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ABSTRACT 
This paper deals with the numerical simulation of low 

Reynolds number flow past a circular cylinder in orbital 
motion. Energy transfer between the incompressible fluid and a 
circular cylinder forced to follow an orbital path is investigated 
as a function of ellipticity. Limit cycles were investigated and 
show that ellipticity can have a large effect on the energy 
transfer. Sudden changes in state (jumps) were found when 
energy transfer is plotted against ellipticity. Phase angle was 
altered by about 180º at the jumps. The effect of direction of 
orbit and initial conditions was also investigated.  

INTRODUCTION 
The near-wake structure of bluff bodies is extremely 

complex, and it seems that a theoretical approach cannot fully 
clarify this structure. For this purpose, either experimental or 
numerical analysis is needed. A huge amount of numerical and 
experimental work has been done on flow around a circular 
cylinder, centering on fixed cylinders, but also with a 
substantial number of studies on oscillating cylinders, primarily 
for transverse oscillation because of its higher applicability, but 
also for in-line oscillation. Sometimes the body moves in a 
combination of transverse and in-line oscillation, such as in 
tube bundles of heat exchangers. In this case a special 
combination of the two directions of oscillation is considered, 
when the resulting path of the cylinder is an ellipse. This can 
model, for instance, a cylinder affected by the motion of waves. 

In oscillation studies, the standard aim is to investigate the 
fluid-structure interaction (FSI) of an elastically-supported 
body or structure placed in a moving flow. For FSI another 
method of numerical and experimental investigation is forced 
oscillation, where the body is mechanically moved. In all cases, 
that is in free or forced oscillation, and in transverse or inline 
oscillation, an important factor is the mechanical energy 
transfer that occurs between the fluid and the cylinder. 
Oscillatory flow has been fairly widely researched (e.g. 
[1], [2]) as have oscillating cylinders in uniform flow (e.g. [3], 
[4], [5]). Also, in fluid at rest, an orbiting cylinder has been 
investigated numerically in [6], and in [7] authors investigated 
a cylinder that was orbiting and rotating. However, research on 
an orbiting cylinder in uniform flow seems to have been 
ignored. 

For transverse forced oscillation there are several 
experimental (e.g. [8]) and numerical studies (e.g. [3] and [9]) 
where the amplitude of oscillation was fixed and the frequency 
of cylinder oscillation was varied in the vicinity of the natural 
vortex shedding frequency from a fixed cylinder at the same 
Reynolds number investigated. These studies found a sudden 
switch in streamline patterns within a very narrow frequency 
range, as well as a sharp change in the phase angle between the 
unsteady lift coefficient and the cylinder displacement. The 
authors in [3] demonstrated that the switch is associated with a 
change in the sign of energy transfer between cylinder and fluid 
and also with a sudden 180º change in the phase angle between 
lift force and cylinder displacement. They attribute this switch 
to the competition between two vorticity production 
mechanisms, as it did not occur when just one was present. 
This paper describes a similar phenomenon for a more complex 
flow. 

This study deals with an orbiting cylinder, in forced 
motion, placed in a uniform flow at low Reynolds numbers. 
Mechanical energy transfer, phase angle, and time-mean and 
root-mean-square values of lift, drag, and base pressure 
coefficients are investigated for quasi-periodic flow conditions 
for this as of yet undescribed phenomenon in orbiting 
cylinders. 

One further factor rarely investigated is the influence of 
orbital direction (clockwise or anticlockwise). Studies of orbital 
cylinder motion tend to be carried out in only one direction. 
Initial condition, that is the point at which calculations are 
begun, may also have an effect on results. These factors are 
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investigated here in order to confirm what effect, if any, they 
may have on energy transfer, phase angle or force coefficients. 

NOMENCLATURE 
0a  cylinder acceleration, nondimensionalised by dU 2  

y,xA  amplitude of oscillation in x or y directions, respectively, 
nondimensionalised by d 

DC  drag coefficient, ( )dU/FD
22 ρ  

LC  lift coefficient, ( )dU/FL
22 ρ  

pbC  base pressure coefficient 
d cylinder diameter 
D dilation 
e ellipticity, xy A/A  
E mechanical energy transfer, nondimensionalised by 

222 /dUρ  
f oscillation frequency, nondimensionalised by dU  
F force per unit length of cylinder, ji LD FF +  

DF  drag per unit length of cylinder 

LF  lift per unit length of cylinder 
i, j unit vectors in x, y directions, respectively 
p pressure, nondimensionalised by 2Uρ  
Re Reynolds number, νUd  
St nondimensional vortex shedding frequency 
t time, nondimensionalised by d/U 
T cycle period, nondimensionalised by d/U 
U free stream velocity, velocity scale 
u,v velocities in x,y directions, nondimensionalised by U 

0v  cylinder velocity, nondimensionalised by U 
x,y Cartesian co-ordinates, nondimensionalised by d 
Φ  phase angle 
ν  kinematic viscosity 
ρ  fluid density 

Subscripts 
L lift 
D drag 
rms root-mean-square value 
x, y components in x and y directions 
1,2 for energy transfer in y and x directions, respectively 
0 for cylinder motion; for stationary cylinder at same Re 
 

GOVERNING EQUATIONS 
A non-inertial system fixed to the cylinder is used to 

compute two-dimensional low-Reynolds number unsteady flow 
around a circular cylinder placed in a uniform stream and 
forced to follow an orbital path. The non-dimensional Navier-
Stokes equations for incompressible constant-property 
Newtonian fluid, the equation of continuity and the Poisson 
equation for pressure are as follows: 
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In these equations, u and v are the x and y components of 

velocity, t is time, p is the pressure, Re is the Reynolds number 
based on cylinder diameter, freestream velocity U, and 
kinematic viscosity, and D is the dilation. Although D is 
theoretically equal to 0 by continuity, it is kept in equation (4) 
for avoidance of the accumulation of numerical errors.  

On the cylinder surface, no-slip boundary condition is used 
for the velocity and a Neumann type boundary condition is 
used for the pressure. At the far region, potential flow is 
assumed. 

To be able to impose the boundary conditions precisely, a 
boundary-fitted coordinate system is used. The equations for 
connecting coordinate systems (x, y, t) and ( )τηξ  , ,  are: 

 
( ) ( ) ( )[ ]  g cos  R,x ξηηξ =  
( ) ( ) ( )[ ]  g sin  R,y ξηηξ −=  
τ=t  

 
where τ  is the dimensionless time on the computational plane, 
and the dimensionless radius is 
 

( ) ( )[ ]  f exp R R ηη 1=  
 

where the dimensionless cylinder radius is 1R =0.5. The 
structure of mapping automatically assures the orthogonality of 
the grid on the physical plane for arbitrary functions ( )ηf  and 
( )ξg . A very fine grid can be obtained in the vicinity of the 

cylinder and a coarser grid far from the body, even with the 
linear functions for ( )ηf  and ( )ξg  used here (see Fig. 1). The 
equidistant mesh for the computational plane is beneficial for 
computational ease. The physical domain and the governing 
equations with boundary conditions are all transformed to the 
computational plane with an equidistant mesh, see [10]. The 
transformed equations are solved by finite difference method. 
Space derivatives are approximated by fourth order central 
differences, except for the convective terms for which a third 
order modified upwind scheme is used [11]. The Poisson 
equation for pressure is solved by the successive over-
relaxation (SOR) method. The Navier-Stokes equations are 
integrated explicitly and continuity is satisfied at every time 
step.  

The 2D code developed by the author has been extensively 
tested against experimental and computational results for fixed 
cylinders and good agreement has been found. The code was 
extended first for an oscillating and then for an orbiting 
cylinder. For this study the dimensionless time step was 0.0005 
and the number of grid points was 301x177. For all Re 
investigated, the solution was grid independent. The 
computational domain is characterised by R2 /R1=40. 
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It is proven that oscillation strengthens the two-
dimensionality of the flow (e.g. [12]) and for this reason a 2D 
code is suitable even at higher Reynolds numbers than the 190 
at which three-dimensional effects start to appear for stationary 
cylinders [13]. 
 

 
 

Figure 1 Mapping of the physical plane 
 

ORBITAL MOTION 
Figure 2 shows the flow arrangement for an orbiting 

cylinder. The orbital motion of the cylinder is created by the 
superposition of two forced oscillations with identical 
frequencies. The motion of the center of the cylinder with unit 
diameter is specified as follows: 
 

( ) ( ) ( ) ( )tfsinAty    ;tfcosAtx yyxx ππ 22 00 ==  (5) 
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Figure 2 Orbital path of the cylinder 
 
Here yx ff =  which for nonzero xA , yA  amplitudes gives 

an ellipse, shown in the dotted line in Fig. 2. xA  alone yields 
pure in-line oscillation, and then as yA  is increased, the 
ellipticity xy AAe =  increases to yield a full circle at e=1. 
Equation (5) makes the cylinder orbit anticlockwise; by 
changing the sign of 0y  in equation (5) a clockwise orbit is 
obtained. Later in this paper, the effect of orbital direction and 
that of the initial condition are investigated. 

During each set of computations, Re and xA  are fixed and 

xf  and yf  are kept constant at 90% of the frequency of vortex 
shedding from a stationary cylinder at that Re (notated by 0St ). 
 

This value was chosen to ensure lock-in (synchronisation of 
vortex shedding frequency with that of the cylinder oscillation) 
at moderate oscillation amplitudes. 

An interesting phenomenon was observed when looking at 
the time-mean value (TMV; also denoted by overbar) and root-
mean-square values of lift, drag and base pressure coefficients 
for an orbiting cylinder in a uniform flow. Abrupt jumps were 
found when these values were plotted against ellipticity e with 
Re and xA  kept constant [14]. A typical example for the TMV 
of lift coefficient is shown in Fig. 3 (here Re=120, xA =0.4, 

0850 St.ff yx == ), where three sudden jumps in the curve can 
be seen. Both upper and lower curves are almost straight lines 
and in general their slopes are almost identical. Two different 
states were found on the curve of LC  versus e, one with greater 
lift, and the other with smaller. Both show an approximately 
linear decrease with increasing e, and the difference between 
the LC  values belonging to the two states is approximately 
constant. It was shown in [15] that the time histories of LC  
before and after the jumps are substantially different. 
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Figure 3 Time-mean value of lift vs. ellipticity 
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Figure 4 Rms value of lift vs. ellipticity 
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The TMV and rms of drag and base pressure, further the 
rms of lift, behaved differently from LC , characterised by two 
envelope or state curves which are not parallel but intersect 
each other at e=0. A typical example is shown in Fig. 4. This 
finding also supports the idea that there are two states, or two 
solutions and the solution jumps from one state to the other and 
back. In this paper, the effect of these states on energy transfer 
is examined. Another concern is the investigation of phase 
angle versus ellipticity. 

 

ENERGY TRANSFER 
The mechanical energy transfer between fluid and a 

transversely oscillated cylinder was given in [3] and is here 
extended to encompass the bi-directional character of orbital 
motion. In this case, mechanical energy transfer (E) takes place 
in both transverse and in-line directions. E is determined when 
the flow is already quasi-periodic and hence ( )LC,y0  and 
( )DC,x0  represent limit cycles. Energy transfer E is positive 
when work is done on the cylinder, and negative when work is 
done on the fluid by the cylinder. 

Extending Blackburn and Henderson’s [3] definition of E 
(mechanical energy transferred from the fluid to the moving 
cylinder per motion cycle), E can be written as follows:  
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where T is the motion period, 0x , 0y  means the dimensionless 
displacement of the cylinder in x and y directions, respectively, 
and a dot over these quantities means differentiation by 
dimensionless time. Naturally everything is dimensionless in 
the second line of equation (6). As can be seen, the energy 
transfer can be divided into two parts, 1E  and 2E . Using 
Green’s theorem 1E  can be written for example as 
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Here line integrals are to be taken in clockwise direction. 
Similarly the energy transfer in the in-line direction is 
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The geometrical meaning of 1E  and 2E  is the signed area 
enclosed by limit cycles ( )L,Cy0  and ( )D,Cx0 , respectively. 
They are positive when the orientation of the limit cycle curves 
 

is anticlockwise. Based on equation (6) the total energy transfer 
between fluid and cylinder is  
 

12 EEE +=    (9) 
 

COMPUTATIONAL RESULTS AND DISCUSSION 
Computations were repeated for five different cases at 0.9 

:St0 : 40.Ax =  for Re=120 and Re=140; 20.Ax = and 
30.Ax =  for Re=160; and 30.Ax = for Re=180. Here, results 

are given for just one case, as it generally represents all of the 
cases. 

ENERGY TRANSFER RESULTS 
Here, one set of results will be shown for the case of both 

clockwise and anticlockwise orbits at Re=160, xA =0.3, and 
16938090 0 .St.ff yx ===  where 0St  is the Strouhal number 

for a stationary cylinder at the given Re. Ellipticity e was fixed 
for a single computation, then reset to a new e value for the 
next, to cover regularly and fairly densely the ellipticity domain 
from 0 (pure in-line oscillation) to 1.2 (past a full circle). The 
reason for this was to be able to identify any jumps occurring in 
the domain. When a sign change occurred, several additional 
computations were performed on either side of the sign change. 
The initial condition for both orbital directions was set at 

( ) xAtx == 00 , ( ) 000 ==ty  (3 o’clock position). The data 
shown here is representative of the several sets of computations 
performed.  
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Figure 5 Transverse energy transfer 1E  vs. ellipticity 
 
Figures 5-7 show the mechanical energy variation with 

ellipticity for the parameters given above, for both clockwise 
and anticlockwise directions of orbit. Figure 5 gives energy 
transfer between the fluid and the body in the transverse 
direction 1E . The empty squares show data for the clockwise 
direction (clw in the figure), and the filled triangles show data 
for the anticlockwise direction (aclw). The location of the 
jumps also seems to coincide, with the possible exception of 
one jump very near e=0, which needs to be examined more 
carefully. Each orbital direction produces one pair of envelope 
curves, which intersect each other at e=0, and these two pairs 
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of envelope curves coincide with each other. Note that 1E  
values are positive for the upper envelope curve, meaning that 
energy is transferred from the fluid into the cylinder, and 
negative for the lower curve, with the energy transfer reversed, 
acting to dampen the motion. 

Figure 6 shows the energy transfer in in-line direction 2E  
versus e. Many features of the figure are similar to those of Fig. 
5 (two pairs of coinciding envelope curves), although here all 
of the 2E  values are negative for both the upper and lower 
envelope curves. This means that the force acting on the 
cylinder from the fluid would oppose the cylinder motion if it 
weren’t mechanically forced motion. Compared with Fig. 5, the 
jumps occur at basically the same values of e, and the shape of 
the envelope curves is more or less reversed. 
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Figure 6 In-line energy transfer 2E  vs. ellipticity 

 
The sum of the energy transfer in transverse and in-line 

directions is given in Fig. 7. The shape is that of 1E  but, like 

2E , all of the values are negative. Therefore, the energy 
transfer for an orbiting cylinder was found to be always 
negative, regardless of direction of orbit, in the ellipticity 
domain investigated. The work, therefore, is done on the fluid 
by the cylinder, and naturally the fluid produces a kind of 
resistance against the forced motion of the cylinder. 
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Figure 7 Total energy transfer E vs. ellipticity 
 

 

Next we will take a closer look at the jumps. This has been 
done by investigating the time-history lift coefficient curves 
[15], where it was found that the shape of the signals before 
and after a jump were substantially different, leading to 
different TMV and rms lift values. Here, the limit cycles are 
investigated before and after a jump, for a clockwise orbit at 
the parameters given at the beginning of this subsection. The 
jump investigated was at about e=0.1435 (see, for instance, Fig. 
5). Figure 8 shows the two limit cycles ( )LC,y0  in transverse 
direction for quasi-periodic motion. The limit cycle for the e 
value before the jump, at yA =0.0429 (e=0.143), is shown by 
the thinner line. The thicker line represents the limit cycle just 
after the jump, at yA =0.0432 (e=0.144). Although the e-values 
hardly differ, the two limit cycle curves are completely 
different, almost reflecting each other, and with a change of 
orientation of traverse around the limit cycles. This means that 
the sign of energy transfer is opposite for the two curves: 
negative for e=0.143 ( 1E =-0.0521) and positive for e=0.144 
( 1E =0.0491). This finding is very similar to that of [3] and [16] 
for a transversely oscillated cylinder with varying oscillation 
frequency. They also found a change in the orientation of the 
limit cycles, indicating a sign change in energy transfer.  

 

 
 

Figure 8 Limit cycles ( )LC,y0  for Re=160, xA =0.4, 
(thin line - =yA 0.0429; thick line - =yA 0.0432) 

 
Figure 9 shows the two limit cycles ( )DC,x0  in in-line 

direction for quasi-periodic motion. Again the limit cycle for 
the e value before the jump, at yA =0.0429 (e=0.143), is shown 
by the thinner line. The thicker line represents the limit cycle 
just after the jump, at yA =0.0432 (e=0.144). As can be seen in 
this figure, in contrast with the results shown in Fig. 8, the 
small change in the value of ellipticity did not cause any drastic 
change in the two limit cycle curves. The shape of the curves is 
almost the same and their orientation is identical. This 
orientation means negative energy transfer values: 2E =-0.6947 
for e=0.143 and 2E =-0.7663 for e=0.144. As can be seen, the 
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absolute value of 2E  is much larger than that of 1E  with the 
same e values, so that the overall energy transfer E, i.e. the sum 
of 1E  and 2E , is negative for both of these cases.  

Interestingly, the limit cycle for transverse displacement 
changes radically with a tiny change in ellipticity, but the limit 
cycle for in-line motion hardly changes at all. This means that 
the limit cycle for the lift coefficient and nondimensional 
transverse displacement is much more sensitive to the 
phenomenon causing the jumps than is the limit cycle based on 
the drag coefficient and in-line displacement. This suggests that 
lift and drag will behave differently in other measures of 
examining the jump phenomenon, such as phase angle analysis. 
 

 
 

Figure 9 Limit cycles ( )DC,x0  for Re=160, xA =0.4 
(thin line - =yA 0.0429; thick line - =yA 0.0432) 

 

PHASE ANGLE RESULTS 
Several studies ([3], [9], [16]) have shown a sudden shift 

occurring in the phase angle under lock-in condition when the 
cylinder oscillation frequency is in the vicinity of the vortex 
shedding frequency from a stationary cylinder at the same 
Reynolds number. Because of this, it seemed worthwhile to 
investigate the phase angle LΦ  between the lift coefficient and 
displacement of the cylinder in transverse direction.  

Figure 10 shows that there is indeed a drastic change in the 
phase angle LΦ . The solid line, the one with a sine wave with 
the amplitude of 1.5, represents the time-history of 
displacement. The amplitude, which is considerably smaller in 
reality, has been exaggerated here to provide a convenient 
means to visualise the phase angle. The dotted line is the lift 
coefficient at e=0.0429, prior to the jump, while the heaviest 
line (composed of + signs) is the lift at e=0.0432, after the 
jump. The pre-jump curve is basically in phase with the 
cylinder displacement, while the post-jump curve is essentially 
reversed, yielding a phase shift of about 180º. So the jump has 
created a sudden change in the phase angle of about 180º for 
lift.  
 

The effect of the jump on the phase angle between drag 
and in-line cylinder displacement, on the other hand, is almost 
negligible, as seen in Fig. 11. The solid line again represents 
the time-history of displacement. The two hardly 
distinguishable lines are the pre-jump drag coefficient at 
e=0.0429 (dotted line), and is the post-jump drag at e=0.0432 
(the heaviest line). 

 

 
 

Figure 10 Time history lift and cylinder displacement curves 
(solid line - transverse cylinder displacement; dotted line – 

LC  at =yA 0.0429; + line – LC  at =yA 0.0432) 
 

 
 

Figure 11 Time history drag and cylinder displacement 
curves (solid line –in-line cylinder displacement; dotted line 

– DC  at =yA 0.0429; + line – DC  at =yA 0.0432) 
 
These findings suggest that any follow-up investigation 

should focus on phase angle between lift and transverse 
displacement. Therefore, for the representative case, LΦ  is 
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determined and plotted versus ellipticity. This is shown in Fig. 
12. This curve identifies the same locations for jumps as the 
other curves shown earlier (Figs. 5-7). Phase shift through the 
jumps is about 180º, which is in agreement with the findings of 
[3], [9] and [16]. 

One hypothesis for the sudden changes in phase angle in 
the case of a transversely oscillated cylinder is that the change 
in flow structure leading to shifts results form a change in 
balance between two different vorticity production mechanisms 
[3], [16]. This hypothesis is largely supported by the evidence 
gained in these two studies, and it seems a likely explanation 
for the phenomenon found here for orbiting cylinders. Figures 
13a and 13b display a flow visualisation based on the 
numerical data, showing near-wake streamlines at a time of 
maximum cylinder displacement for the two earlier 
investigated ellipticity values (pre-jump and post-jump, for the 
same jump as earlier investigations). These two figures 
illustrate the fact that the timing of vortex shedding is changed 
dramatically by a very small change in the ellipticity (from 
e=0.143 to e=0.144). These results are similar to those obtained 
in [16]. 
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Figure 12 Phase angle vs. ellipticity 
 
 

 
 

Figure 13a Streamlines for =yA 0.0429 

 

 

 
 

Figure 13b Streamlines for =yA 0.0432 

 

EFFECT OF ORBITAL DIRECTION 
Here, one set of results will be shown for the case of both 

clockwise and anticlockwise orbits at Re=160, xA =0.3, and 
16938090 0 .St.ff yx ===  where 0St  is the Strouhal number 

for a stationary cylinder at Re=160. This set was representative 
of the several sets of computations performed.  

Figure 14 gives the TMV of LC  versus ellipticity e. The 
filled triangles show results for a cylinder orbiting 
anticlockwise (aclw in the figure), similar to Fig. 3. Note that 
again there are two envelope curves, which are roughly parallel 
to each other and of negative slope. On the other hand, the 
empty squares in Fig. 14 show results for a clockwise (clw) 
orbit, with the other parameters unchanged. The two envelope 
curves can be seen, again roughly parallel, but the slope is 
positive, and they are a mirror image of the envelope curves of 
the cylinder orbiting anticlockwise. There are four jumps or 
switches in state, although this is difficult to identify at this 
scale. In all calculations made so far, LC  has shown this 
pattern: a mirror image of each other, with the slope of the 
anticlockwise curve being negative and the clockwise positive. 

The rest of the TMV and rms values plotted against 
ellipticity shown in Figs. 15-19 are basically unaffected by the 
direction of orbit. Results belonging to the clockwise and 
anticlockwise direction of orbit fall on the same envelope 
curves and even the location of jumps coincide in all cases. It is 
difficult to distinguish the two curves. The other TMV and rms 
values are shown, although unlike the TMV of lift they are not 
affected by the direction of orbit, in order to give a full display 
of the effect of ellipticy upon these values.  

Figure 15 shows the rms value of the lift coefficient. 
Because the curves belonging to the anticlockwise and 
clockwise orbits coincide for the most part, the two curves are 
difficult to distinguish, but clearly they are almost identical. As 
in Fig. 4, the two envelope curves intersect at 0 ellipticity. 
Here, in contrast with Fig. 14, the two pairs of envelope curves 
belonging to the two orbital directions coincide. The locations 
of the jumps are at the same e values as for LC . 

Figures 16 and 17 give the TMV of the drag and base 
pressure coefficients versus ellipticity e. As in Fig. 15, the two 
pairs of envelope curves intersect each other at e=0 and they 
coincide. Figures 18 and 19 show the rms of the drag and base 
pressure coefficient, with similar results.  
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Figure 14 Time-mean value of lift vs. ellipticity 
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Figure 15 Root-mean square value of lift vs. ellipticity 
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Figure 16 Time-mean value of drag vs. ellipticity 

 
From the sets of computations for the two orbital 

directions, it is clear that two pairs of envelope or state curves 
exist that in most cases coincide with each other. This is 
reassuring in two ways: (1) The code produces the same time-
mean and rms results for two different situations represented by 
the two directions of orbit, and this confirms that the code is 
reliable, and (2) the existence of envelope curves is proved by 
results obtained for two different cases 
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Figure 17 Time-mean value of base pressure vs. ellipticity 
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Figure 18 Root-mean square value of drag vs. ellipticity 
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Figure 19 Root-mean square value of base pressure 
vs. ellipticity 

 
Apart from TMV of lift, it was found that the direction of 

orbit has basically no effect on TMV and rms values of force 
coefficients. However, it may be worth noting that since LC  is 
affected, it may be necessary to take the direction of orbit into 
consideration when using results from orbital studies, most of 
which are done with only one orbital direction.  
8 Copyright © 2006 by ASME 



EFFECT OF INITIAL CONDITION 
For earlier clockwise computations, the initial conditions 

were ( ) xAtx == 00 , ( ) 000 ==ty  (3 o’clock position). The 
computations were repeated for a clockwise orbit using a 
different initial condition in which ( ) xAtx −== 00 , 

( ) 000 ==ty  (9 o’clock position). For all cases, including LC  
(shown in Fig. 20; in contrast with Fig. 14), the two pairs of 
envelope curves coincided, but the location of jumps was 
somewhat affected by the initial conditions (cf. Figs. 21 and 5). 
In Figs. 20 and 21, the envelope curves marked with the open 
squares are the same as those shown in Fig. 5; the filled 
diamonds refer to the changed initial conditions (clwic). A 
comparison shows that the jumps are at different e values than 
before. All of the other data show the same tendency.  
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Figure 20 Time-mean value of lift vs. ellipticity, effect of 
initial condition 
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Figure 21 Transverse energy transfer 1E  vs. ellipticity, 

effect of initial condition 
 
It is interesting that although the envelope curves are 

identical, the location of the jumps have been changed by 
shifting the starting point of calculations. For all five sets of 
computations at different Re and xA , specified at the beginning 
of this section, exactly the same type of results were obtained. 
For each set of variables (the TMV and rms of LC , DC  and 
 

pbC , and the mechanical energy transfer 1E , 2E  and E), the 
location of jumps for the same initial condition was always the 
same. Although this effect cannot be explained at this point, the 
consistent results indicate that it is not a fluke, and is worth 
examining further. 
 

CONCLUSIONS 
The definition of mechanical energy transfer between a 

transversely oscillated cylinder and fluid [3] was extended here 
for use with a cylinder mechanically forced to follow an orbital 
path. Energy transfer in this case is composed of two parts, 1E  
for the energy transfer in the transverse direction, and 2E  for 
the in-line direction. These variables were investigated against 
different values of ellipticity. Two envelope curves were 
detected, between which the solution abruptly jumped. For 1E , 
values were both positive and negative, while 2E  was always 
negative, as was the sum of the two. Limit cycle curves were 
investigated prior to and immediately after a jump, and those 
for lift and transverse cylinder displacement showed a sign 
switch, while those for drag and in-line displacement were 
hardly affected around the jump. Flow patterns for the two 
ellipticity values around the jump were plotted at the same 
phase in the cylinder motion cycle, and illustrate the drastic 
effect on the timing of vortex shedding of a very small change 
in ellipticity value at a jump. 

The phase angle between lift and transverse displacement 
LΦ  switched by about 180º at the jump, while no change was 

detected for the phase angle between drag and in-line 
displacement. When LΦ  was determined for the entire range of 
ellipticity investigated, this approximately 180º change was 
observed at every jump.  

The effect of the direction of orbit was important only in 
the case of the time-mean value of the lift coefficient. An 
alteration of 180º in phase angle in the initial conditions left the 
envelope curves unaffected but somewhat modified the location 
of jumps.  

These results serve to support the evidence for a physical 
phenomenon resulting in sudden jumps at low Reynolds 
numbers in the case of an orbiting cylinder. The evidence now 
includes changes in time-history of lift, limit cycles, 
mechanical energy transfer, phase angle, and flow patterns.  
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