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ABSTRACT  
A finite difference solution is presented for 2D 

low Reynolds number flow (Re=140 and 160) past a 
circular cylinder placed in a uniform flow. The 
cylinder is oscillated mechanically either in-line or 
transversely under lock-in conditions. Abrupt jumps 
between two state curves were found for a cylinder 
oscillated in in-line direction in the time-mean (TM) 
values of lift and torque coefficients when plotted 
against amplitude of oscillation. Pre- and post-jump 
analysis carried out included the investigation of 
phase angle differences, limit cycles and flow 
patterns confirming the existence of switches in the 
vortex structure at certain oscillation amplitude 
values. The TM of drag and base pressure 
coefficient and the rms values of all force 
coefficients were continuous functions of oscillation 
amplitude. When the cylinder was oscillated 
transversely to the main stream, however, no jumps 
were found in the corresponding curves. Here the 
TM of lift and torque were found to be zero (true 
also for a stationary cylinder) at all amplitude 
values. Even though the transverse oscillation 
breaks the symmetry of the flow, there appears to 
be symmetry over a period. 

Keywords: CFD, circular cylinder, in-line 
oscillation, lock-in, low Reynolds number flow, 
transverse oscillation  

NOMENCLATURE 
A [-] oscillation amplitude, non-
  dimensionalised by d 
CD [-] drag coefficient, 2D /(ρU2d) 
CL [-] lift coefficient, 2L / (ρU2d)  
D [-,N] dilation or divergence; drag force 
L [N] lift force 
Re [-] Reynolds number, Ud/ ν 
St [-] Strouhal number, fv d/U 
T [-] cycle period, non-dimensionalised 
  by d/U 

U [m/s] free stream velocity 
a0x, a0y [-] cylinder acceleration in x and y 

 directions, non-dimensionalised 
 by U2 /d 

d [m] cylinder diameter, length scale 
e [-] ellipticity, Ay/Ax 
fv [s-1] vortex shedding frequency 
p [-] pressure, non-dimensionalised by

 ρU2     
t [-] time, non-dimensionalised by d/U 
tq [-] torque coefficient, torque of shear 
  stress on cylinder surface, non-
  dimensionalised by ρU2 d2 
u,v [-] velocities in x, y directions, non-
  dimensionalised by U 
x,y [-] Cartesian co-ordinates, non-
  dimensionalised by d 
 t [-] time step, non-dimensionalised by 
  d/U 
Θ [-] polar angle characterizing initial 
  condition 
 [m2/s] kinematic viscosity 
Φ [-] phase angle 
ρ [kg/m3] fluid density 
 [-] vorticity, ω=∂v/∂x-∂u/∂y, non-

 dimensionalised by U/d 
Subscripts 
D  drag 
fb fixed body 
L lift 
mean time-mean value 
rms root-mean-square value 
v vortex 
x,y components in x and y directions 
0 for cylinder motion; for stationary cylinder 
 at same Re 

1. INTRODUCTION 
The flow around oscillating bluff bodies is an 

important problem from both academic and 
practical points of view. Examples are chimneys, 
silos, transmission lines, or offshore structures – 
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almost any structure exposed to wind or ocean 
currents. The near-wake structure of bluff bodies is 
very rich in complex phenomena in any case, but is 
especially so when the body is in motion. 
Transverse oscillation is most often studied, due to 
its relevance to real-life situations, while in-line 
oscillation is investigated by fewer researchers. As 
mentioned in [1] computational experiments benefit 
from the fact that many of the phenomena observed 
in flow-induced vibration are weakly dependent on 
the Reynolds number, and consequently they can be 
accurately simulated at relatively low Reynolds 
numbers, as are those in this study. 

When vortices are shed periodically from a 
bluff body, periodic transverse force acting on the 
body may lead to high amplitude transverse 
oscillation if the vortex shedding frequency is near 
to the natural frequency of the body and the 
damping is small. For a transversely oscillating 
cylinder, one very important experimental study is 
that of Williamson and Roshko [2], in which they 
produced their well-known map of vortex 
synchronization regions at Reynolds number 
Re=392. Forced oscillation studies such as those of 
Blackburn and Henderson [3] at Re=500 and 
Kaiktsis et al. [4] at Re=200 found switches in the 
vortex structure with transverse oscillation around 
and above the natural vortex shedding frequency 
(St0). Experimental and numerical investigations 
have been carried out at Re=185, identifying 
switches in vortex structure at around frequency 
ratio f/St0=1.1 [5-7]. 

High-Reynolds number vortex shedding may 
lead to in-line cylinder oscillation [8]; this led, for 
instance, to the shutdown of the Monju fast breeder 
nuclear power plant in 1995. For a cylinder 
oscillating in in-line direction a fundamental 
experimental study is [9], investigating the flow 
over a wide frequency ratio (0.44 to 3) and medium 
Reynolds number. Al-Mdallal et al. [10] carried out 
a numerical study at the same wide frequency range 
but at Re=200, finding switches in vortex structure 
only at and over f/St0=1. In another numerical study 
oscillation amplitude was varied at Re=1000 to 
identify vortex wake modes [8]. 

Sometimes the body moves in a combination of 
transverse and in-line oscillation, such as in tube 
bundles of heat exchangers. Baranyi [11], while 
investigating the effect of transverse oscillation 
amplitude of a cylinder on the force coefficients for 
a cylinder placed in a uniform stream and following 
an elliptical path (obtained by the superposition of 
in-line and transverse cylinder oscillations) at low 
Reynolds number, found switches in the vortex 
structure. When plotting the TM and rms of force 
coefficients against transverse oscillation amplitude 
Ay sudden jumps were found in all the TM and rms 
curves. The number and location of jumps were 
identical on every curve. There appear to be two 
states between which the solution switches. The two 

state curves can be reached in different ways such 
as using different ellipticity values [12] or changing 
the initial position of the cylinder [11]. The solution 
is attracted to one or the other of two attractors 
depending on the parameters. 

The state curves in [11] fell into two patterns. 
For the TM of CL and tq, two almost parallel state 
curves were found. The first point on the curve for 
the pure in-line (Ay=0) case corresponds to one of 
the two state curves. For the other values, the orbital 
curves originated from Ay=0 and diverged, and the 
initial point is naturally identical with the initial 
point for the pure in-line cases investigated here.  

A particular case of orbital motion is that in 
which the cylinder oscillates in-line, or in transverse 
direction only. The object of this study is to 
investigate the effect of oscillation amplitude on 
these special cases.  

2. COMPUTATIONAL METHOD 
A non-inertial system fixed to the cylinder is 

used to compute 2D low-Reynolds number 
unsteady flow around a circular cylinder placed in a 
uniform stream and forced to oscillate either in 
transverse or in-line direction. The non-dimensional 
Navier-Stokes equations for incompressible 
constant-property Newtonian fluid, the equation of 
continuity and the Poisson equation for pressure can 
be written as follows, Eqs. (1) to (4): 
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(4) 

 
In these equations, u and v are the x and y 

components of velocity, t is time, p is the pressure, 
Re is the Reynolds number based on cylinder 
diameter d, free stream velocity U, and kinematic 
viscosity ν, and D is the dilation. Although D is 
theoretically equal to 0 from Eq. (3), it is kept in 
Eq. (4) to avoid accumulation of numerical errors. 

On the cylinder surface, no-slip boundary 
condition is used for the velocity and a Neumann 
type boundary condition is used for the pressure. At 
the far region, potential flow is assumed. 

Boundary-fitted coordinates are used to impose 
the boundary conditions accurately. Using unique, 
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single-valued functions, the physical domain 
bounded by two concentric circles is mapped into a 
rectangular computational domain with equidistant 
spacing in both directions (see Figure 1). In the 
physical domain logarithmically spaced radial cells 
are used, providing a fine grid scale near the 
cylinder wall and a coarse grid in the far field. The 
transformed governing equations and boundary 
conditions are solved by finite difference method. 
Space derivatives are approximated by fourth order 
central differences, except for the convective terms 
for which a third order modified upwind scheme is 
used. The Poisson equation for pressure is solved by 
the successive over-relaxation (SOR) method. The 
Navier-Stokes equations are integrated explicitly 
and continuity is satisfied at every time step. For 
further details see [11, 13]. 

The 2D code developed by the first author has 
been extensively tested against experimental and 
computational results for a stationary cylinder (e.g. 
[14], see [11]) and computational results for 
cylinders oscillating in transverse or in in-line 
directions or following a circular path, including [6, 
10, 15], with good agreement being found, [11]. In 
this study the dimensionless time step is 0.0005, the 
number of grid points is 361x236, and the physical 
domain is characterised by R2 /R1=60. 

 

 
Figure 1. Physical and computational domains 

3. COMPUTATIONAL SETUP 
In this study we investigated the behaviour of 

flow past a cylinder placed in a uniform stream with 
its axis perpendicular to the velocity vector of the 
main flow. The cylinder is oscillated mechanically 
in either in-line or transverse direction in relation to 
the uniform stream.  

The time-history of force coefficients (lift, drag, 
base pressure and torque), pressure and velocity 
field are computed. From these data, time-mean 
(TM) and root-mean-square (rms) values of force 
coefficients, streamlines, and vorticity contours can 
be obtained. 

Throughout this paper the lift and drag 
coefficients used contain the inertial forces 
originated from the non-inertial system fixed to the 
accelerating cylinder. Coefficients obtained by 
removing the inertial forces are often termed ‘fixed 
body’ coefficients [6]. The relationship between the 
two sets of coefficients can be written as 

x0DfbD 2
aCC π

  (5) 

 

,aCC y0LfbL 2
π

  (6) 

 
where subscript ‘fb’ refers to the fixed body 
(understood in an inertial system fixed to the 
stationary cylinder), [16]. Since the inertial terms 
are T-periodic functions, their time-mean values 
vanish, resulting in identical TM values for lift and 
drag in the inertial and non-inertial systems. 
Naturally the rms values of CL and CD will be 
somewhat different in the two systems (but it does 
not affect the curve being continuous). 

For one computation, all parameters are fixed: 
Re, frequency ratio, amplitude of oscillation, and 
initial condition. The computation is then repeated 
at a different amplitude value, and this is repeated 
until the amplitude domain over which lock-in 
holds has been covered. Lock-in, or the 
synchronisation between vortex shedding and 
cylinder motion, produces a periodic solution for 
each of the force coefficients.  

For both in-line and transverse oscillation, 
computations were performed at two Reynolds 
numbers, Re=140 and 160, holding the frequency 
ratio f/St0 constant at 0.9, where St0 is the non-
dimensional vortex shedding frequency from a 
stationary cylinder at the given Reynolds number. 
Also, the polar angle Θ=0º for initial condition (the 
cylinder position when starting oscillation: the 
rightmost position for in-line, the lowest position 
for transverse oscillation) was held constant. In 
addition, for in-line oscillation at Re=160, two 
further frequency ratios were investigated at Θ=0º, 
f/St0 =0.8 and 0.85. For f/St0 =0.9, two further initial 
conditions were investigated. 

4. IN-LINE CYLINDER OSCILLATION 
The non-dimensional displacement of the 

centre of the cylinder is described by 
 

x0=Ax cos(2 π f t+Θ)  (7) 
 

where Ax is the amplitude of in-line oscillation, f is 
the frequency of cylinder oscillation, t is the non-
dimensional time and Θ is the polar angle 
characterizing the initial condition for the cylinder 
motion. 

4.1. Two patterns 
From the TM and rms values of force 

coefficients plotted against oscillation amplitude, 
two patterns emerge. One consists of two envelope 
curves, or state curves, between which the solution 
jumps (see Figures 2 and 3). This is the pattern 
found for all TM and rms values in the case of an 
orbiting cylinder, i.e., transverse and in-line motion 
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combined [11]. However, for pure in-line 
oscillation this was true only for the TM of lift CL 
and torque tq. Here, for the other 6 values – the TM 
of drag and base pressure and all rms values – a 
second pattern was identified in which only one 
curve is found with no sudden jumps in it (see 
Figure 4). It should be mentioned that for in-line 
cylinder oscillation lock-in is conventionally 
considered to be in the vicinity of double the vortex 
shedding frequency [17]. In this study subharmonic 
lock-in is considered, near the vortex shedding 
frequency. 

It should be noted that the curves for orbital 
motion, while all displaying jumps, also fell into 
two patterns, [11]. For the TM of CL and tq, two 
almost parallel state curves were found when 
plotted against the ellipticity of the orbital path 
(e=Ay/Ax). The first point on the curve for the pure 
in-line (Ay=0) case corresponds to one of the two 
state curves. For the other values, the orbital curves 
began from one point and diverged, and the initial 
point is naturally identical with the initial point for 
the pure in-line cases investigated here.  

Lift and torque can be distinguished from the 
other force coefficients, since they are the only two 
coefficients for which the location of vortex 
shedding influences the sign (positive or negative). 
For these two coefficients, one shedding period 
includes the shedding of two vortices, one from 
above the cylinder and one from below (period T), 
whereas with drag and base pressure, one period 
includes the shedding of one vortex (period T/2) 
and its location has no effect. The rms values are 
characteristic to the oscillation amplitude of a signal 
and hence they are independent of the location of 
the vortex shedding in all cases. 

Figures 2 to 4 are for Re=160, f/St0=0.8, Ay=0, 
Θ=0º, where Ax is varied across the lock-in domain. 
As can be seen, Figs. 2 and 3 represent the pattern 
with two state curves. The number and location of 
jumps is the same for Fig. 2 and Fig. 3. In each 
case, the two state curves are mirror images of each 
other with the axis at CL=0. This can be more 
clearly demonstrated by repeating computations at 
different initial conditions in order to fill in the gaps 
in each state curve. Varying Θ triggers jumps to the 
other state curve at different locations; the solution 
of this non-linear system is highly sensitive to the 
initial conditions [18]. An example for two initial 
conditions (Θ=0º and 135º) is shown in Figure 5, 
for the TM of CL at f/St0 =0.9. The state curves are 
drawn almost completely with just two initial 
conditions; the use of further Θ values would allow 
most of the gaps to be filled. 

Figure 4 is typical of the second pattern, in 
which no jumps are found. Curves of this sort were 
found for the TM values of Cpb and all rms values, 
as well as for the TM of drag. 

Similar results were obtained when the effect of 
frequency ratio as an independent variable for 

values below f/St0=1 on the force coefficients was 
investigated, [19]. Only the TM of lift and torque 
curves contained two different state curves and 
jumps between them. 

 
In-line oscillation; Re=160;  f=0.8St0=0.15056
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Figure 2. Time-mean value of lift versus 
amplitude Ax 

In-line oscillation; Re=160;  f=0.8St0=0.15056
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Figure 3. Time-mean value of torque versus 
amplitude Ax 
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Figure 4. Time-mean value of drag versus 
amplitude Ax 
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In-line oscillation; Re=160; f=0.9St0=0.16938
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Figure 5. Time-mean value of lift for Θ=0º and 
135º versus amplitude Ax 

4.2. Effect of frequency ratio 
As mentioned earlier, computations were 

carried out for Re=160 at the three frequency ratios 
f/St0=0.8, 0.85, 0.9 at the initial condition Θ=0º. 
Figure 6 shows the TM of lift for the three cases. 
While the lock-in domain shifts, the number and 
location of jumps vary, and the shape of the curves 
differs somewhat, it is true in each case that the two 
state curves are mirror images of each other with 
respect to CL=0. The TM of torque (not shown here) 
displays similar trends, with the number and 
location of jumps matching those shown in Fig. 6. 
For the remaining six cases, naturally no jump 
occurs, but shifts in the curves occur with varying 
frequency ratios. Due to lack of space, just the rms 
of lift is shown, in Figure 7. 

 
In-line oscillation; Re=160;  St0=0.1882
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Figure 6. Time-mean value of lift for three 
frequency ratios versus amplitude Ax 

4.3. Pre- and post-jump investigation 
Several techniques are used to investigate flow 

features and whether or how they differ before and 
after a jump. The particular jump investigated here 
can be seen in Fig. 5, between Ax=0.1997 (let this 
be denoted by Ax1) and 0.2 (Ax2), i.e., the first jump 

to occur in the curve for Θ=0º. Here, Re=160 and 
f=0.9St0=0.16938. 

 
In-line oscillation; Re=160;  St0=0.1882
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Figure 7. Rms value of lift for three frequency 
ratios versus amplitude Ax 

Time histories of lift and drag are shown in 
Figures 8 and 9, respectively. In Fig. 8 the thin line 
shows the time history of lift belonging to 
amplitude Ax1, while the thick line composed of plus 
signs belongs to Ax2. The two curves are almost 
mirror images of each other, meaning a Φ=180º 
phase shift between the two signals. This was 
confirmed by determining the values of phase angle 
differences between cylinder displacement (not 
shown in the figure) and lift. A tiny change in the 
amplitude value is therefore capable of creating a 
drastic change in the curve. 

For drag, however, the curves for Ax1 and Ax2 
coincide, appearing as if they were one curve (Fig. 
9). This shows that drag is not sensitive to the 
change in amplitude across the critical amplitude 
value belonging to the jump.  
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Figure 8. Time history of lift for two Ax values 
(thin line: Ax=0.1997; thick line: Ax=0.2); 
(Re=160, f=0.9St0, Θ=0º)  

Limit cycles (belonging to periodic solutions) 
were plotted for (x0, CL), (x0, CD) and (CD, CL). 
Only the last is shown here, in Figure 10. The 
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dotted line represents the limit cycle for Ax1 and the 
solid line is for Ax2. The arrows show the direction 
of orientation. Once again, we can see that a very 
small change in the amplitude results in a radical 
change, as the limit cycle curves are not only mirror 
images of each other, but are also opposite in 
orientation. This finding is similar to that for an 
orbiting cylinder [11]. Of the other two limit cycles, 
(x0, CL) showed mirror images for the pre- and post-
jump amplitudes, while the two curves (x0, CD) 
coincided. 
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Figure 9. Time history of drag for two Ax values 
(dotted line: Ax=0.1997; solid line: Ax=0.2); 
(Re=160, f=0.9St0, Θ=0º) 
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Figure 10. Limit cycle (CD, CL) for two Ax values 
(dotted line: Ax=0.1997; solid line: Ax=0.2); 
(Re=160, f=0.9St0, Θ=0º) 

Vorticity contours are shown in Figure 11. 
Contours of positive (black) and negative (grey) 
vorticity ω are shown for pre-jump (a) and post-
jump (b) amplitudes. Contours shown belong to the 
uppermost cylinder position. As seen in the figure, 
the flow patterns are essentially mirror images of 
each other. Note that the vortex shedding pattern is 
mode P, in which one pair of vortices is shed in a 
complete cycle [2]. 

All results of the pre- and post-jump 
investigation support the idea that there are two 
solutions of this non-linear system. Whether the 
actual solution is attracted to one solution, or 

attractor, or to the other depends on the parameters. 
It is clear that a tiny change in a parameter – 
amplitude, in this case – can be enough to lead to a 
switch in attractors. The boundary between the 
basins of attraction seems to be quite distinct. 

 

 
a) Ax1=0.1997 

 

 
b) Ax2=0.2 

Figure 11. Vorticity contours for a cylinder 
oscillating in-line at uppermost cylinder position 
(Re=160, f=0.9St0, Θ=0º) 

In-line oscillation; Re=160; f=0.9St0=0.16938
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Figure 12. Phase angle between lift and cylinder 
displacement vs. Ax (Re=160, f=0.9St0, Θ=0º) 

5. TRANSVERSE CYLINDER 
OSCILLATION 

Flow past a cylinder was also investigated 
when the cylinder was oscillated transversely to the 
main stream. The non-dimensional displacement of 
the centre of the cylinder is described by 

 
y0= - Ay sin(2 π f t+Θ) (8) 

 
Systematic computations were carried out for a 

transversely oscillated cylinder for two sets of 
parameters, (Re=140; f=0.9St0=0.16389; Θ=0˚) and 
(Re=160; f=0.9St0=0.16938; Θ=0˚) over the 
amplitude domain where lock-in condition 
prevailed. Plotting TM and rms values against Ay 
gave only continuous curves; no jumps were found 
at all in any of the force coefficients.  

Another important finding for the transversely 
oscillating cylinder is that the TM value of lift and 
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torque are zero for all oscillation amplitude values 
investigated: 

 
CLmean=tqmean= 0 (9) 

 
It seems that although instantaneously the 
symmetry is broken by the transverse oscillation, 
over a vortex shedding period there is symmetry. 

Figures 13 and 14 show two examples for 
transversely oscillating cylinders for the two 
Reynolds numbers investigated. Fig. 13 shows the 
rms of lift, Fig. 14 the TM of drag against 
oscillation amplitude Ay. No jumps can be detected 
in the curves and the relatively small change in Re 
does not have a dramatic effect on the curves, the 
effect being smaller for the TM of drag (Fig. 14). 
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Figure 13. Rms value of lift versus amplitude Ay 
for Re=140 and 160 

Transverse oscillation;  f=0.9St0
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Figure 14. Time-mean value of drag versus 
amplitude Ay for Re=140 and 160 

Figure 15 shows the vorticity contours for a 
transversely oscillating cylinder. The flow structure 
is 2S, i.e., two single vortices are shed in one cycle 
[2], giving the well-known Kármán vortex street. 

Obtained results for transversely oscillating 
cylinder do not contradict published results. 

Researchers have investigated the effect of 
frequency ratio on the flow. In [3] at Re=500 and 
Ay=0.25 switches were found in the vortex structure 
between the frequency ratios of 0.875 and 0.975. 
Other studies never found switches in vortex 
structure below frequency ratio 1, e.g. in [4] the 
critical f/St0 is  1 at Re=200, and in [5-7] it is 
between 1.1-1.12 at Re=185. 

Similar results were obtained when the effect of 
frequency ratio as an independent variable for 
values below f/St0=1 on the force coefficients was 
investigated for a transversely oscillated cylinder, 
[19]. None of the TM and rms of force coefficients 
contained jumps. 

 

 

Figure 15. Vorticity contours for a cylinder 
oscillating transversely (Re=160; Ay=0.2; 
f=0.9St0=0.16938) 

6. CONCLUSIONS 
The effect of oscillation amplitude on the time-

mean and rms values of force coefficients when 
plotted against amplitude was investigated for a 
cylinder oscillating either in transverse or in-line 
direction under lock-in condition. The investigated 
cases included Reynolds numbers Re=140 and 160, 
frequency ratios of f/St0=0.8, 0.85 and 0.9, and three 
different initial conditions for the cylinder motion. 

For in-line cylinder oscillation, jumps were 
found in the TM values of lift and torque 
coefficients when plotted against oscillation 
amplitude. There are two state curves and the 
solution jumps between them. The number and 
location of jumps are identical for the two TM 
curves. State curves are mirror images of each 
others. The state curves can be fully realised by 
using different initial conditions.  

Pre- and post-jump investigations (time history, 
limit cycle, vorticity contours) confirmed switches 
in the vortex structure. Time history of lift and 
vorticity contours are almost mirror images of each 
other for pre- and post-jump amplitude values. The 
phase angle difference between cylinder 
displacement and lift undergoes a 180º switch 
through a jump. Vorticity contours show that a pair 
of vortices (P, see [2]) is shed in each cycle.  

For lift and torque coefficients, one shedding 
period includes the shedding of two vortices, one 
from above the cylinder and one from below 
(period T), whereas with drag and base pressure, 
one period includes the shedding of one vortex 
(period T/2) and its location has no effect. Only lift 
and torque depend on where the vortex is shed from 
and can thus have either positive or negative values. 
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The rms values are characteristic to the oscillation 
amplitude of a signal and are hence independent of 
the location of the vortex shedding. No jumps were 
detected for the TM of drag or base pressure, or for 
the rms of any of the four coefficients. 

For transverse cylinder oscillation, no jumps 
were found in any TM or rms curves for the set of 
parameters investigated. The TM value of lift and of 
torque was zero (as for a stationary cylinder) for all 
amplitudes investigated. Vorticity contour plots 
reveal 2S shedding (two single vortices are shed in 
a cycle), or the Kármán vortex street [2].  

Although one would expect that the symmetry 
would be broken for the transversely oscillating 
cylinder, still it seems that symmetry is maintained 
over a cycle. Somewhat surprisingly, it is the in-line 
oscillation case in which the sudden switches in 
vortex structure occur. This requires further 
investigation. Additionally, investigations over a 
wider parameter range are planned. 
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