
SALEM NUMBERS DEFINED BY COXETER TRANSFORMATION

PIROSKA LAKATOS

Abstract. A real algebraic integer α > 1 is called a Salem number if all its remaining conjugates have
modulus at most 1 with at least one having modulus exactly 1. It is known ([12], [10], [5]) that the
spectral radii of Coxeter transformation defined by stars, which are neither of Dynkin nor of extended
Dynkin type, are Salem numbers. We prove that the spectral radii of the Coxeter transformation of
generalized stars are also Salem numbers. A generalized star is a connected graph without multiple
edges and loops that has exactly one vertex of degree at least 3.

1. Introduction

A real algebraic integer α > 1 is called a Salem number if all its remaining conjugates
have modulus at most 1 with at least one having modulus exactly 1. The corresponding
minimal polynomial P (z) of these numbers, called a Salem polynomial, is reciprocal, that is

zdegPP (1/z) = P (z). Salem numbers have appeared in quite different branches of mathematics
(harmonic analysis, knot theory, number theory etc).

The smallest known Salem number (≈ 1.176281...) is a zero of the reciprocal polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1.

This polynomial is the reciprocal polynomial of a star (in the sense of [11]) and meanwhile
it is the Coxeter polynomial of the same graph (at any orientation) ([12]).

In the light of this, using a restricted class of graphs (star-like trees, and bipartite generalized
stars) in [10] and [6] Salem numbers were constructed. Recently McKee and Smyth in [11]
have found all trees that define Salem numbers. The reciprocal polynomial of any bipartite
graph (in the sense of [11]) is the same as the Coxeter polynomial of the graph (at bipartite
orientation)([12]).

In this paper using Coxeter polynomials of generalized stars we give a class of Salem numbers.
Our result shows that even if the reciprocal polynomial of a non-bipartite graph is not a Salem
polynomial, then the Coxeter polynomial of the graph (by any orientation without oriented
cycles) might be a Salem polynomial.

The zeros of the Coxeter polynomial of bipartite graph (at bipartite orientation) are either
on the unit circle or they are positive real numbers ([12]).

There exist Coxeter polynomials whose non-real zeros are not on the unit circle ([8]). There,
the underlying graph has multiple edges. It is not known whether the zeros of Coxeter polyno-
mials of non-bipartite graphs with simple edges are on S∪R+ (S is the unit circle). Our results
settle this question for generalized stars.
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1. Notions and preliminary results

The concept of Coxeter transformation came from the representation theory of finite dimen-
sional algebras and it is defined on finite oriented graphs without oriented cycles.

Let ∆ be a connected (finite) simple graph (graph without multiple edges and loops) with set
of vertices I = {1, 2, . . . , n} and set of edges J = {(i, j)|i, j ∈ I; i 6= j}, which are unordered
pairs of vertices. An orientation < of ∆ assigns to each edge of ∆ a unique direction, i.e. for
(i, j) ∈ J, there is an arrow either from i to j or from j to i if i 6= j. Denote by Q = (∆, <) the
oriented graph derived from ∆.
In the sequel we always consider orientations without oriented cycles.

Let Q be an oriented graph and for all vertices i, j of Q let bi,j be the number of edges (0 or
1) from the vertex i to j. Then the matrix B =

(
bi,j
)

is called the adjacency matrix of Q.
There are different equivalent definitions of Coxeter transformation for an oriented graph

(the first one in [3]), here we use the definition of [12].

The Coxeter transformation CQ of Q (with respect to its order of vertices!) is defined by
the matrix ΦQ = −(E − B)−1(E − B)>, where E is the identity matrix, B is the adjacency
matrix of Q. This integral matrix plays an important role in the study of representations of
certain algebras. The characteristic polynomial of the Coxeter transformation CQ (or ΦQ) is
called the Coxeter polynomial of Q and it is denoted by χQ(z). It is known ([12]) that Coxeter
polynomials are reciprocal polynomials. The maximum of absolute values of the eigenvalues of
the Coxeter transformation is called the spectral radius of the Coxeter transformation. If the
underlying graph is not of Dynkin type, then the eigenvalue of maximal modulus is a real,
simple eigenvalue of the Coxeter transformation (see [13]).

A vertex x ∈ I is called a sink of (∆, <) if there is no arrow in (∆, <) leaving x and the
vertex y ∈ I is called a source if there is no arrow entering y. Let x be a source. Reverse the
orientation of all edges starting at x. This way we have an oriented graph (∆, <̃) where the
vertex x is a sink and we call such a change of orientation of ∆ an admissible change of the
orientation. The Coxeter transformation of (∆, <) is similar to the Coxeter transformation of
(∆, <̃) (see [13]), i.e. admissible changes of orientation preserve the Coxeter polynomial.

To determine the location of zeros of reciprocal polynomials we apply a Chebyshev transfor-
mation described in [7]. This transformation for the same purpose is used by Lenzing and Pena
in [9] for a special class of polynomial. They used a terminology different from ours.

A polynomial f(z) =
2n∑
k=0

akz
k ∈ R[z] is called a semi-reciprocal polynomial if

a2n−k = ak (k = 0, . . . , 2n).

We do not require a2n = 0 as in case of reciprocal polynomials.
For a semi-reciprocal polynomial f(z) we have

f(z) = zn

(
an +

n∑
j=1

an+j

(
zj +

1

zj

))
.
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It is known that if z+
1

z
= x then zj +

1

zj
= Cj(x) (j = 1, 2, . . . ), (see e.g. [14], p. 224) where

Cj(x) := 2Tj

(x
2

)
(x ∈ C, j = 1, 2, . . . )

are the normalized Chebyshev polynomials of the first kind, and Tj are the jth Chebyshev
polynomials of the first kind, defined by Tj(cosx) = cos jx (j = 0, 1, . . . ). Defining C0(x) =
T0(x) = 1, (x ∈ C) we have

f(z) = zn
n∑
j=0

an+jCj(x)

(
z +

1

z
= x

)
.

The polynomial
k∑
j=0

an+jCj(x) here is called the Chebyshev transform of f(z) and it is denoted

by T f(x).
The Chebyshev transform is a linear operator which is an isomorphism of the (real) vector

space R2n (the set of all semi-reciprocal polynomials of degree at most m = 2n over R) onto
the set of all polynomials of degree at most n over R (see [4]).

The following Lemma is well known.

Lemma 1 ([4]). Let f(z) be a monic integral reciprocal polynomial of degree n and let f̂(z) be
defined by

f̂(z) =

{
f(z) if n is even,
f(z)(z + 1) if n is odd.

Then f(z) is the product of a Salem polynomial and certain cyclotomic polynomials if and only

if the Chebyshev transform T f̂(x) has
[
n−1

2

]
( the integer part of n−1

2
) zeros in the interval

[−2, 2].

A generalized star is a connected graph without multiple edges and loops that has exactly
one vertex i0 of degree at least 3. The vertex i0 is called the branching vertex.

We remark that a generalized star (which does not consist of one or two cycles) can be created
from a star graph by replacing each edge by a path or a cycle.

We may assume, without loss of generality, that the considered generalized star is not a tree
and not a single cycle.

Let ∆ be a generalized star. In the sequel let S1,S2, . . . ,Ss (s ≥ 1) be the cycles in ∆ with
the number of edges c1, c2, . . . cs, (ci > 2, 1 ≤ i ≤ s), respectively. Suppose that ∆ consists of
r ≥ 0 number of arms of lengths 1 ≤ p1 ≤ p2 ≤ · · · ≤ pr, where r ≥ 1 if s = 1. Thus, the
number of vertices of ∆ is equal to

n =
r∑
i=1

pi + 1 +
s∑
i=1

ci − s.

For a generalized star with arbitrary orientation without cycles there is an orientation with
a unique source having the same Coxeter polynomial. Denote by Q = (∆, <) the orientation
of the generalized star ∆ and by i0 the unique source and by ai and bi the number of arrows in
Si pointing to counterclockwise direction and to clockwise direction respectively. Consequently
ci = ai + bi, where ai, bi ≥ 1.

For this Q also the detailed notation Q = ∆[(a1,b1),(a2,b2),...,(as,bs),p1,p2,...,pr] will be used.
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Denote by χQ(z) = χ[(a1,b1),(a2,b2),...,(as,bs),p1,p2,...,pr](z) the Coxeter polynomial of Q. Throughout

this paper we use the notation

vm(z) =
zm+1 − 1

z − 1
= zm + zm−1 + · · ·+ z2 + z + 1, (m ∈ N) and v0(z) = 1, v−1(z) = 0.

Likewise, let

um,h(z) = 2vm(z) +
(
zm−h + zh

) (
m ∈ N h = 1, . . .

[m
2

])
.

For odd m = 2n+ 1, let

v̂2n(z) =
v2n+1(z)

z + 1
and û2n,h(z) =

u2n+1,h(z)

z + 1
(n ∈ N h = 1, 2, . . . , n).

Using the reduction formulas for Coxeter polynomials of [1], we get that:

f(z) := χQ(z) = χ[(a1,b1),(a2,b2),...,(as,bs),p1,p2,...,pr] = (z + 1)
s∏
j=1

vaj+bj−1(z)
r∏
i=1

vpi
(z)

−z
s∑

k=1

(
(2vak+bk−2(z) + zak−1 + zbk−1)

s∏
j=1, j 6=k

vaj+bj−1(z)
r∏
i=1

vpi
(z)

)

−z
r∑

k=1

(
vpk−1(z)

s∏
j=1

vaj+bj−1(z)
s+r∏

i=s+1, i 6=k
vpi

(z)

)
.

(1)

If ∆ is not a tree then the Coxeter polynomial depends on the orientation. If ∆ is a bipartite
graph then the spectrum of the Coxeter transformation (at a particular orientation, provided
that ∆ is not a tree) can be derived from the spectrum of the adjacency matrix of the underlying
graph and vice versa (see [3]).

In the bipartite case Theorem 3.3 of [11] gives sufficient conditions for a Coxeter polynomial
to be Salem. In [6] we described a class of graphs with this property and have shown that our
class is larger than the class given in [5]:

Theorem ([6]). Let (∆, <) be a bipartite orientation of a generalized star ∆ with even cycles.
The spectral radius of the Coxeter transformation of (∆, <) is a Salem number.

Our main result generalizes this Theorem for arbitrary (not necessarily bipartite) graphs.

2. Theorem and proof

Theorem . The Coxeter polynomial of all oriented generalized stars without oriented cycles is
a product of a Salem polynomial and certain cyclotomic polynomials.

To count the changes of sign of the Chebyshev transform of (1) in the interval [−2,+2] we
have to describe how the terms T û2n−2,h(x) and T u2n,h(x) (which appear in a modified form
of this transform) behave at the zeros of T v2n(x) and T v̂2n(x). First we have to recall some
results of [7]. The next Lemma is a special case of Theorem 1 in [7].
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Lemma 2 ([7]). All zeros of the reciprocal polynomial um,h(z) (m ≥ 2, h = 1, . . . ,
[
m
2

]
) of

degree m are on the unit circle. Moreover in case m = 2n all zeros of u2n,h can be given as
e±ixj (j = 1, . . . , n) where

2j − 1

m+ 1
π < xj <

2j + 1

m+ 1
π (j = 1, 2, . . . , n− 1),

2n− 1

2n+ 1
π < xn ≤ π. (2)

In the last inequality xn ≤ π equality holds if and only if h is odd, and then −1 = eiπ = e−iπ is
a double zero, all other zeros are simple.

In case of m = 2n+ 1 all zeros of u2n+1,h are simple, have the form e±ixj (j = 1, . . . , n), eiπ

where these xj’s satisfy the first inequality of (2) for all j = 1, 2, . . . , n.

In [7] we found that

T v2n(x) = Un

(x
2

)
+ Un−1

(x
2

)
, (3)

T v̂2n(x) = 2Un

(x
2

)
, (4)

T u2n,h(x) = 2T v2n(x) + 2Tn−h

(x
2

)
(h = 1, . . . , n), (5)

T û2n−2,h(x) = 2T v̂2n−2(x) +
(
Un−h−1

(x
2

)
− Un−h−2

(x
2

))
(h = 1, . . . , n− 1), (6)

where Un and Tn are the nth Chebyshev polynomials of the second and first kind, respectively,
and U−1(z) := 0. Further the zeros of T v̂2n are βj = 2 cos yj with yj = jπ

n+1
(j = 1, . . . , n) and

the zeros of T v2n are γj = 2 cos zj with zj = 2jπ
2n+1

(j = 1, . . . , n).

Lemma 3. Let αj, βj (j = 1, 2, . . . n) be the zeros of the polynomials T u2n,h(x), T v̂2n(x) re-
spectively, where h = 1, 2, . . . n is fixed.

(a) The zeros αj, βj interlace, that is

−2 ≤ αn ≤ βn < αn−1 ≤ βn−1 < · · · < αj ≤ βj < αj−1 ≤ βj−1 < · · · ≤ α1 < β1 < 2.

(b) If T u2n,h(βj) 6= 0 for some j = 1, 2, . . . , n then

sgn T u2n,h(βj) = sgn T v2n(βj).

(c) If T u2n,h(βj) = 0 for some j = 1, 2, . . . , n then for a suitable small ε > 0

sgn T u2n,h(βj + ε) = sgn T v2n(βj).

(d) If T u2n,h(−2) = 0 then for ε > 0 small enough

sgn T u2n,h(−2− ε) = sgn T v2n(−2).

Proof. Introducing the notation ẑj = (2j+1)π
2n+1

, γ̂j = 2 cos ẑj (j = 1, . . . , n) (the ẑj’s are near to
zj) we have by Lemma 3, that

−2 = γ̂n ≤ αn < γ̂n−1, γ̂j < αj < γ̂j−1 (j = 1, . . . , n− 1) (7)

and for even h also the first inequality is strict: −2 = γ̂n < αn < γ̂n−1. Since ẑj > yj > ẑj−1

(j = 1, . . . , n) and the cos function is strictly decreasing in [0, π] we also have

γ̂j < βj < γ̂j−1 (j = 1, . . . , n). (8)
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By (7), (8) T u2n,h(x), T v̂2n(x) both have one zero in each interval [γ̂j, γ̂j−1) (j = 1, . . . , n) thus
they are necessarily simple.

Next, we find the signs of T v2n and T u2n,h at βj (j = 1, . . . , n) and at −2.
Using (3) and some trigonometrical identities we get

2T v2n(βj) = 2
(
Un

(
βj

2

)
+ Un−1

(
βj

2

))
= 2

sin 2n+1
2
yj

sin 1
2
yj

= 2
sin(1− 1

2n+2
)jπ

sin 1
2
jπ
n+1

= 2(−1)j+1,

2T v2n(−2) = 2 (Un (−1) + Un−1 (−1)) = 2 ((−1)n(n+ 1) + (−1)n−1n) = 2(−1)n.

Similarly, by (5) and some elementary calculation we obtain

T u2n,h(βj) = 2T v2n(βj) + 2Tn−h

(
βj

2

)
= 2

(
(−1)j+1 + cos (n−h)jπ

n+1

)
,

T u2n,h(−2) = 2T v2n(−2) + 2Tn−h (−1) = 2(−1)n + 2(−1)n−h.

Using these two formulae one can easily check that

sgn T u2n,h(βj) =


(−1)j+1 = sgn T v2n(βj) if (h+1)j

n+1
/∈ 2Z, ,

0 6= (−1)j+1 = sgn T v2n(βj) if (h+1)j
n+1

∈ 2Z,
(9)

sgn T u2n,h(−2) =

 0 6= (−1)n = sgn T v2n(−2) if h /∈ 2Z,

(−1)n = sgn T v2n(−2) if h ∈ 2Z.
(10)

We also need the signs of T u2n,h at γ̂j (j = 1, . . . , n). By (5) and some trigonometric identities
we have for j = 1, . . . , n− 1

T u2n,h (γ̂j) = 2T v2n (γ̂j) + 2 cos
(n− h)(2j + 1)π

2n+ 1
= 2

(−1)j

sin (2j+1)π
2(2n+1)

+ 2 cos
(n− h)(2j + 1)π

2n+ 1
,

and T u2n,h (γ̂n) = T u2n,h (−2) ; therefore

sgn T u2n,h(γ̂j) = (−1)j if j = 1, . . . , n− 1,

sgn T u2n,h(γ̂n) = sgn T u2n,h(−2).
(11)

By (11) sgn T u2n,h(γ̂j−1) = (−1)j−1, and T u2n,h(αj) = 0, thus the sign of T u2n,h is (−1)j−1 =
(−1)j+1 on the interval (αj, γ̂j−1) and (−1)j on the interval (γ̂j, αj).

If (h+1)j
n+1

/∈ 2Z then by (9) βj must be in the interval (αj, γ̂j−1), implying αj < βj < γ̂j−1 ≤
αj−1.

If (h+1)j
n+1

∈ 2Z then by (9) βj = αj. This cannot happen for j = 1 as then (h+1)j
n+1

= h+1
n+1

/∈ 2Z.
For j = n this arises only if (h+1)j

n+1
= (h+1)n

n+1
∈ 2Z i.e. if h = n is an even number. In this case

we have −2 < αn = βn. This proves (a) and (b).

If sgn T u2n,h(βj) = 0 then taking an ε > 0 such that βj + ε ∈ (βj, γ̂j−1) the statement (c)
clearly holds.
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By (10) T u2n,h(−2) = 0 if and only if h is odd, and then αn = γ̂n = −2 is the only simple
zero of T u2n,h in the interval [−2, γ̂n−1). By (11) sgn T u2n,h(γ̂n−1) = (−1)n−1 hence the sign
of T u2n,h is (−1)n on the left hand side of −2, the same as sgn T v2n(−2) = (−1)n, proving
(d). ut

Lemma 4. Let γj (j = 1, . . . , n) be the zeros of T v2n(x) and let λj (j = 1, . . . , n − 1) be the
zeros of T û2n−2,h(x), where h = 1, 2, . . . n− 1 is fixed.

(a) The polynomial T û2n−2,h(x) alternates sign at the zeros of T v2n(x), i.e.

−2 < γn < λn−1 < γn−1 < . . . γj+1 < λj < γj < · · · < γ2 < λ1 < γ1 < 2.

(b) For j = 1, . . . , n we have

sgn T û2n−2,h(γj) = sgn T v̂2n−2(βj).

Proof. We have seen earlier that γj = 2 cos yj where yj = 2jπ
2n+1

(j = 1, . . . , n). Using (4), (6)
and the addition formulae for sin, we get

T v̂2n−2(γj) = 2 Un−1

(γj
2

)
= 2

sinn 2jπ
2n+1

sin 2jπ
2n+1

= 2
sin(jπ − jπ

2n+1
)

sin jπ
2n+1

cos jπ
2n+1

= 2
(−1)j+1

2 cos jπ
2n+1

,

and similarly

T û2n−2,h(γj) = 2T v̂2n−2(γj) +
cos 2n−2h−1

2
2jπ

2n+1

2 cos 2jπ
2(2n+1)

== 2

(
(−1)j+1 + cos 2n−2h−1

2
2jπ

2n+1

2 cos jπ
2n+1

)
.

As cos jπ
2n+1

> 0 we have for fixed h = 1, 2, . . . n− 1

sgn T û2n−2,h(γj) = T v̂2n−2(γj) = (−1)j+1 (j = 1, . . . , n). (12)

This shows that the polynomial T û2n−2,h(x) (of degree n − 1) alternates sign at the points
γ1, . . . , γn which implies (a) except the two inequalities at the far ends: −1 < γn, γ1 < 2, which
are obvious.

The validity of (b) follows from (12). ut

Proof of the Theorem. For the sake of definiteness assume that ai ≤ bi (1 ≤ i ≤ s). Let
h1 = ai − 1,

u2ni,hi
= 2v2ni

+
(
zhi + z2ni−hi

)
if ai + bi − 2 = 2ni,

û2ni,hi
=

2v2ni+1 +
(
zhi + z2ni−hi−1

)
z + 1

if ai + bi − 2 = 2ni + 1,

and mi =

{
ai + bi − 1 if 1 ≤ i ≤ s

pi−s if s < i ≤ s+ r
.

(i) Suppose that mi’s are pairwise distinct (positive integers) arranged such that odd mi’s
are listed first, followed by the even mi’s, i.e. mi = 2ni + 1, for 1 ≤ i ≤ s1 and mi = 2ni if
s1 < i ≤ s1 + s2 for some 0 ≤ s1, s2 ≤ s + r and s1 + s2 = s + r. Let l1 be the number of u’s
with even and l2 the number of u’s with odd degree.
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Taking out the maximal power of the factor z+ 1 from all terms of f(z), splitting the second
and third terms of f(z) according the parity of the degrees of the u’s and v’s and rearranging
the sums we get

f(z) = (z + 1)s1+1
s1∏
i=1

v̂2ni

s1+s2∏
i=s1+1

v2ni
− z(z + 1)s1−1

l1∑
j=1

(
u2nj ,hj

s1∏
i=1, i 6=j

v̂2ni

s1+s2∏
i=s1+1

v2ni

)

−z(z + 1)s1−1
s1∑

j=l1+1

(
v2nj

s1∏
i=1, i 6=j

v̂2ni

s1+s2∏
i=s1+1

v2ni

)

−z(z + 1)s1+1

(
s1+l2∑
j=s1+1

(
û2nj−2,hj

s1∏
i=1

v̂2ni

s1+s2∏
i=s1+1, i 6=j

v2ni

)
+

s1+s2∑
j=s1+l2+1

(
v̂2nj−2

s1∏
i=1

v̂2ni

s1+s2∏
i=s1+1, i 6=j

v2ni

))

= (z + 1)s1−1 ((z + 1)2f1(z)− zf2(z)− z(z + 1)2f3(z))

for some l1 ≤ s1, l2 ≤ s2 with suitable polynomials f1, f2, f3. The degree of f is (the degree of
its first term)

N := (s1 + 1) +

s1+s2∑
i=1

2ni = (s1 + 1) +

s1∑
i=1

(mi − 1) +

s1+s2∑
i=s1+1

mi =

s1+s2∑
i=1

mi + 1 = (s1 + 1) + 2d,

where d :=
s1+s2∑
i=1

ni. Let

f̂(z) =

{
f(z) if N or s1 + 1 is even,
f(z)(z + 1) if N or s1 + 1 is odd.

Instead of the Chebyshev transform of f̂ we shall count the zeros of the function

F (x) :=
T f̂(x)

(x+ 2)[
s1
2 ]

= (x+ 2)T f1(x)− T f2(x)− (x+ 2)T f3(x).

By Lemma 1 our theorem is proved, if we show that F (x) has
[
N−1

2

]
−
[
s1
2

]
= d zeros on the

interval [−2, 2] (we deducted the multiplicity
[
s1
2

]
of the zero −2 of the denominator).

To find the number of zeros of F (x) on the interval [−2, 2], we arrange the zeros δi, 1 ≤ i ≤ d
of the function

T f1(x) =

s1∏
i=1

T v̂2ni
(x)

s1+s2∏
i=s1+1

T v2ni
(x)

in decreasing order

−2 < δd < δd−1 < · · · < δ2 < δ1 (< 2),

and we check the sign of F (x) at all the listed points.
Clearly, in agreement with our earlier notations, each δk equals one of the numbers βj,i =

2 cos 2jπ
2ni+2

, (1 ≤ i ≤ s1) or γj,i = 2 cos 2jπ
2ni+1

, (s1 < i ≤ s1 + s2) where j = 1, . . . , ni.
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If T v̂2nk
(δj) = 0 for some 1 ≤ k ≤ s1 and 1 ≤ j ≤ d then

F (δj) = −T f2(δj) = −T u2nk,hk
(δj)

s1∏
i=1, i 6=k

T v̂2ni
(δj)

s1+s2∏
i=s1+1

T v2ni
(δj) if k ≤ l1 ,

F (δj) = −T f2(δj) = −T v2nk
(δj)

s1∏
i=1, i 6=k

T v̂2ni
(δj)

s1+s2∏
i=s1+1

T v2ni
(δj) if l1 < k ≤ s1.

If T v2nk
(δj) = 0 for s1 < k ≤ s1 + s2, then only non-zero terms in F (δj) are

F (δj) = −(x+ 2)T f3(δj) = −(x+ 2)T û2nk−2,hk
(δj)

s1∏
i=1

T v̂2ni
(δj)

s1+s2∏
i=s1+1, i 6=k

T v2ni
(δj)

if s1 < k ≤ s1 + l2,

F (δj) = −(x+ 2)T f3(δj) = −(x+ 2)T v̂2nk−2(δj)
s1∏
i=1

T v̂2ni
(δj)

s1+s2∏
i=s1+1, i 6=k

T v2ni
(δj).

if s1 + l2 < k ≤ s1 + s2 .

By an easy calculation we notice that T v̂2ni−2 and T v2ni
alternate sign at the zeros of T v2ni

and T v̂2ni
respectively.

Unfortunately F (δj) (j = 1, . . . , d) or F (−2) can be zero and then counting the sign change
does not give the correct number of zeros. To avoid this problem, we evaluate T u2ni,hi

and
T û2ni−2 at the points δj + ε (with suitable small ε > 0) instead of δj (based on Lemmas 4 and
5). We define the modified sign function in following way:

Si(δj) :=


sgn T v̂2ni

(δj) if T v̂2ni
(δj) 6= 0 1 ≤ i ≤ s1,

sgn T v2ni
(δj) if T v̂2ni

(δj) = 0 1 ≤ i ≤ s1,
sgn T v2ni

(δj) if T v2ni
(δj) 6= 0 s1 < i ≤ s1 + s2,

sgn T v̂2ni−2(δj) if T v2ni
(δj) = 0 s1 < i ≤ s1 + s2.

For j = 1, 2, . . . , d− 1 this implies for i = 1, 2, . . . , s1 + s2 that

Si(δj+1) =

{
−Si(δj) if T v2ni

(δj) = 0 or T v̂2ni
(δj) = 0

Si(δj) otherwise .
(13)

Thus, we can substitute sgn F (δj) by −
s1+s2∏
i=1

Si(δj) for j = 2, 3 . . . , d− 1.

By the proof of Lemma 4 and 5, sgn F (δ1) = −1. Lemma 4 and 5 imply that the function F has
exactly one change of sign on [δi, δi+1) for i = 1, 2, . . . , d−1. Therefore there are d−1 =

∑
ni−1

zeros of F in [δd, δ1). We show that F has one more zero on [−2, δd).
We have to show that either F (−2) = 0 or sgn F (−2) 6= sgn F (δ1). Since for k > s1 we have
F (−2) = 0, we consider only the case k ≤ s1.

We have sgn T v̂2ni
(−2) = (−1)ni and sgn T v2ni

(−2) = (−1)ni and by Lemma 4 (d)

F (−2) = −T f2(−2) = −T v2nk
(−2)

s1∏
i=1, i 6=k

T v̂2ni
(−2)

s1+s2∏
i=s1+1

T v2ni
(−2) = (−1)

s1+s2∑
i=1

ni

= (−1)d.

Since all v’s and v̂’s are positive at δd we have sgn F (δd) = −1, and F (δd−i) = (−1)i−1 and by
(13) sgn F (δ1) = (−1)d proving that F (x) has a zero on [−2, δd).
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Consequently, F has d =
s∑
i=1

ni zeros in the interval [−2, 2].

(ii) Next, assume that m1,m2, . . .ms are not pairwise distinct, e.g. m1 = m2 = · · · = ml1 ,
ml1+1 = ml1+2 = · · · = ml2 , . . . etc. Then we perform a small analytic perturbation in the
terms of F corresponding to m2, . . .ml1 etc. and apply Rouché’s theorem. Thus, we may count
the zeros of F the same way as in case of (i) (with multiplicities).
or all orientation of generalized stars without oriented cycle, and the Theorem follows. �

In our proof it was essential that the number of cycles s in our graph is > 1. If s = 0 then
F (x) may have d + 1 zeros on [−2, 2] (only if F (2) ≤ 0 ). In these cases we have trees, whose
Coxeter polynomials do not depend on orientation and they are well described in [11].

Example. Take the oriented ∆[(9,3),4], i.e. the graph with 16 vertices. In this case s1 = 1 and
S1(δ4) = −1, since T u10,3(−1 + ε) < 0 and a S1(δ5) > 0. The Coxeter polynomial is

f̂(z) = f(z) = (z + 1)2v̂10v4 − zu10,3v4 − z(z + 1)2v̂10v̂3.

As
[
s1
2

]
= 0, F (x) is exactly the Chebyshev transform of f̂(x). This transform is

F (x) = (x+ 2)T v̂10T v4 − T u10,3T v4 − (x+ 2)T v̂10T v̂3 =

(x+2)(x5−4x3 +3x)(x2 +x−1)−(2x5 +2x4−7x3−6x2 +3x+2)(x2 +x−1)−(x5−4x3 +3x)x.

The next figure shows the graphs of the functions F (x), T u10,3 and T v10(= x5 + x4 − 4x3 −
3x2 + 3x+ 1) :

The zeros of T v̄10 = U5(x
2
) = x5−4x3 +3x are δ7, δ5, δ4, δ2, δ1 and the zeros of T v4 = U2(x

2
)+

U1(x
2
) = x2 +x− 1 are δ6, δ3. We have S1(δ4) = −1, since sgn T u10,3(−2) = sgn T v10(−2) < 0

and S1(δ5) > 0.

−2 δ7 ' −1.73 δ6 ' −1.62 δ5 = −1 δ4 = 0 δ3 ' .62 δ2 = 1 δ1 ' 1.73
S1(δj) -1 1 1 -1 1 1 -1 1
S2(δj) 1 1 -1 -1 -1 1 1 1
sgn F 1 -1 1 -1 1 -1 1 -1
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Since T u10,3(x) has a zero on [−2, δ7), the polynomial T f(z) = F (x) has 7 zeros on [−2, 2].

We show that the Salem numbers given by our Theorem (defined by the Coxeter polynomials
of generalized stars) extends the set defined in [5].

Denote by T the set of all Salem numbers and by T ′ the set of spectral radii of Coxeter
transformation defined by wild stars, which are Salem numbers ([5]). Then T ′ 6= T holds, since
the Salem number ρ1 listed in [2] and defined by the reciprocal polynomial z10−z6−z5−z4 +1
is not in the set T ′.
It is known that the spectral radius of the Coxeter transformation of a subgraph of a tree is
not greater than the spectral radius of the same tree. The list of stars with spectral radius
1.7 > ρ > 1.6 of its Coxeter transformation is not large (see [6]). There is a gap between
the spectral radii of Coxeter transformations of stars with length of arms 2, 3, 4 and 2, 3, 5, i.e.
between spectral radii of C∆([2,3,4])

≈ 1.6574 and C∆([2,3,5])
≈ 1.6935. The only zero non-cyclotomic

factors of the Coxeter polynomial of the bipartite graph ∆[(6,6),1] is z8 − z7 − z6 − z2 − z + 1,
which has a zero (being also a Salem number) on the above interval and it is not in the set
T ′. The oriented graph ∆([(6,7),1]) is non-bipartite, however for the spectral radius of its Coxeter
transformation ρ2 = C∆([(6,7),1])

≈ 1.6733 we also have ρ2 /∈ T ′.
Acknowledgement. The author thanks the referee for several useful remarks on the

presentation of the paper.
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