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ABSTRACT 
A finite difference solution is presented for 2D 

laminar unsteady flow around a circular cylinder in 
orbital motion placed in a uniform flow in the 
Reynolds number domain of Re=120-180. Abrupt 
jumps between two state curves were found in the 
time-mean and root-mean-square values of the 
force coefficients under lock-in conditions. This 
study focuses upon the effect of abrupt alteration of 
transverse amplitude during computation. It was 
found that the solution tended to remain in the same 
state curve after amplitude alteration, inhibiting 
jumps between states. 

1. INTRODUCTION 
The near-wake structure of bluff bodies is very 

rich in complex phenomena. This is true even of a 
stationary cylinder in uniform flow, accounting for 
the huge number of studies of stationary cylinders 
over the years. The situation becomes even more 
complex when cylinder motion is added. The largest 
number of studies of cylinder motion have looked at 
transverse oscillation (among others, Lu and Dalton, 
1996; Blackburn and Henderson, 1999). In an 
experimental study Williamson and Roshko (1988) 
prepared a wake mode map for transversely 
oscillating cylinders, showing different vortex 
shedding domains. Leontini et al. (2006) 
investigated the wake modes and energy transfer 
between the cylinder and fluid numerically. Both 
studies report sudden changes in vortex structure. 

Fewer studies are available for in-line cylinder 
oscillation (e.g. Mureithi and Rodriguez, 2006; Al-
Mdallal et al., 2007), and still fewer for the 
combination of transverse and in-line motion that 
leads to a cylinder tracing an orbital path. Blevins 
(1990) points out that tubes in heat exchangers 
generally vibrate in oval orbits and these orbits vary 
in shape from nearly straight lines to circles. As the 
tubes whirl in their orbits, they extract energy from 
the flow and this, in part, induces instability. This 
might also occur when a cylinder moves in waves, 
for instance. 

Cylinders orbiting in a uniform flow are still a 
relatively unexplored topic, although there are 
studies of fixed cylinders in orbital flow (e.g. 

Sarpkaya, 1986) or orbiting cylinders in fluid at rest 
(e.g. Teshauer et al., 2002). Didier and Borges 
(2006) looked at an orbiting cylinder, in a fully 
circular orbit alone, versus cylinder oscillation 
frequency. However, there are no other studies, 
according to the best knowledge of the author, that 
investigate the effect of ellipticity on the forces 
acting on an orbiting cylinder in uniform flow.  

When a cylinder orbits in a uniform flow at low 
Reynolds number, its flow structure changes 
abruptly at certain values of orbital ellipticity. There 
appear to be two states between which the solution 
switches (Baranyi 2004, 2006, 2008). From the data 
obtained so far, it seems likely that the “basins of 
attraction” of multiple solutions of this non-linear 
system have two attractors, in the form of two stable 
limit cycles. 

The two state curves can be reached in different 
ways: by using different ellipticity values (Baranyi 
2004), by changing the initial position of the 
cylinder (Baranyi 2006, 2008), by flipping the 
solutions (Baranyi 2007), or by altering the 
ellipticity in the course of computation, either 
abruptly or gradually. This paper focuses upon the 
effect of abrupt ellipticity alteration during 
computation in order to collect more evidence on 
what triggers a change from one state to the other. 

2. GOVERNING EQUATIONS AND 
NUMERICAL METHOD 

The dimensionless governing equations for an 
incompressible constant property Newtonian fluid 
flow around an orbiting circular cylinder are the 
two components of the Navier-Stokes equations, the 
continuity equation and pressure Poisson equation 
written in a non-inertial system fixed to the 
cylinder:  
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In these equations 2∇  is the 2D Laplacian operator, 
x, y are Cartesian co-ordinates, u, v are the x, y 
components of velocity in the system fixed to the 
cylinder, xa0 , ya0  are the components of cylinder 
acceleration, p is the pressure and D is dilation. 
Here Re is the Reynolds number, Re=Ud/ν where d 
is the cylinder diameter, U is the free stream 
velocity and ν  is the kinematic viscosity.  

Although in equation (4) the dilation D = 0 by 
continuity (3), its partial derivative with respect to 
time is retained to reduce numerical errors. 
Equations (1), (2) and (4) will be solved while the 
continuity equation (3) is satisfied at every time step 
(see Harlow and Welch, 1965). 

No-slip boundary condition is used on the 
cylinder surface for the velocity and a Neumann-
type condition is used for pressure p. Potential flow 
is assumed far from the cylinder.  

Boundary-fitted coordinates are used to impose 
the boundary conditions accurately. Using unique, 
single-valued functions, the physical domain 
bounded by two concentric circles can be mapped 
into a rectangular computational domain where the 
spacing is equidistant in both directions. In the 
physical domain logarithmically spaced radial cells 
are used, providing a fine grid scale near the 
cylinder wall and a coarse grid in the far field. 
Using the mapping functions, not specified here, the 
governing equations and boundary conditions are 
transformed into the computational plane. The 
transformed equations are solved by using the finite 
difference method. The Poisson equation for 
pressure is solved by the SOR method. For further 
details see Baranyi (2003, 2008). 

The 2D code developed by the author has been 
extensively tested against experimental and 
computational results for a stationary cylinder 
(Baranyi, 2003, 2008) and computational results for 
cylinders oscillating in transverse or in in-line 
directions or following a circular path (Baranyi, 
2008), with good agreement being found. For this 
study the dimensionless time step was 0.0005 and 
the number of grid points 301x177. For all Re 
investigated in this study (ranging from Re=120-
180) the solution was grid independent. The ratio of 
the radius of the outer computational domain and 
cylinder radius was 40. 

Figure 1 shows the flow arrangement. The 
motion of the centre of the cylinder with unit 
diameter is specified as follows:  

( ) ( ) ( ) ( )tfsinAty;tfcosAtx yyxx ππ 2    2 00 −==  (5) 

where xA , yA  and xf , yf  are the dimensionless 
amplitudes and frequencies of oscillations in x and y 
directions, respectively. The negative sign in y0 in 
equation (5) makes the cylinder orbit clockwise; by 
changing this sign of y0 an anticlockwise orbit is 
obtained. Here fx=fy=f, which for nonzero xA , yA  
amplitudes gives an ellipse, shown in the dotted line 
in Figure 1. Ax with Ay=0 yields pure in-line 
oscillation, and then as Ay is increased, the 
ellipticity e=Ay/Ax increases to yield a full circle at 
e=1. When both amplitudes are zero the cylinder 
becomes stationary. 

Ay

d = 1

y

x
OU

Ax

 
Figure 1: Layout for the orbital path of the cylinder 

 
The dimensionless frequency f was kept constant 

at 85% or 90% of the Strouhal number St0, i.e., the 
frequency of vortex shedding from a stationary 
cylinder at that Reynolds number. Only f=0.9St0 
cases are shown here; results were very similar for 
both frequencies. These values were chosen because 
lock-in (synchronisation of frequencies for vortex 
shedding and cylinder oscillation) was desired 
without very large amplitudes of xA  and yA . Only 
locked-in cases were considered in this study. 

3. COMPUTATIONAL RESULTS 

3.1 State curves and initial conditions 

An interesting phenomenon was observed when 
looking at the time-mean value (TMV) and root-
mean-square (rms) values of lift CL, drag CD, base 
pressure coefficients Cpb, torque coefficient tq, and 
energy transfer E for an orbiting cylinder in a 
uniform flow. Abrupt jumps were found when these 
values were plotted against ellipticity e, with Re, Ax 
and f kept constant (Baranyi, 2004). A typical 
example for the TMV of lift coefficient for a 
clockwise orbit is shown in Figure 2 for Re=160, 



Ax=0.3, f=0.9St0, St0=0.1882. Note that there are 
two roughly parallel state or envelope curves. In all 
computations made so far, CLmean and tqmean have 
shown this pattern (subscript mean refers to TMV). 

 
Re=160; Ax=0.3; f/St0=0.9; clockwise orbit
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Figure 2: Time-mean value of lift versus ellipticity 

 
Figure 3 shows an example of the other state 

curve pattern, which is found for all rms values, for 
TMV of the drag and base pressure coefficients, and 
for energy transfer. Here the curves intersect each 
other at zero ellipticity and then diverge. The 
location and number of jumps for the curves in 
Figures 2 and 3 are identical, but the location and 
number can vary with a change in initial condition 
Θ  (the polar angle characterising the initial 
cylinder position, from which motion is initiated). 
The initial condition of Θ =0°, which is the furthest 
downstream point of the cylinder, was used in the 
case in Figures 2 and 3. As in all computations 
shown here, Θ  increases in clockwise direction. 

 
Re=160; Ax=0.3; f/St0=0.9; clockwise orbit
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Figure 3: Rms value of drag versus ellipticity 

The effect of initial condition is demonstrated in 
Figures 4 and 5, where it can be seen that the full 
state curves can be reproduced using three different 
initial conditions (Θ =60°, 90° and 180°). Note that 
these are for the same set of parameters as in 
Figures 2 and 3, with the exception of initial 

condition. The existence of two state curves is 
clearly seen, showing that two solutions exist, and 
the solution switches between them (Baranyi 2006, 
2008). 

 
Re=160; Ax=0.3; f/St0=0.9; clockwise orbit
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Figure 4: Time-mean value of lift versus ellipticity: 
effect of initial condition (Θ =60°, 90° and 180°) 

 
Re=160; Ax=0.3; f/St0=0.9; clockwise orbit
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Figure 5: Rms value of drag versus ellipticity: effect 

of initial condition (Θ =60°, 90° and 180°) 

 

3.2 Abrupt alterations in ellipticity 

In the cases shown above, each point in the figure 
was obtained while keeping all five parameters (Re, 
Ax, e, f/St0, Θ ) constant during the course of a 
single computation. For the following point, 
ellipticity e was varied by changing Ay. The 
question arises as to what happens when ellipticity 
is changed during the course of the computation. 
This was investigated by altering Ay1 to Ay2 abruptly 
at t1, to either a larger or smaller value, and 
continuing the computation long enough to obtain a 
periodic solution. This is shown in Figure 6, and 
can also be expressed in mathematical terms as: 

if 0 ≤ t < t1 then Ay=Ay1; if t1 ≤  t ≤  tF then Ay=Ay2. 

An example for the time history of lift is shown 



in Figure 7. The amplitude of transverse oscillation 
is Ay=Ay1=0.0924 until time t1, when the amplitude 
is abruptly changed to Ay2=0.22. This value is kept 
constant during the rest of the computation. While 
there is some transition, the solution becomes 
periodic soon after the alteration point t1. 
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Figure 6: Layout of transverse amplitude alteration 

 

 
Figure 7: Time history of lift with amplitude 

alteration 
 
The effect of transverse amplitude alteration 

during the computation is demonstrated in Figures 
8-12. While Ay1 is kept constant for the entire set of 
computations, Ay2 is varied for each individual 
computation. One set of parameters (Re=140; 
Ax=0.4; f=0.9St0=0.16389) was used in the 
computations shown in the figures below. If not 
otherwise stated, Θ =0°. Alteration of Ay took place 
at t1=250, and the final dimensionless time tF=1000, 
which corresponds to roughly 160 vortex shedding 
periods. After some transition the solution becomes 
periodic. After determining the TMV and rms 
values of the periodic signals, each value was 
plotted at the ellipticity value belonging to Ay2. The 
Ay1 value for all cases was 0.0924 and the 
corresponding ellipticity value e1=0.231. Ay2 was 
varied, yielding the filled triangles shown in Figures 
8-10. 

Figure 8 shows the TMV of lift against 
ellipticity. The empty squares show results from 
constant-amplitude computations, and the filled 

triangles give the results when the amplitude has 
been abruptly changed during the computation. 
When the ellipticity is changed from e1 to e2, the 
solution remains in the curve it was in before the 
alteration, although in the constant-amplitude case, 
the solution is on the lower curve at that e2 value. 
When the difference between e1 and e2 becomes 
large enough, the altered-amplitude solution moves 
to the other curve (here, at about e=0.84). 

 

Re=140; Ax=0.4; f=0.9St0=0.16389
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Figure 8: Time-mean value of lift vs. ellipticity: 
 □ constant amplitude; ▲ abrupt alteration 

 
Figures 9 and 10 show the TMV and rms of the 

drag coefficient against ellipticity, respectively. 
Here the values belonging to e1 are on the lower 
state curve and the altered-amplitude solutions 
remain on the lower curve. The solution moves to 
the other curve at around e=0.84, as for lift, and for 
all other TMV and rms values for this set of data. 

 

Re=140; Ax=0.4; f=0.9St0=0.16389
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Figure 9: Time-mean value of drag vs. ellipticity: 
 □ constant amplitude; ▲ abrupt alteration 

 
It seems that altering the amplitude of oscillation 

in the course of the computation can keep the force 
coefficient values in the same curve as before the 
alteration, thus avoiding (for a certain ellipticity 
domain) the switch to the other curve. For this 
particular case, some values (e.g., CLmean and CLrms) 
stay on the upper curve for a longer period, while 



others (e.g., CDmean and CDrms) remain on the lower 
curve, until approximately e=0.84. After this point, 
the solution returns to the curve belonging to the 
constant-amplitude solution (Ay=Ay1=Ay2). 

 

Re=140; Ax=0.4; f=0.9St0=0.16389
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Figure 10: Rms value of drag vs. ellipticity: 
 □ constant amplitude; ▲ abrupt alteration 

 
In discussion of the results shown in Figures 8 

and 9, the words ‘state curve’ were carefully 
avoided for the curve with the filled triangles, since 
there was no proof that the curve was a state curve, 
i.e., the curve belonging to a constant-amplitude 
solution at that ellipticity value. Repeating constant-
amplitude computations under several initial 
conditions for different ellipticity values can 
reproduce state curves almost fully (as seen in 
Figures 4 and 5). It was found that the altered-
amplitude results are indeed on the state curve (not 
shown here for lack of space). 

Figure 11 shows three (CD,CL) limit cycle curves, 
two of which coincide with each other. CD is on the 
horizontal and CL is on the vertical axis of the 
figure. The thick line represents one constant-
amplitude case at Ay=0.22 (e=0.55; see Figures 8-
10) and Θ =0°. One of the two coinciding thin lines 
represents the same with Θ =180°, and the other 
when amplitude was altered during the computation 
from Ay1=0.0924 to Ay2=0.22 with Θ =0°. This 
coincidence of the thin lines and the fact that they 
differ from the thick line show that (a) altering the 
amplitude during the computation at the same initial 
condition (here Θ =0°) results in a very different 
solution from the constant-amplitude solution; and 
(b) the altered-amplitude solution is also on a state 
curve (as it coincides with the constant-amplitude 
solution at Θ =180°). 

Figure 12 displays two coinciding (CD,CL) limit 
cycle curves, one for the constant-amplitude and 
one for the altered-amplitude case. The parameters 
are the same as in the case shown in Figure 11 
except for Ay2 which is 0.34 (e=0.85) here. For both 
curves Θ =0°. Since the ellipticity value here is 
after the point where the altered-amplitude solution 

has returned to the same state curve as the constant-
amplitude solution, we find that their limit cycle 
curves are identical, in contrast to the results in 
Figure 11. 

 

 
Figure 11: Three drag-lift limit cycle curves at 

e=0.55 
 

 
Figure 12: Two drag-lift limit cycle curves at 

e=0.85 

4. CONCLUSION 
The amplitude of transverse cylinder motion of a 

cylinder following an orbital path was abruptly 
altered in the course of computations. These results 
were compared with solutions obtained when the 
amplitude was held constant throughout the 
computation. It was found that: 
• an alteration in the amplitude causes the solution 

to remain on the pre-alteration state curve, at 
least for some part of the ellipticity domain; 

• whether the alteration is an increase or a 
decrease has no effect on this; 

• a substantial alteration in transverse oscillation 
amplitude is needed in order to shift the solution 
from its pre-alteration state to the other state. 

It seems that the alteration in amplitude works to 
“conserve the state” and inhibit jumps between 
states. 



Since jumps are inhibited, amplitude alteration 
could perhaps be used as a means of control to 
avoid switches in state. Furthermore, in the case 
shown here, CL values were kept on the upper state 
curve and CD values on the lower for a large part of 
the ellipticity domain. If this is true of other cases, 
there may be potential implications for drag 
reduction. 

In order to confirm these findings, investigation 
of cases with different parameters is necessary. In 
addition, the effect of altering amplitude gradually 
rather than abruptly should be investigated. 
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