x, y) ∈ λ \ (α ∪ α−1), (y, x) ∈ λ \ (α ∪ 145
α−1), in both cases x = y follows by the antisymmetric properties of α and λ, 146
respectively. 147

Suppose that (x, y) /∈ α and (y, x) /∈ α, then (x, y) /∈ α ∪ α−1. Now (x, y) ∈ λ im- 148
plies (x, y) ∈ λ \ (α ∪ α−1) and (y, x) ∈ λ implies (y, x) ∈ λ \ (α ∪ α−1). We proved 149
that α[λ] is a linear order. 150

Using α ∩ (λ \ (α ∪ α−1)) = α ∩ (λ−1 \ (α ∪ α−1)) = ∅ and λ ∩ λ−1 = �A, it is 151
straightforward to see that α = α[λ] ∩ α[λ−1]. �� 152

Corollary 2.6 If α is a half-space quasiorder on A, then the induced partial order is of 153
the form rα = R1 ∩ R2 for some linear orders R1 and R2 on A/(α ∩ α−1), i.e. rα has 154
order dimension at most 2. 155

Proof The partial order rα is a half-space on A/(α ∩ α−1) by Proposition 2.3. If R 156
is an arbitrary linear order on A/(α ∩ α−1), then R1 = rα[R] and R2 = rα[R−1] are 157
linear orders on A/(α ∩ α−1) with rα = rα[R] ∩ rα[R−1] by Proposition 2.5. �� 158

We remark that Corollary 2.6 does not characterize half-spaces entirely. 159
As already noted, any linear order λ on A is an example of a half-space: λ 	 λ−1. 160

Let f : A −→ X be a function, Y ⊆ X a subset, and R a linear order on X. Define 161
the following relations on A: 162

kerY( f ) = �A ∪ {(a, b) ∈ A × A | f (a) = f (b) ∈ Y} ,

f −1(R) = �A ∪ {(a, b) ∈ A × A | f (a) <R f (b)} .

Note that kerX( f ) is the ordinary kernel 163

ker( f ) = {(a, b) ∈ A × A | f (a) = f (b)} .
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The following is a standard construction of a half-space using a linear order.164

Proposition 2.7 Let (A, γ ) be a quasiordered set, (X, ρ) a partially ordered set and165
f : A −→ X a (γ, ρ) quasiorder preserving function: (x, y) ∈ γ =⇒ ( f (x), f (y)) ∈ ρ166
for all x, y ∈ A. If Y ⊆ X is a subset, R is a linear extension of ρ on X and γ ∩167
ker( f ) ⊆ kerY( f ), then168

α = kerY( f ) ∪ f −1(R)

is a half-space extension of γ and α ∩ α−1 = kerY( f ).169
If Y = ∅, then kerY( f ) = �A and kerY( f ) ∪ f −1(R) = f −1(R) is a partial order.170
If Y = X, then kerY( f ) = ker( f ) (now γ ∩ ker( f ) ⊆ kerY( f ) is automatically sat-171

isfied) and kerY( f ) ∪ f −1(R) = ker( f ) ∪ f −1(R) is a half-space extension of γ . In172
particular, if κ : A −→ A/(γ ∩ γ −1) is the canonical surjection and R is a linear173
extension of the induced partial order rγ on A/(γ ∩ γ −1), then ker(κ) ∪ κ−1(R) =174
(γ ∩ γ −1) ∪ κ−1(R) is a half-space extension of γ .175

Proof The containment γ ⊆ kerY( f ) ∪ f −1(R) is a consequence of ρ ⊆ R, γ ∩176
ker( f ) ⊆ kerY( f ) and of the quasiorder preserving property of f . It is easy to see177
that kerY( f ) ∪ f −1(R) and kerX\Y( f ) ∪ f −1(R−1) are quasiorders on A. We have178

(kerY( f ) ∪ f −1(R)) ∪ (kerX\Y( f ) ∪ f −1(R−1)) = A × A

and179

(kerY( f ) ∪ f −1(R)) ∩ (kerX\Y( f ) ∪ f −1(R−1)) = �A,

thus kerY( f ) ∪ f −1(R) 	 kerX\Y( f ) ∪ f −1(R−1). Also α ∩ α−1 = kerY( f ) is obvious.180
To conclude the proof, it is enough to note that κ is a (γ, rγ ) quasiorder preserving181
function. ��182

Proposition 2.8 Let (A, γ ) be a quasiordered set, (X, ρ) a partially ordered set183
and f : A −→ X a completely (γ, ρ) quasiorder preserving function: (x, y) ∈ γ ⇐⇒184
( f (x), f (y)) ∈ ρ for all x, y ∈ A. If Yi ⊆ X, i ∈ I is a collection of subsets, γ ∩185
ker( f ) ⊆ kerYi( f ) for all i ∈ I and {Ri | i ∈ I } is a set of linear extensions of ρ with186
∩
i∈I

Ri = ρ, then187

⋂

i∈I

(kerYi( f ) ∪ f −1(Ri)) = γ,

where the half-spaces kerYi( f ) ∪ f −1(Ri), i ∈ I are described in Proposition 2.7. In188
particular, if κ : A −→ A/(γ ∩ γ −1) is the canonical surjection and {Ri | i ∈ I } is a189
set of linear extensions of the induced partial order rγ on A/(γ ∩ γ −1) with ∩

i∈I
Ri = rγ ,190

then191
⋂

i∈I

(ker(κ) ∪ κ−1(Ri)) =
⋂

i∈I

((γ ∩ γ −1) ∪ κ−1(Ri)) = γ.

Proof We only have to show that192
⋂

i∈I

(kerYi( f ) ∪ f −1(Ri)) ⊆ γ.
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In view of the definition of kerYi( f ) ∪ f −1(Ri), the relation 193

(a, b) ∈
⋂

i∈I

(kerYi( f ) ∪ f −1(Ri))

ensures that f (a) ≤Ri f (b) for all i ∈ I. Now ∩
i∈I

Ri = ρ implies f (a) ≤ρ f (b), whence 194

we obtain (a, b) ∈ γ . To conclude the proof, it is enough to note that κ is completely 195
(γ, rγ ) quasiorder preserving. �� 196

The following is now a straightforward consequence. 197

Theorem 2.9 Any quasiorder on A can be obtained as an intersection of half-space 198
quasiorders on A. 199

In terms of the classification of convexities by separation axioms (van de Vel 200
[9]) the above theorem means that the convexity on the base set {(x, y) ∈ A × A | 201
x �= y} whose convex sets are the strict quasiorders on A is an S3 convexity, i.e. 202
a convex set K can be always separated from any element of the base set not in 203
K by complementary half-spaces. This is the case in the standard convexity of a 204
Euclidean space and, as Szpilrajn’s theorem [7] shows, in the convexity on the base 205
set {(x, y) ∈ A × A | x �= y} whose convex sets are the strict partial orders on A 206
plus {(x, y) ∈ A × A | x �= y} itself. However, it is not difficult to see that, unlike in 207
Euclidean space, in quasiorder convexity or in the coarser partial order convexity, 208
disjoint convex sets cannot always be separated by complementary half-spaces. A 209
counterexample with respect to both the quasiorder and partial order convexities is 210
provided, for A = {1, 2, 3, 4}, by the partial orders {(1, 2), (3, 4)} and {(1, 4), (3, 2)}. 211

Theorem 2.9 enables us to define a half-space realizer of a quasiorder γ ⊆ A × 212
A as a set {αi | i ∈ I} of half-spaces on A with

⋂
i∈I

αi = γ . The half-space dimension 213

hsdim(A, γ ) of a quasiordered set (A, γ ) is the minimum of the cardinalities of the 214
half-space realizers of γ . The close analogy between the half-space dimension and 215
the usual order dimension of a partially ordered set can be seen immediately. The 216
observation preceding Proposition 2.2 guarantees that 217

hs dim(B, γ ∩ (B × B)) ≤ hs dim(A, γ )

for any subset B ⊆ A. Since any linear order is a half-space, for a partially ordered set 218
(A, γ ) we have hsdim(A, γ ) ≤ dim(A, γ ), where dim denotes the order dimension. 219
In general, here we can not expect equality. The partial order of the four element 220
Boolean lattice M2 is a half-space, thus hsdim(M2,≤) = 1, while dim(M2,≤) = 2. The 221
next inequality is also a straightforward consequence of Proposition 2.8. 222

Corollary 2.10 For a quasiordered set (A, γ ) we have 223

hs dim(A, γ ) ≤ dim(A/(γ ∩ γ −1), rγ ).

The following theorem gives a complete description of half-space quasiorders. 224

Theorem 2.11 If α ⊆ A × A is a relation, then the following are equivalent. 225

(1) α is a half-space quasiorder on A. 226
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(2) There exists an equivalence relation ε on A, a linear order R on the factor set227
A/ε and a function t : A/ε −→ {0, 1} with t([a]ε) = 0 where [a]ε = {a} such that228

α=�A∪{(a, b)∈ A×A | [a]ε =[b ]ε and t([a]ε)=1}∪{(a, b)∈ A×A | [a]ε < R[b ]ε} .

(3) There exist a set X, a subset Y ⊆ X, a linear order R on X and a function f :229
A −→ X such that α = kerY( f ) ∪ f −1(R).230

(4) There exists an equivalence relation ε on A such that α is either the full or231
the identity relation on each ε-equivalence class, and any irredundant set of232
representatives of the ε-equivalence classes is linearly ordered by α.233

Proof (1) =⇒ (2): Let α 	 β be complementary half-spaces and take234

ε = (α ∩ α−1) ∪ (β ∩ β−1).

Clearly, ε is reflexive and symmetric. Assume that (x, y) ∈ α ∩ α−1 and (y, z) ∈ β ∩235
β−1. Since α ∪ β = A × A, we have either (x, z) ∈ α or (x, z) ∈ β. In the first case236
(y, x) ∈ α implies that (y, z) ∈ α ∩ β = �A. In the second case (z, y) ∈ β implies that237
(x, y) ∈ α ∩ β = �A. Thus (x, y) ∈ α ∩ α−1 and (y, z) ∈ β ∩ β−1 imply x = y or y = z.238
Similarly, (x, y) ∈ β ∩ β−1 and (y, z) ∈ α ∩ α−1 also imply x = y or y = z. In view239
of the above observations, it is easy to see that ε is transitive. We also have [a]ε =240
[a]α∩α−1 ∪ [a]β∩β−1 and [a]α∩α−1 = {a} or [a]β∩β−1 = {a} for all a ∈ A.241

We claim that (a, b) ∈ α and [a]ε �= [b ]ε imply that (x, y) ∈ α for all x ∈ [a]ε and242
for all y ∈ [b ]ε. Suppose that (x, y) /∈ α, then (x, y) ∈ β. In view of (x, a), (y, b) ∈ ε243
we have the following cases. (1) (x, a), (b , y) ∈ α, whence (x, y) ∈ α can be obtained,244
a contradiction. (2) (x, a) ∈ α and (y, b) ∈ β, whence (x, b) ∈ α ∩ β = �A can be ob-245
tained in contradiction with [x]ε = [a]ε �= [b ]ε. (3) (a, x) ∈ β and (b , y) ∈ α, whence246
(a, y) ∈ α ∩ β = �A can be obtained in contradiction with [a]ε �= [b ]ε = [y]ε. (iv)247
(a, x), (y, b) ∈ β, whence (a, b) ∈ α ∩ β = �A can be obtained in contradiction with248
[a]ε �= [b ]ε. Thus the claim is proved.249

Using our claim it is straightforward to check that250

R = {([a]ε, [b ]ε) | (a, b) ∈ α}
is a linear order on A/ε. For a ∈ A let251

t([a]ε) =
{

1 if [a]ε = [a]α∩α−1 �= {a}
0 otherwise

.

Clearly, t is well defined, moreover [a]ε = {a} implies [a]ε = [a]α∩α−1 = {a} and252
t([a]ε) = 0. If t([a]ε) = 1, then [a]ε = [a]α∩α−1 and [a]ε = [b ]ε implies that (a, b) ∈ α.253
It follows that254

�A∪{(a, b)∈ A × A | [a]ε = [b ]ε and t([a]ε) = 1}∪{(a, b)∈ A × A | [a]ε <R [b ]ε}⊆α.

If [a]ε = [b ]ε, then (a, b) ∈ α and a �= b implies that [a]ε = [a]α∩α−1 �= {a}, whence255

α⊆�A∪{(a, b)∈ A × A | [a]ε = [b ]ε and t([a]ε) = 1}∪{(a, b)∈ A × A | [a]ε <R [b ]ε}
can be obtained.256

(2) =⇒ (3): It is straightforward to see that α = kerY( f ) ∪ f −1(R), where X =257
A/ε, Y = {[a]ε | a ∈ A and t([a]ε) = 1} and f : A −→ X is the canonical surjection.258
Thus any half-space quasiorder can be obtained by the standard construction of259
Proposition 2.7.260
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(3) =⇒ (1): This implication is a part of Proposition 2.7. 261
(2) ⇐⇒ (4): Condition (4) is simply a reformulation of (2). �� 262

Remark 2.12 The triple ( f, Y ⊆ X, R) given in the (2) =⇒ (3) part of the above 263
proof has the following universal property. If g : A −→ U is a function, V ⊆ U is 264
a subset and S is a linear order on U such that 265

α = kerV(g) ∪ f −1(S),

then there exists a unique function h : X −→ U with h ◦ f = g, moreover h(Y) ⊆ V, 266
g−1({y}) is a one element set for all y ∈ h(X \ Y) ∩ V and h is (<R, <S) strict order 267
preserving 268

In view of the above characterization of the half-space α, an equivalence class [a]ε 269
is called a box of α, such a box is called full if t([a]ε) = 1 and empty if t([a]ε) = 0 (note 270
that a one element box is always empty). A subset B ⊆ A is a box of the half-space 271
α, if and only if there are no elements b 1, b 2 ∈ B such that (b 1, b 2) ∈ α, (b 2, b 1) /∈ α 272
and B is maximal with respect to this property. A box is empty if α ∩ (B × B) = �B 273
and full if |B| > 1 and B × B ⊆ α. 274

In certain situations it is also convenient to give a half-space as 275

α = (Bw,w ∈ W,≤W, t),

where the subsets Bw ⊆ A, w ∈ W are the boxes of α, the linear order ≤W is given 276
on the index set W and t(Bw) = 1 or t(Bw) = 0 shows that Bw is full or empty. If W is 277
finite, then we can write W = {1, 2, ..., n} and α = (B1 < B2 < ... < Bn, t). If α 	 β is 278
a complementary pair of half-spaces, then α and β have the same boxes, a full α-box 279
is an empty β-box and a full β-box is an empty α-box, moreover the linear order of 280
the boxes in α and β are opposite to each other. It is also clear that [a]α∩α−1 = {a} if 281
[a]ε is empty and [a]α∩α−1 = [a]ε if [a]ε is full. 282

With reference to the terminology of interval decompositions and lexicographic 283
sums of partial orders and more general relations (see e.g. [3–6]), it is clear from 284
Condition (4) of Theorem 2.11 that half-space quasiorders are precisely the lexico- 285
graphic relational sums of trivial and full binary relations over a linear order, i.e. they 286
are the binary relations decomposable into intervals such that the restriction to each 287
interval is a trivial or full relation and the quotient is a linear order. 288

Theorem 2.13 If (A, γ ) is a quasiordered set and {αi | i ∈ I} is a half-space realizer 289
of γ with |I| ≥ 2, then there exists an I-indexed family Ri, i ∈ I of linear extensions of 290
the induced partial order rγ on A/(γ ∩ γ −1) such that 291

⋂

i∈I

Ri = rγ .

Proof By Proposition 2.4, for each i ∈ I there exists a half-space τi on A such that 292
γ ⊆ τi ⊆ αi and τi ∩ τ−1

i = γ ∩ γ −1. Clearly, ∩
i∈I

αi = γ implies that ∩
i∈I

τi = γ , whence 293

⋂

i∈I

rτi = rγ
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can be derived for the induced partial orders rτi , i ∈ I on A/(τi ∩ τ−1
i ) = A/(γ ∩ γ −1).294

Using the notation πi = rτi , Proposition 2.3 ensures that each partial order πi is a half-295
space on P = A/(γ ∩ γ −1).296

We claim, that297

ρ = �P ∪
((

∪
i∈I

πi

)−1

\
(

∪
i∈I

πi

))

is partial order on P. The reflexive and antisymmetric properties of ρ can be imme-298
diately seen. In order to prove the transitivity of ρ consider the pairs (x, y) ∈ ρ and299
(y, z) ∈ ρ with x, y, z ∈ P being different. We have (y, x) ∈ πj, (z, y) ∈ πk for some300
j, k ∈ I and (x, y) /∈ ∪

i∈I
πi, (y, z) /∈ ∪

i∈I
πi. If (z, y) ∈ πj, then the transitivity of πj implies301

(z, x) ∈ πj. If (z, y) /∈ πj, then (y, z) /∈ πj and the half-space property of πj imply that302

(z, x) ∈ πj (see part (3) of Proposition 2.2). It follows that (x, z) ∈
(

∪
i∈I

πi

)−1

. Suppose303

that (x, z) ∈ ∪
i∈I

πi, then (x, z) ∈ πt for some t ∈ I. If (z, y) ∈ πt, then the transitivity of304

πt gives that (x, y) ∈ πt, a contradiction. If (z, y) /∈ πt, then (y, z) /∈ πt and the half-305
space property of πt gives that (x, y) ∈ πt (see part (4) of Proposition 2.2), another306
contradiction. Thus (x, z) /∈ ∪

i∈I
πi, whence (x, z) ∈ ρ follows.307

Let σi ⊆ P × P denote the complementary half-space of πi and consider the308
following equivalence relation:309

� = ∩
i∈I

(σi ∩ σ−1
i )

on P. Since π−1
i ∩ σ−1

i = �P for all i ∈ I, we have ρ ∩ � = �P and hence ρ−1 ∩ � =310
�P. Now we prove the containments � ◦ ρ ⊆ ρ and ρ ◦ � ⊆ ρ. If (x, y) ∈ � and311
(y, z) ∈ ρ for the elements x, y, z ∈ P with x, y, z being different, then (z, y) ∈ πj312
for some j ∈ I and (y, z) /∈ ∪

i∈I
πi. In view of (x, y) ∈ σ j ∩ σ−1

j , we have (x, y) /∈ πj313

and (y, x) /∈ πj. Using part (4) in Proposition 2.2, we obtain that (z, x) ∈ πj and314

(x, z) ∈
(

∪
i∈I

πi

)−1

. Suppose that (x, z) ∈ ∪
i∈I

πi, then (x, z) ∈ πk follows for some k ∈ I.315

Since (x, y) ∈ σk ∩ σ−1
k implies that (x, y) /∈ πk and (y, x) /∈ πk, the application of part316

(3) in Proposition 2.2 yields (y, z) ∈ πk, a contradiction. Thus we have (x, z) /∈ ∪
i∈I

πi,317

whence (x, z) ∈ ρ follows. A similar argument shows that ρ ◦ � ⊆ ρ.318
Fix a linear order μ on P, then μ ∩ � and μ−1 ∩ � are partial orders. Using the319

above properties of ρ and �, it is straightforward to see that ρ ∪ (μ ∩ �) and ρ ∪320
(μ−1 ∩ �) are also partial orders on P.321

Let λ ⊇ ρ ∪ (μ ∩ �) and λ∗ ⊇ ρ ∪ (μ−1 ∩ �) be linear extensions on P and fix an322
index i∗ ∈ I. In view of Proposition 2.5, we can consider the linear orders Ri = πi[λ],323
i ∈ I \ {i∗} and Ri∗ = πi∗ [λ∗] on P (note that I \ {i∗} is not empty). Since πi ⊆ Ri for324
all i ∈ I, the inclusion325

rγ =
⋂

i∈I

πi ⊆
⋂

i∈I

Ri
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is obvious. In order to prove the reverse containment let (x, y) /∈ ⋂
i∈I

πi for some 326

x, y ∈ P. We have (x, y) /∈ πj for some j ∈ I. If (y, x) ∈ ∪
i∈I

πi, then (y, x) ∈ πk ⊆ Rk 327

and hence (x, y) /∈ Rk for some k ∈ I. If (y, x) /∈ ∪
i∈I

πi, then we distinguish two cases. 328

First suppose that (x, y) ∈ ∪
i∈I

πi. Then (y, x) ∈ ρ ⊆ λ ∩ λ∗ and the relations (x, y) /∈ 329

πj, (y, x) /∈ πj imply that (y, x) ∈ πj[λ] (or (y, x) ∈ πi∗ [λ∗] if j = i∗), whence (x, y) /∈ 330
R j follows. 331

Next suppose that (x, y) /∈ ∪
i∈I

πi. Then (x, y) ∈ � and the linearity of μ gives that 332

we have either (y, x) ∈ μ ∩ � or (y, x) ∈ μ−1 ∩ �. If (y, x) ∈ μ ∩ � ⊆ λ, then (y, x) ∈ 333
πi[λ] and hence (x, y) /∈ πi[λ] = Ri for all i ∈ I \ {i∗}. If (y, x) ∈ μ−1 ∩ � ⊆ λ∗, then 334
(y, x) ∈ πi∗ [λ∗] and hence (x, y) /∈ πi∗ [λ∗] = Ri∗ . �� 335

Remark 2.14 Another possibility to construct the linear orders Ri in the above proof 336
is the following. Fix a well ordering < on I and for i ∈ I \ {i∗} let 337

Ri = πi ∪ ((σi ∩ σ−1
i ) ∩ �) ∪ (� ∩ μ),

Ri∗ = πi∗ ∪ ((σi∗ ∩ σ−1
i∗ ) ∩ �) ∪ (� ∩ μ−1),

where � = {(x, y) | (y, x) ∈ πk and (x, y) ∈ ⋂
i∈I,i<k

(σi ∩ σ−1
i ) for some k ∈ I}. 338

In view of Corollaries 2.6 and 2.10, the above Theorem 2.13 yields the following. 339

Theorem 2.15 If (A, γ ) is a quasiordered set and hsdim(A, γ ) = 1, then γ is a half- 340
space and 341

dim(A/(γ ∩ γ −1), rγ ) = 1 if γ has no empty box with more than one element,

dim(A/(γ ∩ γ −1), rγ ) = 2 if γ has an empty box with more than one element.

If hsdim(A, γ ) ≥ 2, then we have 342

dim(A/(γ ∩ γ −1), rγ ) = hs dim(A, γ ).

Theorem 2.16 If (A, γ ) is a partially ordered set and hsdim(A, γ ) = 1, then γ is a 343
half-space and 344

dim(A, γ ) = 1 if γ is a linear order,

dim(A, γ ) = 2 if γ is not a linear order.

If hsdim(A, γ ) ≥ 2, then we have 345

dim(A, γ ) = hs dim(A, γ ).
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3 Direct Product Irreducibility of Half-Space Quasiorders346

If (Ai, γi), i ∈ I is a family of quasiordered sets, then347
∏

i∈I

γi = {(a, b) | a, b ∈
∏

i∈I

Ai and (a(i), b(i)) ∈ γi for all i ∈ I}

is a quasiorder on the product set
∏
i∈I

Ai (here a and b are functions I −→ ⋃
i∈I

Ai such348

that a(i), b(i) ∈ Ai for all i ∈ I). We call (
∏
i∈I

Ai,
∏
i∈I

γi) the direct product of the above349

family. The kernel of the natural surjection350

ϕ :
∏

i∈I

Ai −→
∏

i∈I

Ai/(γi ∩ γ −1
i )

is
∏
i∈I

(γi ∩ γ −1
i ), whence we obtain a natural bijection351

(
∏

i∈I

Ai

)
/

(
∏

i∈I

(γi ∩ γ −1
i )

)
−→

∏

i∈I

Ai/(γi ∩ γ −1
i ).

It is easy to see that352
(

∏

i∈I

γi

)
∩

(
∏

i∈I

γi

)−1

=
∏

i∈I

(γi ∩ γ −1
i ) and r =

∏

i∈I

rγi ,

where r is the partial order on
∏
i∈I

Ai/(γi ∩ γ −1
i ) induced by the quasiorder

∏
i∈I

γi.353

The product of non-trivial partial orders is never a linear order. In contrast, the354
product of two half-spaces can be a half-space again: the four element Boolean lattice355
M2 is a product of two-element chains. We show that this is the only possibility to get356
a non-trivial half-space as a product of quasiorders.357

Lemma 3.1 Let (Ai, γi), i ∈ I be a family of quasiordered sets and let j, k ∈ I, j �= k358
be indices such that a j �= c j, (a j, c j) ∈ γ j, (a j, bj) /∈ γ j for some a j, bj, c j ∈ A j and γk �=359
Ak × Ak with |Ak| > 1. Then

∏
i∈I

γi is not a half-space on
∏
i∈I

Ai.360

Proof Let u ∈ ∏
i∈I

Ai be an arbitrary element and xk, yk ∈ Ak such that (xk, yk) /∈ γk.361

Define a, b, c ∈ ∏
i∈I

Ai as follows: for an index i ∈ I let362

a(i) =
⎧
⎨

⎩

a j if i = j
yk if i = k
u(i) if i ∈ I \ { j, k}

, b(i) =
⎧
⎨

⎩

bj if i = j
xk if i = k
u(i) if i ∈ I \ { j, k}

,

c(i) =
⎧
⎨

⎩

c j if i = j
yk if i = k
u(i) if i ∈ I \ { j, k}

.

Clearly, (a j, bj) /∈ γ j implies (a, b) /∈ ∏
i∈I

γi and (xk, yk) /∈ γk implies (b, a) /∈ ∏
i∈I

γi. Since363

(a, c)∈∏
i∈I

γi and (xk, yk) /∈γk implies (b, c) /∈∏
i∈I

γi, we can use part (3) in Proposition 2.2364
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to see that
∏
i∈I

γi is not a half-space (we note that c �= a is an immediate consequence 365

of a j �= c j). �� 366

Lemma 3.2 If (A, γ ) is a quasiordered set such that there are no elements a, b , c ∈ A 367
with a �= c, (a, c) ∈ γ and (a, b) /∈ γ , then γ ∈ {�A, A × A} or γ = (B1 < B2) is a 368
half-space with a full lower box B1 (or |B1| = 1) and an empty upper box B2. 369

Proof If γ /∈ {�A, A × A} satisfies the above conditions, then for each a ∈ A we 370
have either (a, x) ∈ γ for all x ∈ A or (a, y) /∈ γ for all y ∈ A. Take 371

B1 = {a ∈ A | (a, x) ∈ γ for all x ∈ A} and B2 = {a ∈ A | (a, y) /∈ γ for all y ∈ A},
then B1 ∪ B2 = A, B1 ∩ B2 = ∅ and γ = B1 × A = (B1 × B1) ∪ (B1 × B2) is a half- 372
space, with a full lower box B1 (or |B1| = 1) and an empty upper box B2. Thus we 373
can write γ = (B1 < B2). �� 374

Lemma 3.3 Let γi = (Bi1 < Bi2), 1 ≤ i ≤ 2 be half-spaces on Ai with full lower boxes 375
Bi1 (or |Bi1| = 1) and empty upper boxes Bi2. Then we have the following. 376

(1) �A1×A2 �= γ1 × γ2 �= (A1 × A2) × (A1 × A2) and take a = (a12, a21), b = 377
(a11, a21), c = (a12, a22), where aij ∈ Bij, i, j ∈ {1, 2} are arbitrary elements. Then 378
a �= c, (a, c) ∈ γ1 × γ2 and (a, b) /∈ γ1 × γ2. 379

(2) γ1 × γ2 is a half-space if and only if
∣∣Bij

∣∣ = 1 for all i, j ∈ {1, 2}. 380

Proof 381

(1): Obvious. 382
(2): If

∣∣Bij
∣∣ = 1 for all i, j ∈ {1, 2}, then it is clear that A1 × A2 is a four element set 383

and γ1 × γ2 is a partial order relation on A1 × A2 providing a lattice isomorphic 384
to M2, which is a half-space as we have already noted. 385

Suppose now, that |B11| > 1 and take a′, a′′ ∈ B11 such that a′ �= a′′. Let z = (a′, b), 386
x = (a′′, b) and y = (a, c), where a ∈ B12, b ∈ B22, c ∈ B21 are arbitrary elements. 387
Since (x, y) /∈ γ1 × γ2, (y, x) /∈ γ1 × γ2 and (x, z) ∈ γ1 × γ2, (y, z) /∈ γ1 × γ2, we can 388
apply part (3) in Proposition 2.2 to derive that γ1 × γ2 is not a half-space. 389

If |B12| > 1 then take a′, a′′ ∈ B12 such that a′ �= a′′. Let z = (a′, b), x = (a′, c) 390
and y = (a′′, c), where b ∈ B22, c ∈ B21 are arbitrary elements. Since (x, y) /∈ γ1 × 391
γ2, (y, x) /∈ γ1 × γ2 and (x, z) ∈ γ1 × γ2, (y, z) /∈ γ1 × γ2, we can apply part (3) in 392
Proposition 2.2 to derive that γ1 × γ2 is not a half-space. 393

The cases |B21| > 1 and |B22| > 1 can be treated analogously. �� 394

Theorem 3.4 If (Ai, γi), i ∈ I is a family of non-trivial quasiordered sets (i.e. �Ai �= 395
γi �= Ai × Ai for all i ∈ I), then the following are equivalent. 396

(1)
∏
i∈I

γi is a half-space on
∏
i∈I

Ai. 397

(2) Either I = {1} and γ1 is a half-space or I = {1, 2} and (A1, γ1), (A2, γ2) are two- 398
element chains. 399

Proof 400
(2) =⇒ (1): It is an immediate consequence of part (2) in Lemma 3.3. 401
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(1) =⇒ (2): It is enough to deal with the case |I| ≥ 2. Using Lemma 3.1, we obtain402
that there is no j ∈ I such that a j �= c j, (a j, c j) ∈ γ j, (a j, bj) /∈ γ j for some a j, bj, c j ∈403
A j. In view of Lemma 3.2, each γ j is a half-space on A j of the form γ j = (B j1 < B j2)404
with a full lower box B j1 (or

∣∣B j1
∣∣ = 1) and an empty upper box B j2. If |I| ≥ 3, then405

we have different indices i1, i2, i3 ∈ I and406

∏

i∈I

γi = (γi1 × γi2) × γi3 ×
⎛

⎝
∏

i∈I\{i1,i2,i3}
γi

⎞

⎠ ,

where γi1 × γi2 has the property described in part (1) of Lemma 3.3. Since γi3 �=407
Ai3 × Ai3 with

∣∣Ai3

∣∣ > 1, Lemma 3.1 ensures that our product is not a half-space, a408
contradiction. Thus |I| = 2 and part (2) in Lemma 3.3 gives that (A1, γ1) and (A2, γ2)409
are two-element chains (here we assumed I = {1, 2}). ��410

Remark 3.5 If γ j = �A j and
∣∣A j

∣∣ > 1 for some j ∈ I, then
∏
i∈I

γi is disconnected, hence411

not a non-trivial half-space (because
∏
i∈I

γi = � would be the only possibility to get412

a half-space). If γ j = A j × A j for some j ∈ I, then γ j has no effect on wether the413
product

∏
i∈I

γi is a half-space (in other words
∏
i∈I

γi is a half-space if and only if
∏

i∈I\{ j}
γi is414

a half-space).415

Now, as promised in the introduction, we illustrate the use of half-spaces in a short416
proof of the following statement.417

Theorem 3.5 (Dushnik–Miller) If (Ai, Ri), i ∈ I is a family of non-trivial linearly418
ordered sets (chains) with |I| ≥ 2, then419

dim

(
∏

i∈I

Ai,
∏

i∈I

Ri

)
≤ |I| .

Proof For an index j ∈ I let πj denote the natural
∏
i∈I

Ai −→ A j projection. We have420

⋂

j∈I

{(a, b) | a, b ∈
∏

i∈I

Ai and a( j) ≤R j b( j)} =
∏

i∈I

Ri,

for the half-spaces421

{(a, b) | a, b ∈
∏

i∈I

Ai and a( j) ≤R j b( j)} = ker(πj) ∪ π−1
j (R j), j ∈ I

(see Proposition 2.7). If
∏
i∈I

Ri is not a half-space, then422

dim

(
∏

i∈I

Ai,
∏

i∈I

Ri

)
= hs dim

(
∏

i∈I

Ai,
∏

i∈I

Ri

)
≤ |I|

by Theorem 2.16. If
∏
i∈I

Ri is a half-space, then |I| = 2 and (
∏
i∈I

Ai,
∏
i∈I

Ri) is the four423

element Boolean lattice by Theorem 3.4. ��424
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