A Half-Space Approach to Order Dimension

Stephan Foldes • Jenó Szigeti

Received: 19 June 2006 / Accepted: 19 July 2007
© Springer Science + Business Media B.V. 2007

Abstract

The aim of the present paper is to investigate the half-spaces in the 1 convexity structure of all quasiorders on a given set and to use them in an alternative 2 approach to classical order dimension. The main result states that linear orders 3 can almost always be replaced by half-space quasiorders in the definition of the 4 dimension of a partially ordered set.5 Keywords Convexity • Quasiorder•Preorder • Half-space • Dimension 6 Mathematics Subject Classifications (2000) 06A06•06A07•52A01 7 1 Introduction 8 Within the framework of the general theory of abstract convexity (van de Vel [9]), 9strict quasiorders (irreflexive and transitive relations) on a set A can be thought of 10as convex subsets of $\{(x, y) \in A \times A \mid x \neq y\}$:11 (1) $\{(x, y) \in A \times A \mid x \neq y\}$ is a strict quasiorder, 12 (2) Any intersection of strict quasiorders is a strict quasiorder, 13 (3) Any nested union of strict quasiorders is a strict quasiorder. 14

[^0]In general, a half-space is defined as a convex subset of the base set with a convex set complement. Abstract convexity theory addresses questions such as the representation of convex sets as intersections of half-spaces. For technical reasons, instead of the strict quasiorders in $\{(x, y) \in A \times A \mid x \neq y\}$, we shall consider the ordinary (reflexive) quasiorders in $A \times A$ (there is a natural one to one correspondence between them). We can use half-space quasiorders to define the half-space dimension of a quasiordered set, in a similar way as linear orders are used to define the order dimension of a partially ordered set. The aim of the present paper is to investigate the half-space quasiorders and to study the above dimension concept for quasiorders, along the lines of the classical theory of order dimension (see e.g. [1, 2, 7, 8]). Our main result (Theorem 2.16) states that linear orders can almost always be replaced by half-space quasiorders in the definition of the order dimension. Since there are considerably more half-spaces than linear orders, establishing upper bounds on order dimension can be easier using representations of partial orders as intersections of half-spaces. In order to demonstrate this, we give a simple proof for the "difficult" part of the classical Dushnik-Miller theorem (in [2]) about the dimension of the direct product of chains.

In Section 2 we provide some simple characterizations of half-spaces and examine the relationship between half-spaces and linear orders. A standard construction together with a complete description of half-spaces is also given. In the rest of Section 2, we show the tight connection between half-space dimension and classical order dimension. It turns out, that the half-space dimension and the order dimension of a partially ordered set can be different only for half-space partial orders.

In Section 3 we deal with direct products. First we prove that the direct product of quasiorders can be a half-space only in one exceptional situation. Then we use halfspaces to obtain the exact upper bound for the dimension in the above mentioned theorem of Dushnik and Miller.

2 Half-Spaces and the Dimension of Quasiordered Sets

A quasiorder γ on the set A is a reflexive and transitive relation:

$$
\Delta_{A}=\{(a, a) \mid a \in A\} \subseteq \gamma \subseteq A \times A
$$

and $(x, y) \in \gamma,(y, z) \in \gamma$ imply $(x, z) \in \gamma$ for all $x, y, z \in A$. The containment relation \subseteq provides a natural complete lattice structure on the set $\operatorname{Quord}(A)$ of all quasiorders on $A:(\operatorname{Quord}(A), \vee, \cap)$. If γ is a partial order, then we frequently use the standard notations $x \leq_{\gamma} y$ and $x<_{\gamma} y$ for $(x, y) \in \gamma$ and for $(x, y) \in \gamma, x \neq y$. For a relation γ, the inverse of γ is $\gamma^{-1}=\{(y, x) \mid(x, y) \in \gamma\}$ and for a quasiorder the intersection $\gamma \cap \gamma^{-1}$ is an equivalence on A. The equivalence class of an element $a \in A$ is denoted by $[a]_{\gamma \cap \gamma^{-1}}$, thus

$$
A /\left(\gamma \cap \gamma^{-1}\right)=\left\{[a]_{\gamma \cap \gamma^{-1}} \mid a \in A\right\}
$$

51
\qquad
It is well known that γ induces a natural partial order r_{γ} (in order to avoid repeated indices, we write \leq^{γ} instead of $\leq_{r_{\gamma}}$) on the above quotient set: for $a, b \in A$

$$
[a]_{\gamma \cap \gamma^{-1}} \leq^{\gamma}[b]_{\gamma \cap \gamma^{-1}} \text { if and only if }(x, y) \in \gamma \text { for some } x \in[a]_{\gamma \cap \gamma^{-1}} \text { and } y \in[b]_{\gamma \cap \gamma^{-1}} .
$$

Also $[a]_{\gamma \cap \gamma^{-1}} \leq^{\gamma}[b]_{\gamma \cap \gamma^{-1}}$ holds if and only if $(x, y) \in \gamma$ for all $x \in[a]_{\gamma \cap \gamma^{-1}}$ and for all 53 $y \in[b]_{\gamma \cap \gamma^{-1}}$.54

A quasiorder $\alpha \subseteq A \times A$ is said to be a half-space on A if it has a "strong" 55 complement in the lattice $(\operatorname{Quord}(A), \subseteq)$, i.e. if $\alpha \cup \beta=A \times A$ and $\alpha \cap \beta=\Delta_{A}$ hold 56 for some quasiorder $\beta \subseteq A \times A$. Clearly, this complement β is also a half-space 57 and it is uniquely determined by $\alpha: \beta=\Delta_{A} \cup((A \times A) \backslash \alpha)$. It follows, that α is a 58 half-space if and only if $\Delta_{A} \cup((A \times A) \backslash \alpha)$ is transitive. The simplest examples of 59 half-spaces are linear orders, the identity Δ_{A} and the full relation $A \times A$ on any 60 set A. Complementary half-spaces are put into a pair of the form $\alpha \uparrow \beta$ and can be 61 characterized in the lattice $(\operatorname{Quord}(A), \vee, \cap)$ as follows.

Proposition 2.1 For any quasiorders $\alpha, \beta \in \operatorname{Quord}(A)$ the following are equivalent:
(1) $\alpha \mathfrak{\imath} \beta$ is a pair of complementary half-spaces, i.e. $\alpha \cap \beta=\Delta_{A}$ and $\alpha \cup \beta=64$ $A \times A$.
(2) $\alpha \cap \beta=\Delta_{A}$ and $(\alpha \cap \gamma) \vee(\beta \cap \gamma)=\gamma$ for all $\gamma \in \operatorname{Quord}(A)$.
(3) $\alpha \cap \beta=\Delta_{A}$ and $(\alpha \cap \gamma) \cup(\beta \cap \gamma)=\gamma$ for all $\gamma \in \operatorname{Quord}(A)$.

Proof (1) \Longrightarrow (2):

$$
\gamma=(A \times A) \cap \gamma=(\alpha \cup \beta) \cap \gamma=(\alpha \cap \gamma) \cup(\beta \cap \gamma) \subseteq(\alpha \cap \gamma) \vee(\beta \cap \gamma) \subseteq \gamma
$$

(2) \Longrightarrow (1): Suppose that $\alpha \cup \beta \neq A \times A$, then $(a, b) \notin \alpha \cup \beta$ for some $a, b \in A .69$ Since $\gamma(a, b)=\Delta_{A} \cup\{(a, b)\}$ is a quasiorder on A, we have

$$
\begin{equation*}
(\alpha \cap \gamma(a, b)) \vee(\beta \cap \gamma(a, b))=\gamma(a, b) \tag{71}
\end{equation*}
$$

in contradiction with $\alpha \cap \gamma(a, b))=\beta \cap \gamma(a, b)=\Delta_{A}$.
$(1) \Longrightarrow(3)$ and $(3) \Longrightarrow(2)$ trivially. 72

For a half-space α the inverse relation α^{-1} is also a half-space, if $\alpha \uparrow \beta$ for 73 $\alpha, \beta \in \operatorname{Quord}(A)$, then $\alpha^{-1} \uparrow \beta^{-1}$. If $B \subseteq A$ is a subset, then the restriction of a 74 quasiorder to B yields a quasiorder on B and a similar statement holds for half- 75 spaces, $\alpha \uparrow \beta$ implies that $\alpha \cap(B \times B) \downarrow \beta \cap(B \times B)$. This observation leads to 76 another characterization of half-spaces, which will be repeatedly used in the sequel. 77

Proposition 2.2 For a quasiorder $\alpha \in \operatorname{Quord}(A)$ the following are equivalent:
(1) α is a half-space.
(2) $\alpha \cap(B \times B)$ is a half-space (on $B)$ for any three element subset $B \subseteq A$. 80
(3) For any $x, y, z \in A$ the relations $(x, y) \notin \alpha,(y, x) \notin \alpha$ and $(x, z) \in \alpha, z \neq x$ imply 81 that $(y, z) \in \alpha$.
(4) For any $x, y, z \in A$ the relations $(z, y) \notin \alpha,(y, z) \notin \alpha$ and $(x, z) \in \alpha, x \neq z$ imply 83 that $(x, y) \in \alpha$. 84

Proof $(1) \Longrightarrow(2)$: This is a special case of our claim preceding Proposition 2.2.
$(2) \Longrightarrow(3):$ Let $(x, y) \notin \alpha,(y, x) \notin \alpha$ and $(x, z) \in \alpha, z \neq x$ for the elements 86 $x, y, z \in A$ and take the three element subset $B=\{x, y, z\}$ of A. Suppose that 87 $(y, z) \notin \alpha$ and consider the complementary half-space $\delta \subseteq B \times B$ of $\alpha \cap(B \times B)$. 88 relation $\tau \subseteq A \times A$ as follows:

$$
\tau=\alpha \backslash\left\{(a, b) \in \alpha \cap \alpha^{-1} \mid[b]_{\gamma \cap \gamma^{-1}}<_{R}[a]_{\gamma \cap \gamma^{-1}}\right\}
$$

Now

$$
(\alpha \cap(B \times B)) \cup \delta=B \times B
$$

implies that $(x, y) \in \delta$ and $(y, z) \in \delta$, whence $(x, z) \in(\alpha \cap(B \times B)) \cap \delta=\Delta_{B}$ can be derived in contradiction with $z \neq x$.
$(3) \Longrightarrow(4)$: Let $(z, y) \notin \alpha,(y, z) \notin \alpha$ and $(x, z) \in \alpha, x \neq z$ for the elements $x, y, z \in A$ and suppose that $(x, y) \notin \alpha$. Clearly, $(y, x) \in \alpha$ would imply $(y, z) \in \alpha$, a contradiction. Thus $(x, y) \notin \alpha,(y, x) \notin \alpha$ and $(x, z) \in \alpha, x \neq z$, whence we obtain that $(y, z) \in \alpha$, a contradiction. It follows that $(x, y) \in \alpha$.
$(4) \Longrightarrow(1)$: In order to see the transitivity of $\beta=\Delta_{A} \cup((A \times A) \backslash \alpha)$ let $(x, y) \in \beta$, $(y, z) \in \beta, x \neq y$ and suppose that $(x, z) \notin \beta$. We have either $(z, y) \notin \alpha$ or $(z, y) \in \alpha$. In the first case $(z, y) \notin \alpha,(y, z) \notin \alpha$ and $(x, z) \in \alpha, x \neq z$ would imply that $(x, y) \in$ $\alpha \cap \beta=\Delta_{A}$, a contradiction. In the second case $(x, z) \in \alpha$ and $(z, y) \in \alpha$ would imply that $(x, y) \in \alpha \cap \beta=\Delta_{A}$, a contradiction again. Thus we have $(x, z) \in \beta$.

Proposition 2.3 If α is a half-space quasiorder on A, then the induced partial order r_{α} is a half-space on $A /\left(\alpha \cap \alpha^{-1}\right)$.

Proof We can use part (3) in Proposition 2.2. If $\left([x]_{\alpha \cap \alpha^{-1}},[y]_{\alpha \cap \alpha^{-1}}\right) \notin r_{\alpha}$, $\left([y]_{\alpha \cap \alpha^{-1}},[x]_{\alpha \cap \alpha^{-1}}\right) \notin r_{\alpha}$ and $\left([x]_{\alpha \cap \alpha^{-1}},[z]_{\alpha \cap \alpha^{-1}}\right) \in r_{\alpha},[z]_{\alpha \cap \alpha^{-1}} \neq[x]_{\alpha \cap \alpha^{-1}}$, then we have $(x, y) \notin \alpha,(y, x) \notin \alpha$ and $(x, z) \in \alpha, z \neq x$. Since α is a half-space, we obtain first $(y, z) \in \alpha$ and then $\left([y]_{\alpha \cap \alpha^{-1}},[z]_{\alpha \cap \alpha^{-1}}\right) \in r_{\alpha}$.

Proposition 2.4 If $\gamma \subseteq A \times A$ is a quasiorder and $\gamma \subseteq \alpha$ for some half-space α on A, then there exists a half-space τ on A, such that $\gamma \subseteq \tau \subseteq \alpha$ and $\tau \cap \tau^{-1}=\gamma \cap \gamma^{-1}$.

Proof Let R be a linear extension of the induced partial order r_{γ} and define the

Since $(x, y) \in \gamma$ implies that $(x, y) \in \alpha$ and $[x]_{\gamma \cap \gamma^{-1}} \leq_{R}[y]_{\gamma \cap \gamma^{-1}}$, we obtain that $(x, y) \in \tau$. Thus $\gamma \subseteq \tau \subseteq \alpha$ and $\gamma \cap \gamma^{-1} \subseteq \tau \cap \tau^{-1}$. If $(x, y) \in \tau \cap \tau^{-1}$, then the relations $[y]_{\gamma \cap \gamma^{-1}}<_{R}[x]_{\gamma \cap \gamma^{-1}}$ and $[x]_{\gamma \cap \gamma^{-1}}<_{R}[y]_{\gamma \cap \gamma^{-1}}$ are not satisfied, whence $[x]_{\gamma \cap \gamma^{-1}}=[y]_{\gamma \cap \gamma^{-1}}$ and $(x, y) \in \gamma \cap \gamma^{-1}$ can be derived. It follows, that $\tau \cap \tau^{-1} \subseteq$ $\gamma \cap \gamma^{-1}$ and hence $\tau \cap \tau^{-1}=\gamma \cap \gamma^{-1}$.

In order to see the transitivity of τ take $(x, y) \in \tau$ and $(y, z) \in \tau$. Now $(x, y) \in$ α and $(y, z) \in \alpha$ imply that $(x, z) \in \alpha$. Suppose that $(x, z) \notin \tau$, whence $(x, z) \in \alpha \cap$ α^{-1} and $[z]_{\gamma \cap \gamma^{-1}}<_{R}[x]_{\gamma \cap \gamma^{-1}}$ follow. The relations $(y, z) \in \alpha$ and $(z, x) \in \alpha$ imply that $(y, x) \in \alpha$ and hence $(x, y) \in \alpha \cap \alpha^{-1}$. Similarly, $(z, x) \in \alpha$ and $(x, y) \in \alpha$ imply that $(y, z) \in \alpha \cap \alpha^{-1}$. In view of $(x, y) \in \tau$ and $(y, z) \in \tau$ we have $[x]_{\gamma \cap \gamma^{-1}} \leq_{R}[y]_{\gamma \cap \gamma^{-1}}$ and $[y]_{\gamma \cap \gamma^{-1}} \leq_{R}[z]_{\gamma \cap \gamma^{-1}}$, whence we obtain that $[x]_{\gamma \cap \gamma^{-1}} \leq_{R}[z]_{\gamma \cap \gamma^{-1}}$, a contradiction.

In order to prove that τ is a half-space we can use part (3) of Proposition 2.2. Take $x, y, z \in A$ such that $(x, y) \notin \tau,(y, x) \notin \tau$ and $(x, z) \in \tau, z \neq x$. Now $(x, y) \notin \tau$ implies that either $(x, y) \notin \alpha$ or $(x, y) \in \alpha \cap \alpha^{-1}$ with $[y]_{\gamma \cap \gamma^{-1}}<_{R}[x]_{\gamma \cap \gamma^{-1}}$. Similarly, $(y, x) \notin \tau$ implies that either $(y, x) \notin \alpha$ or $(y, x) \in \alpha \cap \alpha^{-1}$ with $[x]_{\gamma \cap \gamma^{-1}}<_{R}[y]_{\gamma \cap \gamma^{-1}}$. It is easy to check that the only possibility to have $(x, y) \notin \tau$ and $(y, x) \notin \tau$ at the same time is the case when $(x, y) \notin \alpha$ and $(y, x) \notin \alpha$. Since α is a half-space, $(x, y) \notin \alpha$, $(y, x) \notin \alpha$ and $(x, z) \in \alpha, z \neq x$ imply that $(y, z) \in \alpha$. Suppose that $(y, z) \in \alpha \cap \alpha^{-1}$, Springer
then $(x, z) \in \alpha$ and the transitivity of α imply that $(x, y) \in \alpha$, a contradiction. Thus 129 we have $(y, z) \notin \alpha \cap \alpha^{-1}$, whence $(y, z) \in \tau$ follows.

Proposition 2.5 Let the partial order α on A be a half-space. If λ is a linear order on 131 A, then

$$
\alpha[\lambda]=\alpha \cup\left(\lambda \backslash\left(\alpha \cup \alpha^{-1}\right)\right)
$$

is a linear extension of α on A and $\alpha=\alpha[\lambda] \cap \alpha\left[\lambda^{-1}\right]$.
Proof In order to see the transitivity of $\alpha[\lambda]$ take $(x, y) \in \alpha[\lambda]$ and $(y, z) \in \alpha[\lambda]$ with 134 $x \neq y \neq z$. Clearly, $(x, y) \in \alpha$ and $(y, z) \in \alpha$ imply $(x, z) \in \alpha$. If $(x, y) \in \alpha$ and $(y, z) \in 135$ $\lambda \backslash\left(\alpha \cup \alpha^{-1}\right)$, then $(y, z) \notin \alpha,(z, y) \notin \alpha$ and $(x, y) \in \alpha, x \neq y$, whence $(x, z) \in \alpha$ can 136 be derived by part (4) of Proposition 2.2. Similarly, $(x, y) \in \lambda \backslash\left(\alpha \cup \alpha^{-1}\right)$ and $(y, z) \in 137$ α imply $(x, z) \in \alpha$ by part (3) of Proposition 2.2. If we have $(x, y) \in \lambda \backslash\left(\alpha \cup \alpha^{-1}\right)$ and 138 $(y, z) \in \lambda \backslash\left(\alpha \cup \alpha^{-1}\right)$, then $(x, y) \in \lambda$ and $(y, z) \in \lambda$ imply $(x, z) \in \lambda$. Since $(x, y) \notin 139$ $\alpha \cup \alpha^{-1}$ and $(y, z) \notin \alpha \cup \alpha^{-1}$ imply that $(x, y) \in \beta \cap \beta^{-1}$ and $(y, z) \in \beta \cap \beta^{-1}$ (here $\beta 140$ is the complementary half-space of α), the transitivity of $\beta \cap \beta^{-1}$ gives that (x, z) 141 $\beta \cap \beta^{-1}$, i.e. that $(x, z) \notin \alpha \cup \alpha^{-1}$. It follows that $(x, z) \in \lambda \backslash\left(\alpha \cup \alpha^{-1}\right)$. 142

Suppose that $(x, y) \in \alpha[\lambda]$ and $(y, x) \in \alpha[\lambda]$, then $(x, y) \in \alpha$ and $(y, x) \in \lambda \backslash(\alpha \cup 143$ $\left.\alpha^{-1}\right)$ is impossible. Similarly, $(x, y) \in \lambda \backslash\left(\alpha \cup \alpha^{-1}\right)$ and $(y, x) \in \alpha$ is also impossible. 144 Thus we have either $(x, y) \in \alpha,(y, x) \in \alpha$ or $(x, y) \in \lambda \backslash\left(\alpha \cup \alpha^{-1}\right),(y, x) \in \lambda \backslash(\alpha \cup 145$ α^{-1}), in both cases $x=y$ follows by the antisymmetric properties of α and $\lambda, 146$ respectively.

Suppose that $(x, y) \notin \alpha$ and $(y, x) \notin \alpha$, then $(x, y) \notin \alpha \cup \alpha^{-1}$. Now $(x, y) \in \lambda$ im- 148 plies $(x, y) \in \lambda \backslash\left(\alpha \cup \alpha^{-1}\right)$ and $(y, x) \in \lambda$ implies $(y, x) \in \lambda \backslash\left(\alpha \cup \alpha^{-1}\right)$. We proved that $\alpha[\lambda]$ is a linear order.

Using $\alpha \cap\left(\lambda \backslash\left(\alpha \cup \alpha^{-1}\right)\right)=\alpha \cap\left(\lambda^{-1} \backslash\left(\alpha \cup \alpha^{-1}\right)\right)=\varnothing$ and $\lambda \cap \lambda^{-1}=\Delta_{A}$, it is 151 straightforward to see that $\alpha=\alpha[\lambda] \cap \alpha\left[\lambda^{-1}\right]$.152

Corollary 2.6 If α is a half-space quasiorder on A, then the induced partial order is of the form $r_{\alpha}=R_{1} \cap R_{2}$ for some linear orders R_{1} and R_{2} on $A /\left(\alpha \cap \alpha^{-1}\right)$, i.e. r_{α} has 154 order dimension at most 2 .

Proof The partial order r_{α} is a half-space on $A /\left(\alpha \cap \alpha^{-1}\right)$ by Proposition 2.3. If R is an arbitrary linear order on $A /\left(\alpha \cap \alpha^{-1}\right)$, then $R_{1}=r_{\alpha}[R]$ and $R_{2}=r_{\alpha}\left[R^{-1}\right]$ are 157 linear orders on $A /\left(\alpha \cap \alpha^{-1}\right)$ with $r_{\alpha}=r_{\alpha}[R] \cap r_{\alpha}\left[R^{-1}\right]$ by Proposition 2.5.

We remark that Corollary 2.6 does not characterize half-spaces entirely.
As already noted, any linear order λ on A is an example of a half-space: $\lambda \downarrow \lambda^{-1} .160$ Let $f: A \longrightarrow X$ be a function, $Y \subseteq X$ a subset, and R a linear order on X. Define 161 the following relations on A :

$$
\begin{gathered}
\operatorname{ker}_{Y}(f)=\Delta_{A} \cup\{(a, b) \in A \times A \mid f(a)=f(b) \in Y\}, \\
f^{-1}(R)=\Delta_{A} \cup\left\{(a, b) \in A \times A \mid f(a)<_{R} f(b)\right\}
\end{gathered}
$$

Note that $\operatorname{ker}_{X}(f)$ is the ordinary kernel

$$
\operatorname{ker}(f)=\{(a, b) \in A \times A \mid f(a)=f(b)\}
$$

165 Proposition 2.7 Let (A, γ) be a quasiordered set, (X, ρ) a partially ordered set and $\operatorname{ker}(f) \subseteq \operatorname{ker}_{Y}(f)$, then

$$
\alpha=\operatorname{ker}_{Y}(f) \cup f^{-1}(R)
$$

169 is a half-space extension of γ and $\alpha \cap \alpha^{-1}=\operatorname{ker}_{Y}(f)$.

176 Proof The containment $\gamma \subseteq \operatorname{ker}_{Y}(f) \cup f^{-1}(R)$ is a consequence of $\rho \subseteq R, \gamma \cap$ $177 \operatorname{ker}(f) \subseteq \operatorname{ker}_{Y}(f)$ and of the quasiorder preserving property of f. It is easy to see 178 that $\operatorname{ker}_{Y}(f) \cup f^{-1}(R)$ and $\operatorname{ker}_{X \backslash Y}(f) \cup f^{-1}\left(R^{-1}\right)$ are quasiorders on A. We have

$$
\left(\operatorname{ker}_{Y}(f) \cup f^{-1}(R)\right) \cup\left(\operatorname{ker}_{X \backslash Y}(f) \cup f^{-1}\left(R^{-1}\right)\right)=A \times A
$$

and

$$
\left(\operatorname{ker}_{Y}(f) \cup f^{-1}(R)\right) \cap\left(\operatorname{ker}_{X \backslash Y}(f) \cup f^{-1}\left(R^{-1}\right)\right)=\Delta_{A}
$$

180 thus $\operatorname{ker}_{Y}(f) \cup f^{-1}(R) \downarrow \operatorname{ker}_{X \backslash Y}(f) \cup f^{-1}\left(R^{-1}\right)$. Also $\alpha \cap \alpha^{-1}=\operatorname{ker}_{Y}(f)$ is obvious.
181 To conclude the proof, it is enough to note that κ is a (γ, r_{γ}) quasiorder preserving 182 function.

183
184

187
Proposition 2.8 Let (A, γ) be a quasiordered set, (X, ρ) a partially ordered set and $f: A \longrightarrow X$ a completely (γ, ρ) quasiorder preserving function: $(x, y) \in \gamma \Longleftrightarrow$ $(f(x), f(y)) \in \rho$ for all $x, y \in A$. If $Y_{i} \subseteq X, i \in I$ is a collection of subsets, $\gamma \cap$ $\operatorname{ker}(f) \subseteq \operatorname{ker}_{r_{i}}(f)$ for all $i \in I$ and $\left\{R_{i} \mid i \in I\right\}$ is a set of linear extensions of ρ with $\cap_{i \in I} R_{i}=\rho$, then

$$
\bigcap_{i \in I}\left(\operatorname{ker}_{Y_{i}}(f) \cup f^{-1}\left(R_{i}\right)\right)=\gamma
$$

188 where the half-spaces $\operatorname{ker}_{Y_{i}}(f) \cup f^{-1}\left(R_{i}\right), i \in I$ are described in Proposition 2.7. In 189 particular, if $\kappa: A \longrightarrow A /\left(\gamma \cap \gamma^{-1}\right)$ is the canonical surjection and $\left\{R_{i} \mid i \in I\right\}$ is a 190 set of linear extensions of the induced partial order r_{γ} on $A /\left(\gamma \cap \gamma^{-1}\right)$ with $\cap_{i \in I} R_{i}=r_{\gamma}$, 191 then

$$
\bigcap_{i \in I}\left(\operatorname{ker}(\kappa) \cup \kappa^{-1}\left(R_{i}\right)\right)=\bigcap_{i \in I}\left(\left(\gamma \cap \gamma^{-1}\right) \cup \kappa^{-1}\left(R_{i}\right)\right)=\gamma .
$$

192 Proof We only have to show that

$$
\bigcap_{i \in I}\left(\operatorname{ker}_{Y_{i}}(f) \cup f^{-1}\left(R_{i}\right)\right) \subseteq \gamma
$$

Order

In view of the definition of $\operatorname{ker}_{Y_{i}}(f) \cup f^{-1}\left(R_{i}\right)$, the relation

$$
(a, b) \in \bigcap_{i \in I}\left(\operatorname{ker}_{Y_{i}}(f) \cup f^{-1}\left(R_{i}\right)\right)
$$

ensures that $f(a) \leq_{R_{i}} f(b)$ for all $i \in I$. Now $\bigcap_{i \in I} R_{i}=\rho$ implies $f(a) \leq_{\rho} f(b)$, whence 194 we obtain $(a, b) \in \gamma$. To conclude the proof, it is enough to note that κ is completely 195 $\left(\gamma, r_{\gamma}\right)$ quasiorder preserving.

The following is now a straightforward consequence.
Theorem 2.9 Any quasiorder on A can be obtained as an intersection of half-space 198 quasiorders on A. 199

In terms of the classification of convexities by separation axioms (van de Vel 200 [9]) the above theorem means that the convexity on the base set $\{(x, y) \in A \times A \mid 201$ $x \neq y\}$ whose convex sets are the strict quasiorders on A is an S_{3} convexity, i.e. 202 a convex set K can be always separated from any element of the base set not in 203 K by complementary half-spaces. This is the case in the standard convexity of a 204 Euclidean space and, as Szpilrajn's theorem [7] shows, in the convexity on the base 205 set $\{(x, y) \in A \times A \mid x \neq y\}$ whose convex sets are the strict partial orders on $A 206$ plus $\{(x, y) \in A \times A \mid x \neq y\}$ itself. However, it is not difficult to see that, unlike in 207 Euclidean space, in quasiorder convexity or in the coarser partial order convexity, 208 disjoint convex sets cannot always be separated by complementary half-spaces. A 209 counterexample with respect to both the quasiorder and partial order convexities is 210 provided, for $A=\{1,2,3,4\}$, by the partial orders $\{(1,2),(3,4)\}$ and $\{(1,4),(3,2)\} . \quad 211$

Theorem 2.9 enables us to define a half-space realizer of a quasiorder $\gamma \subseteq A \times 212$ A as a set $\left\{\alpha_{i} \mid i \in I\right\}$ of half-spaces on A with $\bigcap_{i \in I} \alpha_{i}=\gamma$. The half-space dimension 213 $\operatorname{hsdim}(A, \gamma)$ of a quasiordered set (A, γ) is the minimum of the cardinalities of the 214 half-space realizers of γ. The close analogy between the half-space dimension and 215 the usual order dimension of a partially ordered set can be seen immediately. The 216 observation preceding Proposition 2.2 guarantees that

$$
\operatorname{hs} \operatorname{dim}(B, \gamma \cap(B \times B)) \leq \operatorname{hs} \operatorname{dim}(A, \gamma)
$$

for any subset $B \subseteq A$. Since any linear order is a half-space, for a partially ordered set 218 (A, γ) we have $\operatorname{hsdim}(A, \gamma) \leq \operatorname{dim}(A, \gamma)$, where dim denotes the order dimension. 219 In general, here we can not expect equality. The partial order of the four element 220 Boolean lattice M_{2} is a half-space, thus $\operatorname{hsdim}\left(M_{2}, \leq\right)=1$, while $\operatorname{dim}\left(M_{2}, \leq\right)=2$. The 221 next inequality is also a straightforward consequence of Proposition 2.8. 222

Corollary 2.10 For a quasiordered set (A, γ) we have

$$
\text { hs } \operatorname{dim}(A, \gamma) \leq \operatorname{dim}\left(A /\left(\gamma \cap \gamma^{-1}\right), r_{\gamma}\right)
$$

The following theorem gives a complete description of half-space quasiorders.
Theorem 2.11 If $\alpha \subseteq A \times A$ is a relation, then the following are equivalent.
(1) α is a half-space quasiorder on A.
(2) There exists an equivalence relation ε on A, a linear order R on the factor set A / ε and a function $t: A / \varepsilon \longrightarrow\{0,1\}$ with $t\left([a]_{\varepsilon}\right)=0$ where $[a]_{\varepsilon}=\{a\}$ such that $\alpha=\Delta_{A} \cup\left\{(a, b) \in A \times A \mid[a]_{\varepsilon}=[b]_{\varepsilon}\right.$ and $\left.t\left([a]_{\varepsilon}\right)=1\right\} \cup\left\{(a, b) \in A \times A \mid[a]_{\varepsilon}<{ }_{R}[b]_{\varepsilon}\right\}$.
(3) There exist a set X, a subset $Y \subseteq X$, a linear order R on X and a function f : $A \longrightarrow X$ such that $\alpha=\operatorname{ker}_{Y}(f) \cup f^{-1}(R)$.
(4) There exists an equivalence relation ε on A such that α is either the full or the identity relation on each ε-equivalence class, and any irredundant set of representatives of the ε-equivalence classes is linearly ordered by α.

Proof (1) $\Longrightarrow(2)$: Let $\alpha \uparrow \beta$ be complementary half-spaces and take

$$
\varepsilon=\left(\alpha \cap \alpha^{-1}\right) \cup\left(\beta \cap \beta^{-1}\right)
$$

Clearly, ε is reflexive and symmetric. Assume that $(x, y) \in \alpha \cap \alpha^{-1}$ and $(y, z) \in \beta \cap$ β^{-1}. Since $\alpha \cup \beta=A \times A$, we have either $(x, z) \in \alpha$ or $(x, z) \in \beta$. In the first case $(y, x) \in \alpha$ implies that $(y, z) \in \alpha \cap \beta=\Delta_{A}$. In the second case $(z, y) \in \beta$ implies that $(x, y) \in \alpha \cap \beta=\Delta_{A}$. Thus $(x, y) \in \alpha \cap \alpha^{-1}$ and $(y, z) \in \beta \cap \beta^{-1}$ imply $x=y$ or $y=z$. Similarly, $(x, y) \in \beta \cap \beta^{-1}$ and $(y, z) \in \alpha \cap \alpha^{-1}$ also imply $x=y$ or $y=z$. In view of the above observations, it is easy to see that ε is transitive. We also have $[a]_{\varepsilon}=$ $[a]_{\alpha \cap \alpha^{-1}} \cup[a]_{\beta \cap \beta^{-1}}$ and $[a]_{\alpha \cap \alpha^{-1}}=\{a\}$ or $[a]_{\beta \cap \beta^{-1}}=\{a\}$ for all $a \in A$.

We claim that $(a, b) \in \alpha$ and $[a]_{\varepsilon} \neq[b]_{\varepsilon}$ imply that $(x, y) \in \alpha$ for all $x \in[a]_{\varepsilon}$ and for all $y \in[b]_{\varepsilon}$. Suppose that $(x, y) \notin \alpha$, then $(x, y) \in \beta$. In view of $(x, a),(y, b) \in \varepsilon$ we have the following cases. (1) $(x, a),(b, y) \in \alpha$, whence $(x, y) \in \alpha$ can be obtained, a contradiction. (2) $(x, a) \in \alpha$ and $(y, b) \in \beta$, whence $(x, b) \in \alpha \cap \beta=\Delta_{A}$ can be obtained in contradiction with $[x]_{\varepsilon}=[a]_{\varepsilon} \neq[b]_{\varepsilon} .(3)(a, x) \in \beta$ and $(b, y) \in \alpha$, whence $(a, y) \in \alpha \cap \beta=\Delta_{A}$ can be obtained in contradiction with $[a]_{\varepsilon} \neq[b]_{\varepsilon}=[y]_{\varepsilon}$. (iv) $(a, x),(y, b) \in \beta$, whence $(a, b) \in \alpha \cap \beta=\Delta_{A}$ can be obtained in contradiction with $[a]_{\varepsilon} \neq[b]_{\varepsilon}$. Thus the claim is proved.

Using our claim it is straightforward to check that

$$
R=\left\{\left([a]_{\varepsilon},[b]_{\varepsilon}\right) \mid(a, b) \in \alpha\right\}
$$

is a linear order on A / ε. For $a \in A$ let

$$
t\left([a]_{\varepsilon}\right)=\left\{\begin{array}{l}
1 \text { if }[a]_{\varepsilon}=[a]_{\alpha \cap \alpha^{-1}} \neq\{a\} \\
0 \text { otherwise }
\end{array}\right.
$$

$\Delta_{A} \cup\left\{(a, b) \in A \times A \mid[a]_{\varepsilon}=[b]_{\varepsilon}\right.$ and $\left.t\left([a]_{\varepsilon}\right)=1\right\} \cup\left\{(a, b) \in A \times A \mid[a]_{\varepsilon}<_{R}[b]_{\varepsilon}\right\} \subseteq \alpha$.
Clearly, t is well defined, moreover $[a]_{\varepsilon}=\{a\}$ implies $[a]_{\varepsilon}=[a]_{\alpha \cap \alpha^{-1}}=\{a\}$ and $t\left([a]_{\varepsilon}\right)=0$. If $t\left([a]_{\varepsilon}\right)=1$, then $[a]_{\varepsilon}=[a]_{\alpha \cap \alpha^{-1}}$ and $[a]_{\varepsilon}=[b]_{\varepsilon}$ implies that $(a, b) \in \alpha$. It follows that

If $[a]_{\varepsilon}=[b]_{\varepsilon}$, then $(a, b) \in \alpha$ and $a \neq b$ implies that $[a]_{\varepsilon}=[a]_{\alpha \cap \alpha^{-1}} \neq\{a\}$, whence $\alpha \subseteq \Delta_{A} \cup\left\{(a, b) \in A \times A \mid[a]_{\varepsilon}=[b]_{\varepsilon}\right.$ and $\left.t\left([a]_{\varepsilon}\right)=1\right\} \cup\left\{(a, b) \in A \times A \mid[a]_{\varepsilon}<_{R}[b]_{\varepsilon}\right\}$ can be obtained.
(2) \Longrightarrow (3): It is straightforward to see that $\alpha=\operatorname{ker}_{Y}(f) \cup f^{-1}(R)$, where $X=$ $A / \varepsilon, Y=\left\{[a]_{\varepsilon} \mid a \in A\right.$ and $\left.t\left([a]_{\varepsilon}\right)=1\right\}$ and $f: A \longrightarrow X$ is the canonical surjection. Thus any half-space quasiorder can be obtained by the standard construction of Proposition 2.7.
$(3) \Longrightarrow(1)$: This implication is a part of Proposition 2.7.
$(2) \Longleftrightarrow(4)$: Condition (4) is simply a reformulation of (2). 262

Remark 2.12 The triple $(f, Y \subseteq X, R)$ given in the $(2) \Longrightarrow$ (3) part of the above 263 proof has the following universal property. If $g: A \longrightarrow U$ is a function, $V \subseteq U$ is 264 a subset and S is a linear order on U such that

$$
\alpha=\operatorname{ker}_{V}(g) \cup f^{-1}(S),
$$

then there exists a unique function $h: X \longrightarrow U$ with $h \circ f=g$, moreover $h(Y) \subseteq V, 266$ $g^{-1}(\{y\})$ is a one element set for all $y \in h(X \backslash Y) \cap V$ and h is $\left(<_{R},<_{S}\right)$ strict order 267 preserving

In view of the above characterization of the half-space α, an equivalence class [a] $]_{\varepsilon}$269 is called a box of α, such a box is called full if $t\left([a]_{\varepsilon}\right)=1$ and empty if $t\left([a]_{\varepsilon}\right)=0$ (note 270 that a one element box is always empty). A subset $B \subseteq A$ is a box of the half-space α, if and only if there are no elements $b_{1}, b_{2} \in B$ such that $\left(b_{1}, b_{2}\right) \in \alpha,\left(b_{2}, b_{1}\right) \notin \alpha$271 and B is maximal with respect to this property. A box is empty if $\alpha \cap(B \times B)=\Delta_{B}$ 272 and full if $|B|>1$ and $B \times B \subseteq \alpha$.

In certain situations it is also convenient to give a half-space as

$$
\alpha=\left(B_{w}, w \in W, \leq_{W}, t\right),
$$

where the subsets $B_{w} \subseteq A, w \in W$ are the boxes of α, the linear order \leq_{W} is given on the index set W and $t\left(B_{w}\right)=1$ or $t\left(B_{w}\right)=0$ shows that B_{w} is full or empty. If W is finite, then we can write $W=\{1,2, \ldots, n\}$ and $\alpha=\left(B_{1}<B_{2}<\ldots<B_{n}, t\right)$. If $\alpha \mathfrak{\imath} \beta$ is a complementary pair of half-spaces, then α and β have the same boxes, a full α-box is an empty β-box and a full β-box is an empty α-box, moreover the linear order of the boxes in α and β are opposite to each other. It is also clear that $[a]_{\alpha \cap \alpha^{-1}}=\{a\}$ if $[a]_{\varepsilon}$ is empty and $[a]_{\alpha \cap \alpha^{-1}}=[a]_{\varepsilon}$ if $[a]_{\varepsilon}$ is full.

With reference to the terminology of interval decompositions and lexicographic sums of partial orders and more general relations (see e.g. [3-6]), it is clear from Condition (4) of Theorem 2.11 that half-space quasiorders are precisely the lexicographic relational sums of trivial and full binary relations over a linear order, i.e. they are the binary relations decomposable into intervals such that the restriction to each interval is a trivial or full relation and the quotient is a linear order.

Theorem 2.13 If (A, γ) is a quasiordered set and $\left\{\alpha_{i} \mid i \in I\right\}$ is a half-space realizer 289 of γ with $|I| \geq 2$, then there exists an I-indexed family $R_{i}, i \in I$ of linear extensions of 290 the induced partial order r_{γ} on $A /\left(\gamma \cap \gamma^{-1}\right)$ such that

$$
\bigcap_{i \in I} R_{i}=r_{\gamma} .
$$

Proof By Proposition 2.4, for each $i \in I$ there exists a half-space τ_{i} on A such that 292 $\gamma \subseteq \tau_{i} \subseteq \alpha_{i}$ and $\tau_{i} \cap \tau_{i}^{-1}=\gamma \cap \gamma^{-1}$. Clearly, $\bigcap_{i \in I} \alpha_{i}=\gamma$ implies that $\bigcap_{i \in I} \tau_{i}=\gamma$, whence 293

$$
\bigcap_{i \in I} r_{\tau_{i}}=r_{\gamma}
$$

can be derived for the induced partial orders $r_{\tau_{i}}, i \in I$ on $A /\left(\tau_{i} \cap \tau_{i}^{-1}\right)=A /\left(\gamma \cap \gamma^{-1}\right)$. Using the notation $\pi_{i}=r_{\tau_{i}}$, Proposition 2.3 ensures that each partial order π_{i} is a halfspace on $P=A /\left(\gamma \cap \gamma^{-1}\right)$.

We claim, that

$$
\rho=\Delta_{P} \cup\left(\left(\cup_{i \in I} \pi_{i}\right)^{-1} \backslash\left(\cup_{i \in I}^{\cup} \pi_{i}\right)\right)
$$

298

$$
\Theta=\bigcap_{i \in I}\left(\sigma_{i} \cap \sigma_{i}^{-1}\right)
$$

310 on P. Since $\pi_{i}^{-1} \cap \sigma_{i}^{-1}=\Delta_{P}$ for all $i \in I$, we have $\rho \cap \Theta=\Delta_{P}$ and hence $\rho^{-1} \cap \Theta=$ $311 \Delta_{P}$. Now we prove the containments $\Theta \circ \rho \subseteq \rho$ and $\rho \circ \Theta \subseteq \rho$. If $(x, y) \in \Theta$ and $312(y, z) \in \rho$ for the elements $x, y, z \in P$ with x, y, z being different, then $(z, y) \in \pi_{j}$ 313 for some $j \in I$ and $(y, z) \notin \cup_{i \in I} \pi_{i}$. In view of $(x, y) \in \sigma_{j} \cap \sigma_{j}^{-1}$, we have $(x, y) \notin \pi_{j}$ 314 and $(y, x) \notin \pi_{j}$. Using part (4) in Proposition 2.2, we obtain that $(z, x) \in \pi_{j}$ and $315(x, z) \in\left(\bigcup_{i \in I} \pi_{i}\right)^{-1}$. Suppose that $(x, z) \in \bigcup_{i \in I} \pi_{i}$, then $(x, z) \in \pi_{k}$ follows for some $k \in I$. 316 Since $(x, y) \in \sigma_{k} \cap \sigma_{k}^{-1}$ implies that $(x, y) \notin \pi_{k}$ and $(y, x) \notin \pi_{k}$, the application of part 317 (3) in Proposition 2.2 yields $(y, z) \in \pi_{k}$, a contradiction. Thus we have $(x, z) \notin \cup \pi_{i \in I}$, 318 whence $(x, z) \in \rho$ follows. A similar argument shows that $\rho \circ \Theta \subseteq \rho$.

Fix a linear order μ on P, then $\mu \cap \Theta$ and $\mu^{-1} \cap \Theta$ are partial orders. Using the above properties of ρ and Θ, it is straightforward to see that $\rho \cup(\mu \cap \Theta)$ and $\rho \cup$ $\left(\mu^{-1} \cap \Theta\right)$ are also partial orders on P.

Let $\lambda \supseteq \rho \cup(\mu \cap \Theta)$ and $\lambda^{*} \supseteq \rho \cup\left(\mu^{-1} \cap \Theta\right)$ be linear extensions on P and fix an index $i^{*} \in I$. In view of Proposition 2.5, we can consider the linear orders $R_{i}=\pi_{i}[\lambda]$, $i \in I \backslash\left\{i^{*}\right\}$ and $R_{i^{*}}=\pi_{i^{*}}\left[\lambda^{*}\right]$ on P (note that $I \backslash\left\{i^{*}\right\}$ is not empty). Since $\pi_{i} \subseteq R_{i}$ for all $i \in I$, the inclusion

$$
r_{\gamma}=\bigcap_{i \in I} \pi_{i} \subseteq \bigcap_{i \in I} R_{i}
$$

is obvious. In order to prove the reverse containment let $(x, y) \notin \bigcap_{i \in I} \pi_{i}$ for some 326 $x, y \in P$. We have $(x, y) \notin \pi_{j}$ for some $j \in I$. If $(y, x) \in \cup_{i \in I} \pi_{i}$, then $(y, x) \in \pi_{k} \subseteq R_{k} 327$ and hence $(x, y) \notin R_{k}$ for some $k \in I$. If $(y, x) \notin \cup_{i \in I} \pi_{i}$, then we distinguish two cases. 328

First suppose that $(x, y) \in \cup \cup_{i \in I}$. Then $(y, x) \in \rho \subseteq \lambda \cap \lambda^{*}$ and the relations $(x, y) \notin 329$ $\pi_{j},(y, x) \notin \pi_{j}$ imply that $(y, x) \in \pi_{j}[\lambda]$ (or $(y, x) \in \pi_{i^{*}}\left[\lambda^{*}\right]$ if $\left.j=i^{*}\right)$, whence $(x, y) \notin 330$ R_{j} follows. 331

Next suppose that $(x, y) \notin \underset{i \in I}{\cup} \pi_{i}$. Then $(x, y) \in \Theta$ and the linearity of μ gives that 332 we have either $(y, x) \in \mu \cap \Theta$ or $(y, x) \in \mu^{-1} \cap \Theta$. If $(y, x) \in \mu \cap \Theta \subseteq \lambda$, then $(y, x) \in 333$ $\pi_{i}[\lambda]$ and hence $(x, y) \notin \pi_{i}[\lambda]=R_{i}$ for all $i \in I \backslash\left\{i^{*}\right\}$. If $(y, x) \in \mu^{-1} \cap \Theta \subseteq \lambda^{*}$, then 334 $(y, x) \in \pi_{i^{*}}\left[\lambda^{*}\right]$ and hence $(x, y) \notin \pi_{i^{*}}\left[\lambda^{*}\right]=R_{i^{*}}$.

Remark 2.14 Another possibility to construct the linear orders R_{i} in the above proof 336 is the following. Fix a well ordering $<$ on I and for $i \in I \backslash\left\{i^{*}\right\}$ let 337

$$
\begin{aligned}
& R_{i}=\pi_{i} \cup\left(\left(\sigma_{i} \cap \sigma_{i}^{-1}\right) \cap \Lambda\right) \cup(\Theta \cap \mu), \\
& R_{i^{*}}=\pi_{i^{*}} \cup\left(\left(\sigma_{i^{*}} \cap \sigma_{i^{*}}^{-1}\right) \cap \Lambda\right) \cup\left(\Theta \cap \mu^{-1}\right),
\end{aligned}
$$

where $\Lambda=\left\{(x, y) \mid(y, x) \in \pi_{k}\right.$ and $(x, y) \in \bigcap_{i \in I, i<k}\left(\sigma_{i} \cap \sigma_{i}^{-1}\right)$ for some $\left.k \in I\right\}$.
In view of Corollaries 2.6 and 2.10, the above Theorem 2.13 yields the following.
Theorem 2.15 If (A, γ) is a quasiordered set and $\operatorname{hsdim}(A, \gamma)=1$, then γ is a half- 340 space and
$\operatorname{dim}\left(A /\left(\gamma \cap \gamma^{-1}\right), r_{\gamma}\right)=1$ if γ has no empty box with more than one element,
$\operatorname{dim}\left(A /\left(\gamma \cap \gamma^{-1}\right), r_{\gamma}\right)=2$ if γ has an empty box with more than one element.
If $\operatorname{hsdim}(A, \gamma) \geq 2$, then we have

$$
\operatorname{dim}\left(A /\left(\gamma \cap \gamma^{-1}\right), r_{\gamma}\right)=\mathrm{hs} \operatorname{dim}(A, \gamma)
$$

Theorem 2.16 If (A, γ) is a partially ordered set and $\operatorname{hsdim}(A, \gamma)=1$, then γ is a 343 half-space and

$$
\begin{aligned}
& \operatorname{dim}(A, \gamma)=1 \text { if } \gamma \text { is a linear order, } \\
& \operatorname{dim}(A, \gamma)=2 \text { if } \gamma \text { is not a linear order. }
\end{aligned}
$$

If $\operatorname{hsdim}(A, \gamma) \geq 2$, then we have

$$
\operatorname{dim}(A, \gamma)=\operatorname{hs} \operatorname{dim}(A, \gamma)
$$

3463 Direct Product Irreducibility of Half-Space Quasiorders
347 If $\left(A_{i}, \gamma_{i}\right), i \in I$ is a family of quasiordered sets, then

$$
\prod_{i \in I} \gamma_{i}=\left\{(\mathbf{a}, \mathbf{b}) \mid \mathbf{a}, \mathbf{b} \in \prod_{i \in I} A_{i} \text { and }(\mathbf{a}(i), \mathbf{b}(i)) \in \gamma_{i} \text { for all } i \in I\right\}
$$

348 is a quasiorder on the product set $\prod_{i \in I} A_{i}$ (here \mathbf{a} and \mathbf{b} are functions $I \longrightarrow \bigcup_{i \in I} A_{i}$ such 349 that $\mathbf{a}(i), \mathbf{b}(i) \in A_{i}$ for all $\left.i \in I\right)$. We call $\left(\prod_{i \in I} A_{i}, \prod_{i \in I} \gamma_{i}\right)$ the direct product of the above 350 family. The kernel of the natural surjection

$$
\varphi: \prod_{i \in I} A_{i} \longrightarrow \prod_{i \in I} A_{i} /\left(\gamma_{i} \cap \gamma_{i}^{-1}\right)
$$

351 is $\prod_{i \in I}\left(\gamma_{i} \cap \gamma_{i}^{-1}\right)$, whence we obtain a natural bijection

$$
\left(\prod_{i \in I} A_{i}\right) /\left(\prod_{i \in I}\left(\gamma_{i} \cap \gamma_{i}^{-1}\right)\right) \longrightarrow \prod_{i \in I} A_{i} /\left(\gamma_{i} \cap \gamma_{i}^{-1}\right) .
$$

352 It is easy to see that

$$
\left(\prod_{i \in I} \gamma_{i}\right) \cap\left(\prod_{i \in I} \gamma_{i}\right)^{-1}=\prod_{i \in I}\left(\gamma_{i} \cap \gamma_{i}^{-1}\right) \text { and } r=\prod_{i \in I} r_{\gamma_{i}},
$$

353 where r is the partial order on $\prod_{i \in I} A_{i} /\left(\gamma_{i} \cap \gamma_{i}^{-1}\right)$ induced by the quasiorder $\prod_{i \in I} \gamma_{i}$.
354 The product of non-trivial partial orders is never a linear order. In contrast, the 355 product of two half-spaces can be a half-space again: the four element Boolean lattice
$356 M_{2}$ is a product of two-element chains. We show that this is the only possibility to get 357 a non-trivial half-space as a product of quasiorders.

358 Lemma 3.1 Let $\left(A_{i}, \gamma_{i}\right), i \in I$ be a family of quasiordered sets and let $j, k \in I, j \neq k$ 359 be indices such that $a_{j} \neq c_{j},\left(a_{j}, c_{j}\right) \in \gamma_{j},\left(a_{j}, b_{j}\right) \notin \gamma_{j}$ for some $a_{j}, b_{j}, c_{j} \in A_{j}$ and $\gamma_{k} \neq$ $360 A_{k} \times A_{k}$ with $\left|A_{k}\right|>1$. Then $\prod_{i \in I} \gamma_{i}$ is not a half-space on $\prod_{i \in I} A_{i}$.

361 Proof Let $\mathbf{u} \in \prod_{i \in I} A_{i}$ be an arbitrary element and $x_{k}, y_{k} \in A_{k}$ such that $\left(x_{k}, y_{k}\right) \notin \gamma_{k}$.
362 Define a, $\mathbf{b}, \mathbf{c} \in \prod_{i \in I} A_{i}$ as follows: for an index $i \in I$ let

$$
\begin{gathered}
\mathbf{a}(i)=\left\{\begin{array}{l}
a_{j} \text { if } i=j \\
y_{k} \text { if } i=k \\
\mathbf{u}(i) \text { if } i \in I \backslash\{j, k\}
\end{array}, \quad \mathbf{b}(i)=\left\{\begin{array}{c}
b_{j} \text { if } i=j \\
x_{k} \text { if } i=k \\
\mathbf{u}(i) \text { if } i \in I \backslash\{j, k\}
\end{array},\right.\right. \\
\mathbf{c}(i)=\left\{\begin{array}{c}
c_{j} \text { if } i=j \\
y_{k} \text { if } i=k \\
\mathbf{u}(i) \text { if } i \in I \backslash\{j, k\}
\end{array} .\right.
\end{gathered}
$$

363 Clearly, $\left(a_{j}, b_{j}\right) \notin \gamma_{j}$ implies (a, b) $\notin \prod_{i \in I} \gamma_{i}$ and $\left(x_{k}, y_{k}\right) \notin \gamma_{k}$ implies $(\mathbf{b}, \mathbf{a}) \notin \prod_{i \in I} \gamma_{i}$. Since
$364(\mathbf{a}, \mathbf{c}) \in \prod_{i \in I} \gamma_{i}$ and $\left(x_{k}, y_{k}\right) \notin \gamma_{k}$ implies (b, $\left.\mathbf{c}\right) \notin \prod_{i \in I} \gamma_{i}$, we can use part (3) in Proposition 2.2
to see that $\prod_{i \in I} \gamma_{i}$ is not a half-space (we note that $\mathbf{c} \neq \mathbf{a}$ is an immediate consequence 365 of $a_{j} \neq c_{j}$).

Lemma 3.2 If (A, γ) is a quasiordered set such that there are no elements $a, b, c \in A 367$ with $a \neq c,(a, c) \in \gamma$ and $(a, b) \notin \gamma$, then $\gamma \in\left\{\Delta_{A}, A \times A\right\}$ or $\gamma=\left(B_{1}<B_{2}\right)$ is a 368 half-space with a full lower box $B_{1}\left(\right.$ or $\left.\left|B_{1}\right|=1\right)$ and an empty upper box B_{2}. 369

Proof If $\gamma \notin\left\{\Delta_{A}, A \times A\right\}$ satisfies the above conditions, then for each $a \in A$ we 370 have either $(a, x) \in \gamma$ for all $x \in A$ or $(a, y) \notin \gamma$ for all $y \in A$. Take 371

$$
B_{1}=\{a \in A \mid(a, x) \in \gamma \text { for all } x \in A\} \text { and } B_{2}=\{a \in A \mid(a, y) \notin \gamma \text { for all } y \in A\},
$$

then $B_{1} \cup B_{2}=A, B_{1} \cap B_{2}=\varnothing$ and $\gamma=B_{1} \times A=\left(B_{1} \times B_{1}\right) \cup\left(B_{1} \times B_{2}\right)$ is a half- 372 space, with a full lower box B_{1} (or $\left|B_{1}\right|=1$) and an empty upper box B_{2}. Thus we 373 can write $\gamma=\left(B_{1}<B_{2}\right)$. 374

Lemma 3.3 Let $\gamma_{i}=\left(B_{i 1}<B_{i 2}\right), 1 \leq i \leq 2$ be half-spaces on A_{i} with full lower boxes 375 $B_{i 1}\left(\operatorname{or}\left|B_{i 1}\right|=1\right)$ and empty upper boxes $B_{i 2}$. Then we have the following. 376
(1) $\Delta_{A_{1} \times A_{2}} \neq \gamma_{1} \times \gamma_{2} \neq\left(A_{1} \times A_{2}\right) \times\left(A_{1} \times A_{2}\right)$ and take $\mathbf{a}=\left(a_{12}, a_{21}\right), \quad \mathbf{b}=377$ $\left(a_{11}, a_{21}\right), \mathbf{c}=\left(a_{12}, a_{22}\right)$, where $a_{i j} \in B_{i j}, i, j \in\{1,2\}$ are arbitrary elements. Then 378 $\mathbf{a} \neq \mathbf{c},(\mathbf{a}, \mathbf{c}) \in \gamma_{1} \times \gamma_{2}$ and $(\mathbf{a}, \mathbf{b}) \notin \gamma_{1} \times \gamma_{2} . \quad 379$
(2) $\gamma_{1} \times \gamma_{2}$ is a half-space if and only if $\left|B_{i j}\right|=1$ for all $i, j \in\{1,2\}$. 380

Proof
(1): Obvious. 382
(2): If $\left|B_{i j}\right|=1$ for all $i, j \in\{1,2\}$, then it is clear that $A_{1} \times A_{2}$ is a four element set 383 and $\gamma_{1} \times \gamma_{2}$ is a partial order relation on $A_{1} \times A_{2}$ providing a lattice isomorphic 384 to M_{2}, which is a half-space as we have already noted. 385
Suppose now, that $\left|B_{11}\right|>1$ and take $a^{\prime}, a^{\prime \prime} \in B_{11}$ such that $a^{\prime} \neq a^{\prime \prime}$. Let $\mathbf{z}=\left(a^{\prime}, b\right), 386$ $\mathbf{x}=\left(a^{\prime \prime}, b\right)$ and $\mathbf{y}=(a, c)$, where $a \in B_{12}, b \in B_{22}, c \in B_{21}$ are arbitrary elements. 387 Since $(\mathbf{x}, \mathbf{y}) \notin \gamma_{1} \times \gamma_{2},(\mathbf{y}, \mathbf{x}) \notin \gamma_{1} \times \gamma_{2}$ and $(\mathbf{x}, \mathbf{z}) \in \gamma_{1} \times \gamma_{2},(\mathbf{y}, \mathbf{z}) \notin \gamma_{1} \times \gamma_{2}$, we can 388 apply part (3) in Proposition 2.2 to derive that $\gamma_{1} \times \gamma_{2}$ is not a half-space. 389

If $\left|B_{12}\right|>1$ then take $a^{\prime}, a^{\prime \prime} \in B_{12}$ such that $a^{\prime} \neq a^{\prime \prime}$. Let $\mathbf{z}=\left(a^{\prime}, b\right), \mathbf{x}=\left(a^{\prime}, c\right) 390$ and $\mathbf{y}=\left(a^{\prime \prime}, c\right)$, where $b \in B_{22}, c \in B_{21}$ are arbitrary elements. Since $(\mathbf{x}, \mathbf{y}) \notin \gamma_{1} \times 391$ $\gamma_{2},(\mathbf{y}, \mathbf{x}) \notin \gamma_{1} \times \gamma_{2}$ and $(\mathbf{x}, \mathbf{z}) \in \gamma_{1} \times \gamma_{2},(\mathbf{y}, \mathbf{z}) \notin \gamma_{1} \times \gamma_{2}$, we can apply part (3) in 392 Proposition 2.2 to derive that $\gamma_{1} \times \gamma_{2}$ is not a half-space. 393

The cases $\left|B_{21}\right|>1$ and $\left|B_{22}\right|>1$ can be treated analogously. 394

Theorem 3.4 If $\left(A_{i}, \gamma_{i}\right), i \in I$ is a family of non-trivial quasiordered sets (i.e. $\Delta_{A_{i}} \neq 395$ $\gamma_{i} \neq A_{i} \times A_{i}$ for all $i \in I$), then the following are equivalent. 396
(1) $\prod_{i \in I} \gamma_{i}$ is a half-space on $\prod_{i \in I} A_{i}$.
(2) Either $I=\{1\}$ and γ_{1} is a half-space or $I=\{1,2\}$ and $\left(A_{1}, \gamma_{1}\right),\left(A_{2}, \gamma_{2}\right)$ are two- 398 element chains. 399

Proof 400
$(2) \Longrightarrow(1)$: It is an immediate consequence of part (2) in Lemma 3.3. 401

411 Remark 3.5 If $\gamma_{j}=\Delta_{A_{j}}$ and $\left|A_{j}\right|>1$ for some $j \in I$, then $\prod_{i \in I} \gamma_{i}$ is disconnected, hence 412 not a non-trivial half-space (because $\prod_{i \in I} \gamma_{i}=\Delta$ would be the only possibility to get 413 a half-space). If $\gamma_{j}=A_{j} \times A_{j}$ for some $j \in I$, then γ_{j} has no effect on wether the 414 product $\prod_{i \in I} \gamma_{i}$ is a half-space (in other words $\prod_{i \in I} \gamma_{i}$ is a half-space if and only if $\prod_{i \in I \backslash\{j\}} \gamma_{i}$ is 415 a half-space).

416 Now, as promised in the introduction, we illustrate the use of half-spaces in a short 417 proof of the following statement.

418 Theorem 3.5 (Dushnik-Miller) If $\left(A_{i}, R_{i}\right), i \in I$ is a family of non-trivial linearly 419 ordered sets (chains) with $|I| \geq 2$, then

$$
\operatorname{dim}\left(\prod_{i \in I} A_{i}, \prod_{i \in I} R_{i}\right) \leq|I| .
$$

420 Proof For an index $j \in I$ let π_{j} denote the natural $\prod_{i \in I} A_{i} \longrightarrow A_{j}$ projection. We have

$$
\bigcap_{j \in I}\left\{(\mathbf{a}, \mathbf{b}) \mid \mathbf{a}, \mathbf{b} \in \prod_{i \in I} A_{i} \text { and } \mathbf{a}(j) \leq_{R_{j}} \mathbf{b}(j)\right\}=\prod_{i \in I} R_{i},
$$

421 for the half-spaces

$$
\left\{(\mathbf{a}, \mathbf{b}) \mid \mathbf{a}, \mathbf{b} \in \prod_{i \in I} A_{i} \text { and } \mathbf{a}(j) \leq_{R_{j}} \mathbf{b}(j)\right\}=\operatorname{ker}\left(\pi_{j}\right) \cup \pi_{j}^{-1}\left(R_{j}\right), j \in I
$$

422 (see Proposition 2.7). If $\prod_{i \in I} R_{i}$ is not a half-space, then

$$
\operatorname{dim}\left(\prod_{i \in I} A_{i}, \prod_{i \in I} R_{i}\right)=\mathrm{hs} \operatorname{dim}\left(\prod_{i \in I} A_{i}, \prod_{i \in I} R_{i}\right) \leq|I|
$$

423 by Theorem 2.16. If $\prod_{i \in I} R_{i}$ is a half-space, then $|I|=2$ and $\left(\prod_{i \in I} A_{i}, \prod_{i \in I} R_{i}\right)$ is the four 424 element Boolean lattice by Theorem 3.4.

Order

Acknowledgement The initial version of this paper was prepared while the first named author was 425
at the Alfred Renyi Institute of Mathematics, Hungarian Academy of Sciences.

References $\quad 427$

1. Bonnet, R., Pouzet, M.: Linear extensions of ordered sets. In: Rival, I. (ed.) Ordered Sets, 428 Proceedings of the Nato Advanced Study Institute Conference held in Banff, pp. 125-170, 429
August 28-September 12, 1981. Reidel Publishing, Dordrecht (1982) 430
2. Dushnik, B., Miller, E.W.: Partially ordered sets. Am. J. Math. 63, 600-610 (1941) 431
3. Foldes, S.: On intervals in relational structures. Zeitschrift Math. Log. Grund. Math. 26, 97-101 432 (1980) 433
4. Foldes, S., Radeleczki, S.: On interval decomposition lattices. Discus. Math., Gen. Algebra Appl. 434 24, 95-114 (2004)
5. Hausdorff, F.: Grundzüge einer Theorie der geordneten Mengen. Math. Ann. 65(4), 435-505 436 (1908)437
6. Körtesi, P. , Radeleczki, S. , Szilágyi, Sz.: Congruences and isotone maps on partially ordered sets. 438
Math. Pannonica 16(1), 39-55 (2005) 439
7. Szpilrajn, E.: Sur l'extension de l'ordre partiel. Fundam. Math. 16, 386-389 (1930) 440
8. Trotter, W.T.: Combinatorics and Partially Ordered Sets, Dimension Theory. The Johns Hopkins 441
University Press, Baltimore (1992) 442
9. van de Vel, M.L.J.: Theory of Convex Structures, North-Holland Mathematical Library, 50. 443
North-Holland Publishing, Amsterdam (1993) 444

[^0]: The work of the first named author was partially supported by the European Community's Marie Curie Program (contract MTKD-CT-2004-003006). The second named author's work was supported by OTKA of Hungary No. T043034.
 S. Foldes

 Institute of Mathematics, Tampere University of Technology PL 553, Tampere 33101, Finland e-mail: stephan.foldes@tut.fi
 J. Szigeti (\boxtimes)

 Institute of Mathematics, University of Miskolc, Miskolc-Egyetemvaros, Miskolc 3515, Hungary
 e-mail: jeno.szigeti@uni-miskolc.hu

