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ABSTRACT 
This study investigates the effect of altering oscillation 

amplitude on time-mean and root-mean-square values of force 
coefficients when plotted against amplitude of oscillation. The 
cylinder is placed in a uniform flow and is oscillated 
mechanically in transverse or in-line direction. The two-
dimensional numerical computations are carried out at Re=140 
and 160, at 90% of the natural vortex shedding frequency. For 
in-line oscillation, jumps were found in the time-mean values of 
lift and torque. Both abrupt and gradual alteration of amplitude 
in the course of a computation had the effect of keeping the 
solution in one state curve, i.e., of conserving state, or inhibiting 
changes in vortex structure. Transverse oscillation displayed no 
jumps, and alteration of amplitude had no effect on the solution. 
Keywords: circular cylinder, in-line oscillation, lift, low 
Reynolds number flow, transverse oscillation 
 
INTRODUCTION 
 Oscillating cylinders are of interest in situations such as 
off-shore structures and slender structures exposed to wind, but 
are also an area of fundamental research in the effort to clarify 
wake phenemona, in all its complexity. Transverse oscillation is 
most often studied, due to its relevance to real-life situations, 
while in-line oscillation is investigated by fewer researchers. 

For a transversely oscillating cylinder, one landmark 
experimental study is that of Williamson and Roshko [1], in 
which they produced their well-known map of vortex 
synchronization regions at Reynolds number Re=392, later 
adjusted for lower Re by Ponta and Aref [2]. Studies such as 
those of Blackburn and Henderson [3] and Kaiktsis et al. [4], at 
medium Reynolds numbers, found switches in the vortex 
structure with transverse oscillation. Gu et al. [5], Lu and 
Dalton [6], and Guilmineau and Queutey [7], in studies carried 

out for low Reynolds numbers (Re=185), also identified 
switches in vortex structure. Leontini et al. [8] determined the 
flow regimes for Re=100 and 300 numerically, finding no 
influence of energy transfer sign switch on wake structures. 

For cylinders oscillating in-line, one fundamental 
experimental study is Cetiner and Rockwell [9], investigating 
the flow over a wide frequency ratio and medium Reynolds 
number. Al-Mdallal et al. [10] carried out a study at the same 
wide frequency but at Re=200, finding switches in vortex 
structure. Rodriguez and Mureithi [11] varied the amplitude of 
oscillation at medium Re to identify vortex wake modes. 

While studies of both types of oscillation have identified 
switches in vortex structures, there seem to have been few 
studies, if any, that have investigated the influence of an 
alteration in oscillation amplitude. Baranyi [12] earlier found 
that altering the transverse amplitude of an orbiting cylinder led 
to the avoidance of vortex structure switches. 

This study investigates a cylinder placed in a uniform 
stream and mechanically oscillated in either transverse or in-
line direction, varying the amplitude of oscillation within the 
lock-in domain, at Re=140 and 160 and frequency ratio f/St0 of 
0.9. The primary purpose is to find whether switches in vortex 
structure occur under these conditions, and if so, whether this 
can be influenced by abruptly or gradually altering the 
amplitude of oscillation. 

NOMENCLATURE 
0a  cylinder acceleration, non-dimensionalized by U2 / d 

Ax,y amplitude of oscillation in x or y directions, respectively, 
non-dimensionalized by d 

CD drag coefficient, 2FD  /(ρU2 d) 
CL lift coefficient, 2FL  /(ρU2 d) 
Cpb base pressure coefficient 
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D dilation 
d cylinder diameter (m) 
FD drag per unit length of cylinder (N/m) 
FL lift per unit length of cylinder (N/m) 
f oscillation frequency, non-dimensionalized by dU  
fv vortex shedding frequency, non-dimensionalized by dU  

p pressure, non-dimensionalized by 2U  
Re Reynolds number, Ud  
St non-dimensional vortex shedding frequency 
T cycle period, non-dimensionalized by d/U 
t time, non-dimensionalized by d/U 
tq torque coefficient, torque of shear stress on cylinder 

surface, non-dimensionalized by ρU2 d2 
U free stream velocity, velocity scale (m/s) 
u,v velocities in x,y directions, non-dimensionalized by U 
x,y Cartesian co-ordinates, non-dimensionalized by d 
  phase angle 
  kinematic viscosity (m2/s) 
Θ polar angle characterizing initial condition 
  fluid density (kg/m3) 

Subscripts 
D drag 
fb fixed body 
L lift 
rms root-mean-square value 
v vortex shedding 
x, y components in x and y directions 
0 for cylinder motion; for stationary cylinder at same Re 

GOVERNING EQUATIONS 
A non-inertial system fixed to the cylinder is used to 

compute two-dimensional low-Reynolds number unsteady flow 
around a circular cylinder placed in a uniform stream and 
forced to oscillate either in transverse or in-line direction. The 
non-dimensional Navier-Stokes equations for incompressible 
constant-property Newtonian fluid, the equation of continuity 
and the Poisson equation for pressure are as follows: 
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In these equations, u and v are the x and y components of 
velocity, t is time, p is the pressure, Re is the Reynolds number 
based on cylinder diameter, free stream velocity U, and 
kinematic viscosity ν, and D is the dilation. Although D is 
theoretically equal to 0 by continuity, it is kept in equation (4) 
to avoid the accumulation of numerical errors. 

On the cylinder surface, no-slip boundary condition is used 
for the velocity and a Neumann type boundary condition is used 
for the pressure. At the far region, potential flow is assumed. 

Boundary-fitted coordinates are used to impose the 
boundary conditions accurately. Using unique, single-valued 
functions, the physical domain bounded by two concentric 
circles can be mapped into a rectangular computational domain 
where the spacing is equidistant in both directions (see Fig. 1). 
In the physical domain logarithmically spaced radial cells are 
used, providing a fine grid scale near the cylinder wall and a 
coarse grid in the far field. Using the mapping functions, not 
specified here, the governing equations and boundary 
conditions are transformed into the computational plane. The 
transformed equations are solved by finite difference method. 
Space derivatives are approximated by fourth order central 
differences, except for the convective terms for which a third 
order modified upwind scheme is used, [13]. The Poisson 
equation for pressure is solved by the successive over-
relaxation (SOR) method. The Navier-Stokes equations are 
integrated explicitly and continuity is satisfied at every time 
step. For further details see [14] and [15]. 

The 2D code developed by the author has been extensively 
tested against experimental and computational results for a 
stationary cylinder ([16], [17], see [14], [15]) and 
computational results for cylinders oscillating in transverse or in 
in-line directions or following a circular path, including [6], 
[10] and [18], with good agreement being found, [15]. For this 
study the dimensionless time step was 0.0005 and the number 
of grid points 361x236. The computational domain is 
characterized by R2 /R1=60 and the solution is grid independent. 

COMPUTATIONS 
Computations for a mechanically oscillated cylinder were 

carried out at two Reynolds numbers, Re=140 and 160. These 
are mid-range in the author’s customary domain of 
investigations and the author has data for other cylinder flows at 
these Reynolds numbers. Both in-line (non-dimensional 
amplitude Ax) and transverse (Ay) cylinder oscillation were 
investigated at varying amplitudes of oscillation. The non-
dimensional frequency of oscillation f was set at 0.9St0, where 
St0 is the non-dimensional vortex shedding frequency, or 
Strouhal number, for a stationary cylinder at that Reynolds 
number. This selection of f ensures synchronization or lock-in at 
moderate amplitude values of Ax or Ay. In this study the flow 
was considered to be locked-in for both in-line and transverse 
cylinder oscillation when the vortex shedding frequency fv is 
equal to the frequency of cylinder oscillation f. For in-line 
oscillation, lock-in was found earlier in the vicinity of the 
natural vortex shedding frequency fv0, as well as the double of 
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this frequency [15, 18]. Here the first, narrower lock-in domain 
has been chosen. 

To create a more manageable scope of investigation only 
locked-in cases were considered in this study. The cylinder was 
started at different positions, characterized by polar angle Θ, 
since earlier investigations showed that this initial condition 
may have an effect on the solution, [15]. If not otherwise stated 
Θ=0º, meaning that the cylinder is started from its farthest 
downstream position (Θ increases in the clockwise direction). 

 
 

 
 

Figure 1. Physical and computational domains 
 
Time-mean (TM) and root-mean-square (rms) values of lift 

(CL), drag (CD), base pressure (Cpb) and torque coefficients were 
evaluated and plotted against the oscillation amplitude.  

Throughout this paper the lift and drag coefficients used 
contain the inertial forces originated from the non-inertial 
system fixed to the accelerating cylinder. Coefficients obtained 
by removing the inertial forces are often termed ‘fixed body’ 
coefficients [6]. The relationship between the two sets of 
coefficients can be written as 

 

,aCC yLfbL 02
π

                xDfbD aCC 02
π

  (5) 

  
where subscript fb refers to the fixed body (understood in an 
inertial system fixed to the stationary cylinder), [19], [20]. 
Since the inertial terms are T-periodic functions, their time-
mean values vanish, resulting in identical TM values for lift and 
drag in the inertial and non-inertial systems. Naturally the rms 
values of CL and CD will be somewhat different in the two 
systems. 

Computations are performed at a fixed Re, f and Θ value 
with amplitude of oscillation as the independent variable. 
During one computation, the amplitude (Ay or Ax) is held 
constant. Later we will refer to this as the constant-amplitude 
solution. 

In this study, we investigate the effect of altering the 
amplitude of the in-line or transverse oscillation either abruptly 
or gradually during the course of one computation, and compare 
this with the constant-amplitude (CA) solution. This was earlier 
investigated for a cylinder in orbital motion, [12]. 

IN-LINE CYLINDER OSCILLATION  
The non-dimensional cylinder displacement of the center of 

the cylinder is described by 
 

x0=Ax cos(2 π f t+Θ)   (6) 
 

where Ax is the amplitude of in-line oscillation, f is the 
frequency of cylinder oscillation, and Θ is the polar angle 
characterizing the initial condition for the cylinder motion. In 
equation (6) t is the non-dimensional time. 

This in-line cylinder oscillation can be considered as the 
limiting case of an orbiting cylinder when the amplitude of 
transverse oscillation Ay tends to zero. For an orbiting cylinder, 
when the TM and rms values of force coefficients (CL, CD, Cpb, 
tq) are plotted against Ay while Ax is kept constant, two patterns 
emerge. The TM of CL and tq shows two envelope curves, or 
state curves, which are almost parallel with each other, and 
between which the solution jumps. State curves for the TM of 
CD and Cpb and for all rms curves, on the other hand, intersect 
each other at Ay=0 [15]. For an orbiting cylinder jumps between 
the two state curves occur in all TM and rms curves. These 
jumps are associated with a sudden switch in the vortex 
structure [15]. There appear to be two attractors in this non-
linear system, and the solution is attracted to one or the other 
depending on the parameters and the initial condition.  

The two patterns found for orbital motion are reflected in 
the results for in-line oscillation. In the first, for the TM of CL 
and tq, double state curves are found. This is supported by the 
findings for orbital motion [15], where at the limiting case of 
Ay=0, two solutions can be found for the TM of lift and torque, 
i.e., two distinct points of the state curve exist. The second 
pattern, for the other six curves, appears in in-line oscillation as 
a single curve, which also fits in with the findings for orbital 
cylinder, where only one point is found at Ay=0. 

Constant-amplitude solutions 
For constant-amplitude (CA) solutions for in-line 

oscillation, two patterns are revealed when plotting the TM and 
rms values of force coefficients (CL, CD, Cpb, tq) are plotted 
against Ax. One is a double state curve, and the second appears 
to be a single curve.  

The first pattern can be observed when looking at the TM 
of lift and torque coefficients. Similarly to earlier findings for 
the flow past an orbiting cylinder ([15] and [21]), abrupt jumps 
can be seen at certain Ax values in these figures. Typical 
examples for the TM value of lift and torque coefficients are 
shown in Figs. 2 and 3 for Re=140, f=0.9St0, Θ=0º, St0=0.1821 
(St0 was taken from [22]).  

It seems that there are two possible solutions and the actual 
solution jumps between these two state curves. It can be seen 
that the location and number of jumps are the same in these two 
figures. The shapes of the state curves (only portions of the 
curves are realized in the figures) are quite different for the TM 
of lift and torque. However, it can be seen that the state curves 
look as if they were mirror images of each other. This guess can 
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be confirmed by investigating the effect of initial condition Θ 
on the solution. When repeating the computations for different 
Θ values the state curves remains unchanged but the starting 
point of computations (initial condition) leads to changes in the 
location and number of jumps. Using different Θ values, 
different parts of the state curves can be realized. Carrying out 
the computations for a few Θ values, the state curves can be 
reproduced nearly fully, as in the orbiting cylinder case ([15]). 

Pre- and post-jump analysis showed radical changes 
through the jump. Time histories of lift are shown in Fig. 4. The 
pre-jump curve (Ax=0.2887) and post-jump curve (Ax=0.29) are 
almost mirror images of each other, meaning a 180º phase shift 
between the two signals. A tiny change in the amplitude value is 
therefore capable of creating a drastic change in the curve. 
Vorticity contours are also almost mirror images, as in Fig. 5. 
This is also true for limit cycle curves (x0, CL) (not shown here). 

 
In-line oscillation; Re=140;  f=0.9St0=0.16389 
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Figure 2. Time-mean value of lift versus amplitude Ax 
 

In-line oscillation; Re=140;  f=0.9St0=0.16389 
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Figure 3. Time-mean value of torque versus amplitude Ax 
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Figure 4. Time history of lift for Ax=0.2887 (thin line) and 
Ax=0.29 (thick line) (Re=140, Ay=0, f=0.16389, Θ=0º) 
 
 
 

 
a) Pre-jump, Ax=0.2887 

 

 
b) Post-jump, Ax=0.29 

 
Figure 5. Vorticity contours before and after a jump for 

identical cylinder positions (Re=140, Ay=0, f=0.16389, Θ=0º) 
 
As examples of the second pattern, Figs. 6 and 7 show the 

dependence on the amplitude of oscillation Ax for the TM of 
drag and the rms value of base pressure, respectively. As can be 
seen, there are no jumps in these curves, which is in accordance 
with the findings in [15], where at zero Ay value there was just 
one solution for all rms values and for the TM values of drag 
and base pressure coefficients.  

The TM values of CL and tq are distinguished from the rest 
because, for a stationary cylinder and for a cylinder oscillating 
transversely to the main stream, the lift and torque are the only 
values which depend on whether the vortex is shed from the 
upper or lower side of the cylinder, meaning that they are T-
periodic. All rms values and the CD and Cpb are independent of 
the location of vortex shedding, so are T/2-periodic. It seems 
contradictory, however, that when the cylinder is oscillated in 
in-line direction or following an elliptical path [15] under lock-
in, any of the lift, drag, base pressure and torque coefficients 
has the same period, which is equal to the reciprocal value of 
cylinder oscillation frequency. It should be mentioned that when 
the effect of frequency ratio on the TM and rms of force 
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coefficients was investigated in [23], jumps were also found in 
the TM value of lift and torque only. 

 

In-line oscillation; Re=140;  f=0.9St0=0.16389
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Figure 6. Time-mean value of drag versus amplitude Ax 

 
Since no jumps occur in the curves for rms values, and TM 

values are not affected, it turns out that the selection of either 
the inertial or non-inertial system for the calculations of lift and 
drag yields no qualitative difference between the results in this 
case. 
 

In-line oscillation; Re=140;  f=0.9St0=0.16389
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Figure 7. Rms value of base pressure versus amplitude Ax 
 

Effect of initial condition Computations were repeated 
for Re=160, f=0.9St0, St0=0.1882 for Θ=0º, 135º and 270º. 
Results obtained are very similar in nature to those obtained for 
the case of Re=140 for Θ=0º shown above. Where two distinct 
state curves exist, they can be more fully realized by changing 
the initial condition, as shown in Fig. 8 for two different initial 

conditions. Where state curves coincide (not shown here), a 
change in initial condition produces no visible effect on TM or 
rms values of force coefficients.  

 

In-line oscillation; Re=160; f=0.9St0=0.16938
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Figure 8. Time-mean value of lift for Θ=0º and 135º versus 

amplitude Ax 

Altered-amplitude solutions 
In the cases shown above, each point in the figure was 

obtained while keeping the parameters (Re, Ax, f/St0, Θ) 
constant during the course of a single computation. To obtain 
the next point on the curve, amplitude was varied by changing 
Ax. The question arises as to what happens when the amplitude 
is changed during the course of the computation. This was 
investigated by altering Ax1 to Ax2 either abruptly at t1 or 
gradually from Ax1 to Ax2 between t1 and t2, to either a larger or 
smaller value, and continuing the computation long enough to 
obtain a periodic solution. Ax2 is chosen to cover the complete 
domain of in-line amplitude where lock-in prevails (e.g., 0.19-
0.39, for Re=160) in order to represent a curve.  

Abrupt alteration of amplitude  This is illustrated in Fig. 9 
and can also be expressed in mathematical terms as: 

 
      if 0 t < t1 then Ax=Ax1; if t1   t   tF then Ax=Ax2. 
 

t
tF

Ax

Ax2

Ax1

t1  
 

Figure 9. Layout of abrupt amplitude alteration  
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An example for the time history of lift is shown in Fig. 10. 
The amplitude of in-line oscillation is Ax=Ax1=0.25 until time t1, 
when the amplitude is abruptly changed to Ax2=0.36. This value 
is kept constant during the rest of the computation. While there 
is some transition, the solution becomes periodic soon after the 
alteration point t1. 
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Figure 10. Time history of lift with abrupt amplitude 
alteration (Re=160, f=0.9 St0=0.16938) 

 
The effect of in-line amplitude alteration is demonstrated in 

Figs. 11-13. Here, Fig. 11 shows the constant-amplitude 
solution (denoted by empty squares) compared with that when 
the amplitude is abruptly altered from Ax1=0.25 (Θ=0º in both 
cases). This value has been chosen to be directly before a jump 
in the CA solution (see also Fig. 8). Note that the solution at 
Ax1=0.25 lies on the lower state curve. When the amplitude is 
then suddenly altered to a different value, the altered-amplitude 
solution remains on the lower curve, rather than switching, as it 
does for the constant-amplitude case. 

In Fig. 12, however, Ax1 was chosen to be 0.251, which is 
just after the jump to the upper state curve. When the oscillation 
is abruptly altered from this value, all points belonging to the 
altered-amplitude solution remain in the same state curve, i.e., 
the upper curve. A completely different solution was obtained 
by using an Ax1 value that differed only slightly. This indicates 
that altering the amplitude of oscillation in the course of 
computation stabilizes the solution on one state curve, thus 
avoiding the jumping between states that is a feature of 
constant-amplitude solutions.  
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Figure 11. Constant and altered-amplitude solutions for 
time mean value of lift, Ax1=0.25 
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Figure 12. Constant and altered-amplitude solutions for 
time-mean value of lift, Ax1=0.251 

 
Figure 13 represents a case in which the CA solution 

exhibits only one curve, the results for the altered-amplitude 
solutions for both Ax1 values collapse on the same curve as the 
CA solution. This was found for all rms curves and the TM of 
drag and base pressure. 
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In-line oscillation; Re=160; f=0.9St0=0.16938
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Figure 13. Constant and altered-amplitude solutions for 
time mean of drag, Ax1=0.25 and Ax1=0.251 

 
Figure 14 provides some evidence to support the fact that 

the altered amplitude solution lies on the state curves found in 
the CA solution. In Fig. 14, three (CD, CL) limit cycle curves are 
plotted for Re=160, f=0.9St0=0.16938, at Ax=Ax2=0.26. The 
thick line shows the CA solution for Θ=0º, corresponding to one 
point on the upper state curve (see Fig. 11). The lower state 
curve can be reached at this point by, for example, setting Θ at 
135º (see Fig. 8), and the corresponding limit cycle is shown by 
the thin line in Fig. 14. When the altered-amplitude solution 
started from Ax1=0.25 at Θ=0º is plotted, it was found to 
coincide exactly with the limit cycle curve for the CA solution 
at Θ=135º. This proves that the altered-amplitude solution is 
indeed on a state curve. These limit cycle investigations were 
repeated for several points, yielding the same results. 
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Figure 14. Three (CD, CL) limit cycle curves at Ax=Ax2=0.26. 

Thick line: constant-amplitude (CA) at Θ=0º,  
two coinciding thin lines: CA at Θ=135º and 

altered amplitude from Ax1=0.25 at Θ=0º 

Figures 11 and 12 suggest that the full state curves can be 
reproduced not only by using CA solutions belonging to 
different initial conditions but also by using an altered-
amplitude solution. 

Gradual alteration of amplitude  It was found that 
abrupt alteration of the amplitude of oscillation resulted in the 
altered-amplitude solution remaining in the same state curve. 
The effect of a gradual alteration in Ax was then investigated 
using the layout shown in Fig. 15. 

 

 
 

Figure 15. Layout of gradual amplitude alteration 
 

The time history of lift is given in Fig. 16. Here, Re=140, 
Θ=0º, and f=0.9St0=0.16389. The amplitude at t1=250, 
Ax1=0.24 is changed linearly with time, reaching the value of 
Ax2=0.44 at t2=450, and is kept at this value until the final non-
dimensional time tF=1000. Past t2, after a short transition, the 
solution becomes periodic. 
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Figure 16. Time history of lift with gradual amplitude 
alteration (Re=140, f=0.9 St0=0.16389) 

 
For purposes of comparison, six different rates of change in 

amplitude were investigated, ranging from 0.001 to infinity 
(abrupt alteration), as shown in Table 1. The constant amplitude 
solution for Ax=0.44 was also computed. The time history of lift 
curves for the seven cases investigated are plotted in Fig. 17, 
between t=900 and 1000; the curves coincide perfectly, thus 
appearing as if they were one curve. 



 8 Copyright © 2009 by ASME 

Table 1. Main features of in-line amplitude alteration 
 for seven investigated cases 

 
 Ax1 Ax2 t1 t2 10 dAx/dt 
Constant 
amplitude  

      0.44   -   - 0 

450 0.01 
270 0.1 
252 1 
250.2 10 

 
Gradual  
alteration 
 

 
 
0.24 

 
 
0.44 

 
 
250 

250.02 100 
Abrupt 
alteration 

 
0.24 

 
0.44 
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Figure 17. Seven coinciding time history curves of lift 

 
The time history of drag also collapsed into a single curve 

for the seven cases mentioned, and thus it is no surprise that 
limit cycles (CD, CL) for the seven cases mentioned also 
collapsed on a single curve, as shown in Fig. 18. In conclusion, 
we can state that the rate of change in the amplitude has no 
effect on the converged periodic solution: the very slow and the 
abrupt amplitude alterations yielded the same results. 
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Figure 18. Seven coinciding (CD, CL) limit cycle curves 
 

TRANSVERSE CYLINDER OSCILLATION 
Constant and altered amplitude solutions were also 

investigated when the cylinder was oscillated transversely to the 
main stream. The non-dimensional cylinder displacement of the 
center of the cylinder is described by 

 
y0= - Ay sin(2 π f t+Θ)   (7) 

 
This transverse oscillation can be considered as the limiting 

case of an orbiting cylinder when the amplitude of in-line 
oscillation Ax tends to zero. For an orbiting cylinder, when the 
TM and rms values of force coefficients (CL, CD, Cpb, tq) are 
plotted against Ax while Ay is kept constant, no jumps were 
found in the vicinity of Ax=0 in any of the eight curves. An 
example is shown in Fig. 19. The findings for orbital motion are 
reflected in the results for transverse oscillation, as no jumps are 
found in any of the curves. 

 

Re=160; Ay=0.3; f=0.9St0=0.16938
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Figure 19. Orbital cylinder motion: TM of lift versus in-line 
oscillation amplitude 

 
Another important finding for the transversely oscillating 

cylinder is that the TM value of lift and torque are zero for all 
Ay oscillation amplitude values investigated. This was also 
found to be true at Ax=0 for the limiting case of an orbiting 
cylinder, as can be seen from Fig. 19 for lift. It seems that 
although instantaneously the symmetry is broken by the 
oscillation, over a vortex shedding period there is symmetry. 

Systematic computations were carried out for the 
transversely oscillating cylinder at constant-amplitude (CA) 
(Re=160, f=0.9St0=0.16938, Θ=0º) over the amplitude domain 
where lock-in condition prevailed. When the TM and rms 
values of force coefficients were plotted against transverse 
amplitude Ay, no jumps were detected in any of the coefficients. 
Similar results were obtained when the effect of frequency ratio 
on the force coefficients was investigated [23]. 

The abrupt alteration of transverse amplitude during the 
course of computation is performed in the same way as for in-
line oscillation (see Fig. 9). The amplitude of oscillation is Ay1 
when 0 t < t1 and at time t1 the amplitude is altered abruptly to 
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either a smaller or larger value of Ay2 and kept at that value for 
the rest of the computations. The solution is evaluated in the 
periodic solution domain. Ay2 is chosen to cover the complete 
domain of in-line amplitude where lock-in prevails (e.g., 0.08-
0.45, for Re=160) in order to represent a curve. 

As representatives of this type of solutions only two curves 
are shown here. Figures 20 and 21 show the rms values of lift 
and torque, respectively. In both figures not only the constant-
amplitude solutions (empty squares) but the altered amplitude 
solutions are also shown (filled triangles) for the same initial 
conditions of Θ=0º. As can be seen in these figures, the CA and 
altered-amplitude solutions coincide and naturally there are no 
jumps in these curves. Figure 20 also shows the rms value of the 
“fixed body” lift coefficient for the CA solution (Ay=cont_fb; 
empty diamonds). It can be seen in Fig. 20 that the rms value of 
CLfb increases with amplitude Ay, in contrast with CLrms, which 
contains the inertial force as well. The variation of CLfbrms with 
amplitude Ay shows the same trend as that found in [4] for 
Re=400. 
 

Transverse oscillation; Re=160; f=0.9St0=0.16938
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Figure 20. Constant and altered-amplitude solutions for 
rms of lift, Ay1=0.24 

 
Some studies have found switches in vortex structure for 

transversely oscillating cylinders, but usually above f/St0=1, for 
Re=185 and a non-dimensional amplitude of 0.2 (e.g., [5], [6], 
[7]). While [3] reported switches under this value, between 
f/St0=0.875 and 0.975, it was at a higher Reynolds number 
(Re=500). Our results support these earlier findings. 

Since the CA and abruptly-altered solutions agreed 
perfectly, we did not carry out any investigation of gradual 
alteration in the amplitude of the transversely oscillated 
cylinder. 

Transverse oscillation; Re=160; f=0.9St0=0.16938
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Figure 21. Constant and altered-amplitude solutions for 
rms of torque, Ay1=0.24 

 

CONCLUSIONS 
The effect of oscillation amplitude on the time-mean and 

rms values of force coefficients when plotted against amplitude 
was investigated for a cylinder oscillating either in transverse or 
in-line direction under lock-in conditions.  

For in-line oscillation, jumps were found in the TM values 
of lift and torque coefficients for a constant-amplitude solution. 
No jumps were detected for the TM of drag or base pressure, 
nor for the rms of any of the four coefficients. For the TM of lift 
and torque, when oscillation amplitude was altered abruptly the 
solution ceased to jump to the other state curve (i.e., ceased to 
switch vortex structure). Gradual alteration, regardless of the 
rate of alteration, yielded the same results as those for abrupt 
alteration: the solution remained on the same state curve 
thereafter. Since lift in in-line oscillation has a double solution, 
it would seem necessary for designers to take both solutions for 
lift force into account when considering transverse load. 
Amplitude alteration may have potential as a means of limiting 
the solution to one state curve, although it is difficult to predict 
which solution would be maintained.  

For transverse oscillation, no jumps were found in any TM 
or rms curves for any of the constant-amplitude solutions. 
Abrupt alteration had no effect, and gradual alteration was 
therefore not investigated. Interestingly, the TM value of lift 
and of torque was zero for all amplitudes investigated. 

Although one would expect that the symmetry would be 
broken for the transversely oscillating cylinder, still it seems 
that symmetry is maintained over a cycle. Rather surprisingly, it 
is the in-line oscillation case in which the sudden switches in 
vortex structure occur. This requires further investigation. 

In this study, the investigation was limited to two Reynolds 
numbers (Re=140 and 160) and one frequency ratio (f/St0=0.9). 
Investigations over a wider parameter range would be 
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beneficial. Computations are also planned for the lock-in 
domain at double the natural vortex shedding frequency fv0 for a 
cylinder oscillating in-line. 
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