A stability theorem for lines in Galois planes of prime order

Tamás Szőnyi and Zsuzsa Weiner *

July 18, 2014

Abstract

In this paper we prove that a point set of size less than $\frac{3}{2}(q+1)$ in $PG(2, q)$, q prime, that has relatively few 0-secants must contain many collinear points. More precise bounds can be found in Theorem 2.4.

1 Introduction

A blocking set B of $PG(2, q)$ is a set of points intersecting each line in at least one point. Lines intersecting B in exactly one point are called *tangents*. A point is essential to B, if through it there passes at least one tangent of B. The blocking set is *minimal* if all of its points are essential. The smallest examples are lines and a blocking set that does not contain a line is called non-trivial. For a survey on blocking sets, the reader is referred to [10]. When q is a prime, Blokhuis [1] proved an old conjecture by Di Paola.

Result 1.1 (Blokhuis [1]) A non-trivial blocking set in $PG(2, q)$, q prime, has at least $\frac{3}{2}(q+1)$ points.

If we delete a few say, ε points from a line, we get a point set intersecting almost all but εq lines. After deleting ε points from a blocking set of size 3 $\frac{3}{2}(q+1)$ (for example, from a projective triangle, see Definition 3.11 in [10])

[∗]The authors were partially supported by OTKA NK 67867 and K 81310 grants and by the ERC Grant DISCRETECONT.

we get at least $\varepsilon \frac{(q-1)}{2}$ 0-secant lines. The situation is similar for blocking sets of size at most 2q; this follows easily from the result of Blokhuis and Brouwer, see Result 2.1. In general, we cannot expect that the number of points that block the 0-secants is the number of 0-secants divided by constant times q. To illustrate this, let us consider a blocking set which is the union of parabolas for $q \equiv 1 \pmod{4}$ (see Section 3.3 in [10]). Let us delete ε parabolas completely from this blocking set. Since through each point of a parabola, there passes one tangent line, we will get εq 0-secants. These lines cannot be blocked by roughly ε points, since through a point there are at most two tangent lines of a parabola, so one point can block at most 2ε 0-secants. This means, that we would need at least $q/2$ points to block the 0-secants. We will be interested in the question, when the number of points needed to block the 0-secants is roughly the number of 0-secants divided by q. If we add these points to our original set, we get a blocking set. Hence we look for a result guaranteeing that a point set having at most $c \in q$ 0-secants must contain a blocking set minus roughly ε points. Of course, the situation is also interesting when we have less than q skew lines. In this case we wish to prove that the 0-secants pass through a point. For such a result, formulated in the dual setting, see Proposition 1.5 in [3].

The following old result of Erdős and Lovász can be considered as a stability theorem for lines.

Result 1.2 (Erdős and Lovász, [7]) A point set of size q in a projective plane of order q, with less than $\sqrt{q+1}(q+1-\sqrt{q+1})$ 0-secants always contains at least $q+1-\sqrt{q+1}$ points from a line.

Note that the proof of the theorem of Erdős and Lovász can be extended to sets of size less than $q + \sqrt{q} + 1$ with a weaker bound on the number of 0-secants, that is roughly $(q - \sqrt{q})(\sqrt{q} - k)$. The reason that one needs the bound $q + \sqrt{q} + 1$ on the size of the set is Bruen's theorem, see [5, 6], namely that the size of a non-trivial minimal blocking set is at least $q + \sqrt{q} + 1$.

The main result of the present short note is Theorem 2.4, which can be regarded as an analogue of the Erdős and Lovász theorem (or rather its generalization to $q + k$) for Galois planes of prime order.

2 Results

In this section we will improve on the stability theorem of Erdős and Lovász, when the plane is $PG(2, q)$, q prime. We are going to show that if B is a point set with $|B| < \frac{3}{2}$ $\frac{3}{2}(q+1)$, having at most $\delta = \varepsilon(q+1)$ 0-secants, then it contains a huge part of a line. Even though the bound in our main result is not sharp, ε can even be cq, where c is a small constant depending on $|B|$, if |B| is not very close to $\frac{3}{2}(q+1)$.

The following result, which is a consequence of the affine blocking set theorem by Jamison [8], and Brouwer, Schrijver [4], will also be used in our proof.

Result 2.1 (Blokhuis and Brouwer, [2]) Let B be a blocking set in $PG(2, q)$, $|B| = 2q - s$ and let P be an essential point of B. Then there are at least $s + 1$ tangents through P.

Lemma 2.2 Let B be a point set in $PG(2,q)$, $|B| < \frac{3}{2}(q+1)$. Assume that μ there are δ 0-secants to B. Then the total number τ of tangents of B is at least $(q+1)(2q-|B|-\frac{2\delta}{q+1})$. Hence there is a point P of B so that there are at least $\frac{2}{3}(2q - |B| - \frac{2\delta}{q+1})$ tangents through P.

PROOF. Take a 0-secant ℓ of B . If there is no such a line then B is a blocking set and (by Result 2.1) through any essential point of B there pass at least 1 $\frac{1}{2}(q+1) - 1$ tangents. Let the points of ℓ be denoted by P_1, \ldots, P_{q+1} and let ν_i be the number of 0-secants, τ_i be the number of tangents through P_i . Looking at B from P_i one gets $q - (\nu_i + \tau_i) \leq (|B| - \tau_i)/2$, which implies that $2\nu_i + \tau_i \geq 2q - |B|$. Summing over all i we get that $(q+1)(2q-|B|) \leq 2\delta + \tau$, from which $\tau \ge (q+1)(2q-|B|-\frac{2\delta}{q+1})+1$ follows. On the other hand, if we add up the number of tangents at the points of B, we get τ , so there is a point which has at least the average number of tangents.

The following lemma is an easy folklore result in algebraic geometry.

Lemma 2.3 Let S be a set of points in $AG(2, q)$. Then there exists a nonzero two-variable polynomial of degree at most $\sqrt{2|S|} - 1$, so that it vanishes at every point of S.

PROOF. Each point $(u, v) \in S$, gives a linear equation for the coefficients of the desired polynomial p. Hence we have a homogeneous system of $|S|$ such

linear equations. When $\deg(p) \geq \sqrt{2|S|} - 1$, then the number of coefficients is larger than $|S|$, so we have a non-trivial solution.

The proof of our main theorem is motivated by [1] and [9].

Theorem 2.4 Let B be a set of points of $PG(2,q)$, $q = p$ prime, with at most $\frac{3}{2}(q+1) - \beta$ points. Suppose that the number δ of 0-secants is less than $\left(\frac{2}{3}\right)$ $\frac{2}{3}(\beta+1)^2/2$. Then there is a line that contains at least $q-\frac{2\delta}{q+1}$ points.

PROOF. Choose the coordinate system in such a way that (∞) is a point of B with at least $\frac{2}{3}(2q - |B| - \frac{2\delta}{q+1})$ tangents, one of them be the line at infinity. Let $U = \{(a_i, b_i) : i = 1, \ldots, |B| - 1\}$ be the affine part of B. The 0-secants of B can be written as $Y = m_j X + c_j$, $j = 1, ..., \delta$. Consider the polynomial $a(x, y)$ of the smallest degree Δ , which vanishes at the points $(c_j, m_j), j = 1, \ldots, \delta$. By Lemma 2.3, $\Delta \leq \sqrt{2\delta} - 1$. Now write up the polynomial

$$
H(X,Y) = \left(\prod (X + a_i Y - b_i)\right) a(X,Y).
$$

The first product is the Rédei polynomial of U . This polynomial H vanishes for every (x, y) , hence it can be written as

$$
H(X,Y) = (X^{q} - X)f(X,Y) + (Y^{q} - Y)g(X,Y),
$$

where $\deg(f), \deg(g) \leq |B| - 1 - q + \Delta$. As in Blokhuis [1], consider the terms of highest degree of this equation and substitute $Y = 1$ in it. Then we get a polynomial equation

$$
h^*(X) = \left(\prod(X + a_i)\right) a^*(X) = X^q f^*(X) + g^*(X),
$$

where $X^q \nmid g^*(X)$. We may suppose that f^* and g^* are coprime, since otherwise we could divide by their greatest common divisor and obtain an equation of the same type with smaller degrees. Denote by s the maximum of the degrees of f^* and g^* after this division. The roots of $h^*(X)$ in $GF(q)$ are also roots of $Xf^*(X) + g^*(X)$. The multiple roots of $h^*(X)$ in $GF(q)$ are also roots of $X^q(f^*(X))' + (g^*(X))'$. The roots not in $GF(q)$ are roots of $a^*(x)$. Hence

$$
h^*(X)|(Xf^*(X) + g^*(X))((f^*(X))'g^*(X) - (g^*(X))'f^*(X))a^*(X).
$$
 (1)

If the polynomial on the right hand side of (1) is non-zero, then comparing the degrees gives $q + s \leq s + 1 + 2s - 2 + \Delta$, that is $s \geq (q + 1 - \Delta)/2$. Since $s \leq |B| - 1 - q + \Delta$, then $|B| \geq \frac{3}{2}(q+1) - \frac{3}{2}\Delta$, which is a contradiction.

The third term on the right hand side of (1) cannot be the zero polynomial, since the terms of highest degree of $a(X, Y)$ form a homogeneous polynomial and so $(Y - 1)$ cannot be a factor of it.

If the first term on the right hand side of (1) is the zero polynomial then $h^*(X)$ is divisible by $(X^q - X)$. Since $a^*(X)$ has degree at most Δ , the remaining $q - \Delta$ factors of $(X^q - X)$ must arise from the product $\prod (X + a_i)$. Geometrically this would imply that through the point (∞) there pass at most $\Delta + 1$ tangents, which contradicts the choice of (∞) . (Here we use that $\Delta + 1 < \frac{2}{3}$ $\frac{2}{3}(2q - |B| - \frac{2\delta}{q+1}).$

If the second term is zero, then, since f^* and g^* are coprime, $f^*(X)|(f^*(X))'$ and similarly $g^*(X)| (g^*(X))'$. Hence $(f^*(X))' = (g^*(X))' = 0$. For $q = p$ prime, it implies that either $|B| \geq 2q + 1 - \Delta$ (which is not possible by our upper bound on [B]) or $aX^q + b$ divides $h^*(X)$. Since $aX^q + b = (aX + b)^q$ and at most Δ of these factors can come from $a^*(X)$, then there is a line ℓ (through (∞)) that contains at least $q + 1 - \Delta$ points of B. Finally, assume that $|\ell \cap B| = q + 1 - k$, $k \leq \Delta$. Then the 0-secants pass through the k missing points of ℓ . Since $|B| \leq \frac{3}{2}q + 1 - \frac{3}{2}\Delta$ then the number of 0-secants is at least $k(q - (\frac{3}{2})$ $(\frac{3}{2}q+1-\frac{3}{2}\Delta-q-1+k)\bar{)}\leq \frac{1}{2}$ $\frac{1}{2}k(q+1)$. Hence $k \leq \frac{2\delta}{q+1}$.

Let us see now some constructions for sets with few 0-secants not containing a very large collinear subset. Deleting ε points from a line or a projective triangle yields εq or at least $\varepsilon \frac{q-1}{2}$, 0-secants, respectively. In the former case the number of deleted points is $\frac{\delta}{q}$, in the latter case it is roughly $\frac{2\delta}{q}$. The constructions below can be regarded as generalizations of the Rédei-Megyesi construction for blocking sets (see Theorem 3.10 in [10]). In the constructions we use standard notation: affine points are denoted as (u, v) , ideal point as (m) or (∞) .

Construction 2.5 Assume that $3|q-1$ and let H be a subgroup of $GF(q)^*$, $|H| = \frac{q-1}{3}$. Furthermore, let B be the set of size $q+2$, where

 $B = \{(0, h)| h \in H\} \cup \{(h, 0)| h \in H\} \cup \{(h)| h \in H\} \cup \{(0, 0)\} \cup (0) \cup (\infty)\}.$

Then the number of 0-secants to B is $\frac{2}{9}(q-1)^2$. Add $k < \frac{q+17}{6}$ ideal points not in B to obtain B'. Then the total number of 0-secants to B' is $(\frac{2}{3})$ $rac{2}{3}(q 1) - k \frac{1}{3}$ $rac{1}{3}(q-1).$

The sets constructed above have less than $(\frac{3}{2}(q+1) - |B'|) \frac{q-1}{2}$ 0-secants (this is what we would get for a set contained in a projective triangle) and are not contained in a projective triangle.

In general, one could choose a multiplicative subgroup H (of size $\frac{q-1}{t}$) from the line $Y = 0$, s cosets of H from the line $X = 0$, and the same s cosets from the ideal line. For example, when $t = 2s$, $|B'| = q + 2 + \frac{q-1}{2s}$ and the number of 0-secants is roughly $\frac{q-1}{2}(\frac{q-1}{2}-\frac{q-1}{2s})$, which is the same as one could get by deleting $(\frac{q-1}{2} - \frac{q-1}{2s})$ appropriate points from a projective triangle. For $t > 2$ the cosets can be chosen in such a way that the set is not contained in a projective triangle.

Construction 2.6 Let A and B be less than p and let B^* be a the following set.

$$
B^* = \{(1, a)|0 \le a \le A\} \cup \{(0, -b)|0 \le b \le B\} \cup \{(\infty)\} \cup \{(c)|0 \le c \le A+B\}.
$$

Then B^* has $2(A + B) + 4$ points and the total number of 0-secants to B^* is $(q-1-A-B)(q-A-B-2).$

One can modify this construction and delete some points (c) $(0 \le c \le$ $(A + B)$ which are on many tangents of B^* . To be more concrete choose α and β , so that $\alpha \leq A + B - \beta$. Let

$$
B^{**} = \{ (B^* \cap AG(2, p)) \cup (\infty) \cup \{ (c) | \alpha \le c \le A + B - \beta \}.
$$

Then $|B^{**}| = 2(A + B) + 4 - \alpha - \beta$ and there are $(q - 1 - A - B)(q - \alpha)$ $A-B-2)+\frac{\alpha}{2}(2q+\alpha-3-2(A+B))+\frac{\beta}{2}(2q+\beta-3-2(A+B))$ 0-secants.

For $A = B = \frac{p}{4}$ $\frac{p}{4}$, B^* has size $p+4$ and the number of 0-secants is roughly p^2 $\frac{b^2}{4}$, which is the number of 0-secants of the a point set obtained by keeping these many points of a projective triangle, but this set obviously cannot be embedded in a projective triangle. One can also combine Constructions 2.6 and 2.5 by replacing arithmetic by geometric progressions. For example, if $t = 5$, H is a multiplicative subgroup and ω generates G/H then

$$
B^{***} = \{(0, h)|h \in H \cup \omega H\} \cup \{(h, 0)|h \in H \cup \omega^{-1}H\} \cup \{(h)|h \in H \cup \omega H \cup \omega^{2}H\} \cup \{(0, 0)\} \cup (0) \cup (\infty)\}
$$

has $3 + \frac{7}{5}(q-1)$ points and $\delta = \frac{2}{25}(q-1)^2$ 0-secants. By deleting the points (h), $h \in \omega^2 H$ we get a set of size $\overline{3} + \frac{6}{5}(q-1)$ points which has $\delta = \frac{4}{25}(q-1)^2$.

All the examples given above can be obtained from a blocking set contained in the union of three lines by deleting quite a few points. In some cases they have less 0-secants than a set of the same size contained in the projective triangle. The examples also show that we cannot expect $\frac{\delta}{q+1}$ missing points from a line in Theorem 2.4.

Remark 2.7 1) In the case corresponding to the Erdős and Lovász theorem, that is when $|B| = q$, we can allow roughly $\frac{q^2}{18}$ 0-secants to guarantee a collinear subset of size at least $\frac{8q}{9}$ in B. The bound $\frac{q^2}{18}$ can most likely be improved but we do need an upper bound of the form cq^2 , $(c \leq \frac{1}{2})$ $(\frac{1}{2})$ on the number of 0-secants as shown by the constructions above.

2) If a set B has size $|B| = cq$ for some $c < 1$ then the number of 0secants is at least $(1 - c)q(q + 1)$. This can be seen by counting 0-secants through points of a fixed 0-secant. Hence our theorem gives a non-trivial bound only if $(1 - c)q(q + 1) < (\frac{2}{3})$ $(\frac{2}{3}(\beta+1))^2/2$, where $\beta = (\frac{3}{2} - c)q$. Roughly speaking, this gives that for a fixed $c < 1$, the value of δ has to be smaller than $(1-\frac{2}{3})$ $(\frac{2}{3}c)^2q^2/2$, which gives the equation $4c^2+6c-9=0$ for the critical value of c. The positive root of the equation is $\frac{-3+\sqrt{45}}{4} \approx 0.927$. So our result gives a non-trivial stability theorem also for sets of size cq , $1 > c > \frac{-3+\sqrt{45}}{4} \approx 0.927$.

References

- [1] A. BLOKHUIS, On the size of a blocking set in $PG(2, p)$, *Combinatorica* 14 (1994), 273–276.
- [2] A. Blokhuis, A. E. Brouwer, Blocking sets in Desarguesian projective planes, Bull. London Math. Soc. 18 (1986), 132–134.
- [3] A. BLOKHUIS, A. E. BROUWER, T. SZŐNYI, Covering all points except one, J. Alg. Combin. 32 (2010), 59–66.
- [4] A. E. BROUWER, A. SCHRIJVER, The blocking number of an affine space, J. Comb. Theory Ser. A 24 (1978), 251–253.
- [5] A. A. Bruen, Baer subplanes and blocking sets, Bull. Amer. Math. Soc. 76 (1970), 342–344.
- [6] A. A. Bruen, Blocking sets in finite projective planes, SIAM J. Appl. Math. 21 (1971), 380–392.
- [7] P. ERDŐS, L. LOVÁSZ, Problems and results on 3-chromatic hypergraphs and some related questions, in: Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, pp. 609–627, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.
- [8] R. E. Jamison, Covering finite fields with cosets of subspaces, J. Comb. Theory Ser. A 22 (1977), 253-266.
- [9] T. Szőnyi, Around Rédei's theorem, *Discrete Math.* $208/9$ (1999), 557– 575.
- [10] T. SzŐNYI, A. GÁCS, Zs. WEINER, On the spectrum of minimal blocking sets, J. Geometry 76 (2003), 256–281.

Authors address:

Tamás Szőnyi, Zsuzsa Weiner

Department of Computer Science, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, HUNGARY e-mail: szonyi@cs.elte.hu, weiner@cs.elte.hu

Tamás Szőnyi,

Computer and Automation Research Institute of the Hungarian Academy of Sciences

H-1111 Budapest, Lágymányosi út 11, HUNGARY

Zsuzsa Weiner Prezi.com H-1088 Budapest, Krúdy Gyula utca 12, HUNGARY e-mail: zsuzsa.weiner@prezi.com