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Abstract The linear stability of a semi-infinite fluid undergoing a shearing motion over a fluid layer that is laden
with soluble surfactant and that is bounded below by a plane wall is investigated under conditions of Stokes flow.
While it is known that this configuration is unstable in the presence of an insoluble surfactant, it is shown via a
linear stability analysis that surfactant solubility has a stabilising effect on the flow. As the solubility increases,
large-wavelength perturbations are stabilised first, leaving open the possibility of mid-wave instability for moderate
surfactant solubilities, and the flow is fully stabilised when the solubility exceeds a threshold value. The predictions
of the linear stability analysis are supported by an energy budget analysis which is also used to determine the
key physical effects responsible for the (de)stabilisation. Asymptotic expansions performed for long-wavelength
perturbations turn out to be non-uniform in the insoluble surfactant limit. In keeping with the findings for insoluble
surfactant obtained by Pozrikidis & Hill (IMA J Appl Math 76:859–875, 2011), the presence of the wall is found
to be a crucial factor in the instability.

Keywords Interfacial instability · Liquid film · Surfactants

1 Introduction

It is well known that an insoluble surfactant can destabilise the interface between two fluids subjected to a shear
flow, even if the fluids are stably stratified and have no inertia (which is essential for the development of interfacial
instabilities in shear flows devoid of surfactant [1] [2–4]). The onset of this surfactant-induced instability depends
crucially on the presence of a wall bounding one of the fluids [5]: with no wall and two semi-infinite fluids, the flow
is stable. However, if a second wall is also present, as is the case for channel flow, then instability is not always
possible. For example, [2] showed that when the interface lies in the middle of the channel, the flow is stable.
Generally speaking inertia exacerbates any instability, but may have a stabilising influence under some conditions
[6–8].
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Recently the present authors showed that for the inertialess channel flow problem, the ability of the surfactant to
dissolve in one of the fluids can either enhance or suppress interfacial instability for certain fluids and/or surfactant
properties [9,10]. Studies of the related problem of film flow down an inclined substrate have found surfactant
solubility to have a destabilising effect [11–13]. It has been suggested that the destabilisation due to solubility is
connected to a phase shift between the interfacial disturbance and the surfactant mass flux onto/off the interface:
this allows a redistribution of surfactant at the interface and it thereby mitigates the Marangoni force that is helping
to stabilise the flow [13]. A similar explanation was provided for the stabilisation of the flow-induced Marangoni
instability found in a vertically falling film loaded with insoluble surfactant in [14].

In this work, we consider a sheared interface separating a semi-infinite fluid and a liquid layer of different
viscosity that is loaded with surfactant and that is bounded below by a solid wall. Our main aim is to investigate the
influence of surfactant solubility on the linear stability of the flow. The effects of inertia and gravity are ignored.
Instability at the interface is induced due to the underlying shear flow and the disparity in fluid viscosities (which
results in a velocity jump at the perturbed interface), as well as the Marangoni forces generated because of the
presence of surfactant at the interface that leads to local surface tension gradients [15]. Here, the surfactant can be
transferred into the liquid layer via a kinetic flux driving the adsorption and desorption of molecules to and from
the bulk fluid [16]. A linear stability analysis is carried out and an eigenvalue problem for the complex wave speed
is formulated and solved numerically. An asymptotic approximation valid for perturbations of large wavelength is
also examined to provide leading-order approximations for the growth rates. Moreover, an energy budget analysis
in the manner of [17] is used to tease out the important physical effects driving the instability. A brief discussion of
the case of two semi-infinite fluids, which is obtained when the wall is removed, is also presented and supported
by analytical and numerical results.

The outline of the rest of the paper is as follows: in Sect. 2, the full non-linear system governing the dynamics
of the flow is provided and is later linearised via an energy budget analysis. The disturbances are then written in a
normal mode form to obtain a linearised eigenvalue system for the growth rate. A long-wave approximation of the
growth rate is also presented. In Sect. 3, growth rate curves are provided as well as data based on energy budget
analysis. The stability of the unbounded problem is also discussed. A summary of the main results is given in Sect. 4.

2 Linear stability analysis

We consider the evolution of an interface between an incompressible liquid of viscosity μ1 and density ρ, which
is laden with surfactant and which is confined below by a wall, and a semi-infinite fluid above of the same density
and viscosity μ2, as shown in Fig. 1. The bulk surfactant concentration is assumed to not exceed the critical micelle
concentration. At equilibrium, the film has a uniform thickness h0 and a steady shear flow is imposed. The problem
is cast in non-dimensional form by scaling lengths with h0, surface tension with the clean value γ0 that prevails in
the absence of surfactant, velocities with γ0/μ1, time with h0μ1/γ0, pressures with γ0/h0, the interface surfactant
concentration by the maximum packing Γ∞, the bulk concentration with Γ∞/h0, and the mass flux by Γ∞γ0/h0μ1.

Fig. 1 Setup of the problem: a surfactant-laden liquid is coated on a horizontal wall and its thickness defines the location of the interface
which separates it from a second, semi-infinite fluid. Both fluids undergo a shear flow. The dashed line indicates the location of the
undisturbed interface
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The flow in each fluid region is described by equations for the conservation of mass and momentum. In this
study the aim is to focus on the effect of surfactant solubility on the stability of the flow; since the two fluids are
assumed to have the same density, the effect of gravity is negligible. The Reynolds number in each layer is defined
by Rei = ργ0h0/μ

2
i , where i = 1, 2 is used to label the fluids (see Fig. 1), and is assumed to be small. Consequently

the flow is governed by the Stokes momentum equation and the continuity equation,

0 = −∇ pi + mi∇2ui , ∇ · ui = 0, (1)

where pi , ui = (ui , vi ), i = 1, 2, are the pressure and velocity fields in the two fluids, the gradient operator is
defined in the cartesian coordinate system shown in Fig. 1 by ∇ = (∂x , ∂y), and mi = 1 + (m − 1)(i − 1), with m
the viscosity ratio (defined later in (7)). The evolution of the interface at y = h(x, t) is governed by the kinematic
condition

ht = v1 − u1hx . (2)

Subscripts will be used through this paper to either denote variables in the respective fluid (if variable i = 1, 2 is
used) or partial derivatives with respect to the shown variable (where t is time).

The no-slip and no-penetration conditions, respectively, require that u1 = (0, 0) at the wall, and that velocity in
the upper fluid u2 is bounded in the far-field as y → ∞. Continuity of velocity, requiring that u1 = u2, is imposed
at the interface y = h(x, t) together with the continuity of normal and tangential stresses

[
−pi

(
1 + h2

x

)
+ 2mi

(
h2
xuix + viy − hx

(
uiy + vi x

))]1

2
= γ

hxx
H

, (3a)
[
4mihxuix + m j

(
h2
x − 1

) (
uiy + v j x

)]1

2
= −γx H, (3b)

where H = √
1 + h2

x and the notation [Fi ]1
2 = F1 − F2 is used. The surface tension in conditions (3) is given by

the Langmuir equation of state which is γ = 1 + Ma ln (1 − Γ ) [16,18] and is seen to depend on the interfacial
surfactant concentration Γ , the evolution of which is described by the convection–diffusion equation [10,19]

1

H

[
(HΓ )t + (HuIΓ )x − 1

Pes

(
Γx

H

)

x

]
− Jb = 0, (4)

with uI = u1(x, y = h(x, t), t). Here, the adsorption/desorption flux Jb is defined by [9]

Jb = B
(
RbC(1 − Γ ) − Γ

)
, (5)

where the bulk concentrationC is evaluated immediately below the interface at y = h−. A positive/negative value of
Jb corresponds to adsorption/desorption of surfactant onto/from the interface. In the film the transport of surfactant
molecules is governed by the advection–diffusion equation and associated boundary conditions,

Ct + u1 · ∇C = 1

Peb
∇2C, Cy

∣∣∣
y=0

= 0,
hxCx − Cy

H

∣∣∣
y=h

= Peb Jb. (6)

The two boundary conditions ensure that there is no flux of surfactant through the wall and that the flux of surfactant
onto the interface matches the adsorption/desorption flux Jb defined in (5).
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The non-dimensional parameters that appear in the equations above are the viscosity ratio, the Marangoni, Biot,
and Péclet numbers (surface and bulk), as well as a solubility parameter, respectively, defined by

m = μ2

μ1
, Ma = RT Γ∞

γ0
, B = kdh0μ1

γ0
, Pes,b = γ0h0

μ1Ds,b
, Rb = ka

h0kd
, (7)

where ka , kd are the adsorption/desorption kinetic rates, respectively, Ds,b are the surface and bulk diffusivities,
R is the ideal gas constant, and T is the absolute temperature. We note that the case of an insoluble surfactant is
recovered in one of the limits B → 0 or Rb → ∞.

2.1 Energy budgets

The flow is disturbed by introducing perturbations to the steady state of the form f (x, y, t) = f̄ (y) + f̂ (x, y, t),
where the steady state is denoted by the overbar notation and the perturbations are assumed to be small, f̂ � f̄ .
Here, f stands for the various variables involved in the problem, i.e. ui , pi , h, Γ , C . The steady horizontal velocity
is linear in each fluid and given by

ū1(y) = sy, ū2(y) = s

m
(y + m − 1), (8)

where s is the shear rate at the interface, while the vertical velocities and pressures are constant in both fluids,
v̄1,2(y) = 0, p̄1,2(y) = p0. The equilibrium state for the surfactant can be found by setting Jb = 0 in (5) and is
given by uniform concentrations 0 < Γ̄ < 1 and

C̄ = Γ̄

Rb(1 − Γ̄ )
. (9)

The corresponding equilibrium surface tension is γ̄ = 1 + Ma ln
(
1 − Γ̄

)
. We note that normally the interfacial

concentration Γ̄ is prescribed in computations.
To assess the stability properties of the flow and identify the dominant mechanism responsible for interfacial

instability, we perform an energy budget analysis. Since the Reynolds number is zero in the present study, the equation
for the kinetic energy of the flow does not offer insight into the instability mechanism, but we nevertheless provide
it for completeness in Appendix A. Insight can be obtained, however, by examining an equation for the energy of
concentration perturbations. To derive this, the linearised convection–diffusion equation for the concentration in
the film is multiplied by the perturbation Ĉ and integrated over the film flow region y ∈ [0, 1]. The entire equation
is then integrated in one horizontal wavelength x ∈ [0,�], where � = 2π/k and k is the wavenumber, and spatial
periodicity is assumed. Invoking the flux conditions at the wall and interface in (6), the energy budget equation
takes the form

ENC = DIFC + FLXC (10a)

where

ENC = d

dt

∫ �

0

∫ 1

0

1

2
Ĉ2 dy dx,

DIFC = − 1

Peb

∫ �

0

∫ 1

0

(
Ĉ2
x + Ĉ2

y

)
dy dx,

FLXC = −B
∫ �

0

(
Rb(1 − Γ̄ )Ĉ(1) − Γ̂

(1 − Γ̄ )

)
Ĉ(1) dx . (10b)
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Equation (10b) offers insight into the growth of concentration perturbations and it can be used to identify an
instability in Stokes flow [20]. Instability is indicated by a positive value of the ENC term. The diffusion term DIFC
is always negative, while the term FLXC is associated with surfactant flux between the bulk and the interface; if
the latter effect is sufficiently strong then instability occurs.

Following a similar procedure for the corresponding surfactant transport equation at the interface, but now
integrating in the x direction only, the energy equation for the interfacial concentration is found to be

ENG = GSH + GU1 + DIFG + FLXG, (11a)

where

ENG = d

dt

∫ �

0

1

2
Γ̂ 2 dx,

GSH = −sΓ̄
∫ �

0
ĥx Γ̂ dx,

GU1 = −Γ̄

∫ �

0
û1x (1)Γ̂ dx,

DIFG = − 1

Pes

∫ �

0
Γ̂ 2
x dx,

FLXG = B
∫ �

0

(
Rb(1 − Γ̄ )Ĉ(1) − Γ̂

(1 − Γ̄ )

)
Γ̂ dx . (11b)

Instability is present if the term ENG is positive. On the right-hand side in (11b), the term GSH plays a role only
in the presence of the background shear, the GU1 term supplies energy due to the perturbed horizontal velocity
gradient at the interface, while the term DIFG captures the dampening effect of interfacial diffusion and is always
negative. A positive/negative value of FLXG corresponds to a net adsorption/desorption of surfactant onto/from the
interface.

The relative sizes of the various terms in (10b) and (11b) can offer insight into the dominant physical mechanisms
that provoke instability. Where terms are positive/negative their effect is destabilising/stabilising.

2.2 Normal modes

To perform a normal mode analysis it is convenient to introduce the streamfunctions ψi , defined so that ui =
∂ψi/∂y and vi = −∂ψi/∂x . We represent all of the disturbance quantities in the normal mode form f̂ (x, y, t) =
f̃ (y)eik(x−ct), where k is the real wavenumber to be specified, c is the complex wave speed to be found, and the
tilde-decorated variables are eigenfunctions to be determined. The stability of the flow is controlled by the sign of
the growth rate λ ≡ kIm(c); in particular, instability occurs if λ > 0.

Substituting the normal mode forms into the governing equations (1)–(6) and linearising, we obtain an eigenvalue
problem for the complex wave speed c. The streamfunctions satisfy the ordinary differential equation

ψ̃ ′′′′
1,2(y) − 2k2ψ̃ ′′

1,2(y) + k4ψ̃1,2(y) = 0, (12a)

with the boundary conditions

ψ̃1(0) = ψ̃ ′
1(0) = 0, ψ̃2

∣∣∣
y→∞ = ψ̃ ′

2

∣∣∣
y→∞ = 0, (12b)

ψ̃1(1) = ψ̃2(1), ψ̃ ′
1(1) − ψ̃ ′

2(1) =
(

1

m
− 1

)
s

c̃
ψ̃1(1), (12c)

123



    3 Page 6 of 14 A. Kalogirou, M. G. Blyth

where c̃ = c − ū1(1) is the perturbed wave speed. The jump term in condition (12c) arises due to viscosity
stratification. The linearised forms of the normal and tangential interfacial stress balances (3) are

(
mψ̃ ′′′

2 (1) − ψ̃ ′′′
1 (1)

)
− 3k2

(
mψ̃ ′

2(1) − ψ̃ ′
1(1)

)
= −iγ̄ k3 ψ̃1(1)

c̃
, (12d)

(
mψ̃ ′′

2 (1) − ψ̃ ′′
1 (1)

)
+ k2

(
mψ̃2(1) − ψ̃1(1)

)
= iMak

(1 − Γ̄ )
Γ̃ . (12e)

The surfactant concentration perturbation in the bulk satisfies

C̃ ′′(y) − k2C̃(y) − ikPeb(sy − c)C̃(y) = 0, (12f)

C̃ ′(0) = 0, C̃ ′(1) + PebBRb(1 − Γ̄ )C̃(1) = PebB

(1 − Γ̄ )
Γ̃ , (12g)

and the linearised form of the interfacial surfactant concentration equation (4) is

(
−ikc̃ + k2

Pes
+ B

(1 − Γ̄ )

)
Γ̃ − BRb(1 − Γ̄ )C̃(1) + ikΓ̄

( s
c̃
ψ̃1(1) + ψ̃ ′

1(1)
)

= 0. (12h)

The general solution for the perturbation streamfunctions satisfying Eq. (12a) is

ψ̃i (y) = α1,i eky + α2,i y eky + α3,i e−ky + α4,i y e−ky, (13)

for coefficients α j,i , j = 1, 2, 3, 4, i = 1, 2, to be determined. The far-field conditions in (12b) yield α1,2 = α2,2 =
0. The general solution for the bulk concentration equation (12f) is

C̃(y) = b1 Ai(ζ ) + b2 Bi(ζ ), ζ = (iksPeb)
1/3

(
y − c

s
− ik

sPeb

)
, (14)

where Ai and Bi are the linearly independent solutions of the Airy equation, and b1,2 are arbitrary constants. Given
the exact solutions (13), (14), conditions (12) may be assembled to form the linear system

M · x = 0, (15)

where the coefficient matrix M depends on c and the vector of unknowns is x = (α1,1, α2,1, α3,1, α4,1, α3,2, α4,2, b1,

b2, Γ̃ )T. Non-trivial solutions are obtained if det(M) = 0; owing to the presence of the Airy functions in Equa-
tion (14), this gives a transcendental equation for the complex wave speed c that in general yields an infinite number
of normal modes and which must be solved numerically. In the insoluble limit attained either by taking B → 0 or
Rb → ∞, the equation det(M) = 0 reduces to a quadratic equation for c corresponding to just two normal modes
[5].

2.3 Long-wave approximation

Useful insight into the behaviour of the complex wave speed can be gained by considering perturbations of large
wavelength. Assuming that k � 1, we introduce the expansion for the complex wave speed

c = c0 + kc1 + · · · , (16)
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substitute it into the transcendental equation det(M) = 0, and solve at successive orders in k to determine c0, c1,
etc. In doing so we identify two modes which we term the primary modes, for each of which c0 is real. The two
corresponding values of c1 are both purely imaginary and yield the leading-order approximation to the growth rate
λ ≈ k2Im(c1).

Besides the two normal modes that are captured by the expansion (16) there is an infinite number of other
modes, which we term secondary modes, whose existence may be attributed to the freedom of the bulk surfactant
concentration to disperse in the liquid film. These secondary modes satisfy long-wave expansions different to (16);
and, notably, Im(c) < 0 at k = 0.

One of the two primary modes is always stable and satisfies

Im
(
c(1)

1

) = −MaRbΓ̄ (1 − Γ̄ ) < 0. (17)

The first-order contribution to the second primary mode has imaginary part

Im(c(2)
1 ) = A4R4

b + A3R3
b + A2R2

b + A1Rb + A0

120Pes Peb
(
1 + (1 − Γ̄ )2Rb

)3 , (18a)

where

A4 = 120(1 − Γ̄ )7Γ̄ MaPes Peb,

A3 = 120(1 − Γ̄ )5(2Γ̄ MaPes − (1 − Γ̄ )
)
Peb,

A2 = 8(1 − Γ̄ )3
(

15MaPes PebΓ̄ − (1 − Γ̄ )
(
2s2Pes Pe

2
b + 30Peb + 15Pes

))
,

A1 = −(1 − Γ̄ )2
((

7s2Pes Pe
2
b + 120Peb + 240Pes

) + 30(1 − Γ̄ )s2Pes Peb
B

)
,

A0 = −(s2Pe2
b + 120)Pes, (18b)

and it is either stable or unstable depending on the parameters. In particular, noting that the denominator in (18b) is
positive, the Descartes’ rule of signs implies that there is exactly one positive value of Rb at which the numerator,
viewed as a polynomial in Rb, changes sign and therefore the flow changes stability. For sufficiently large Rb we
find that Im

(
c(2)

1

)
> 0 so that this mode is unstable in the case of weak solubility, which is qualitatively consistent

with established results for insoluble surfactant [3,5]. Since

Im
(
c(2)

1

) → − (s2Pe2
b + 120)

120Peb
< 0 as Rb → 0, (19)

the second primary mode is evidently stable in the strong solubility limit Rb → 0. We conclude that surfactant
solubility has a stabilising influence on the flow.

The fact that neither of the two leading-order expressions for the growth rate in (17) and (18b) depend on the
viscosity ratio m is striking but it is in line with similar long-wave calculations for insoluble surfactant (e.g. for
channel flow [3]). It is intriguing to note that

Im
(
c(2)

1

) → −∞ as B → 0, Im
(
c(2)

1

) → ∞ as Rb → ∞, (20)

and hence, curiously, neither of the leading-order growth rates of the two primary modes are consistent with the
growth rates presented by Pozrikidis & Hill [5] for insoluble surfactant in the limit B → 0 or Rb → ∞. This
apparent contradiction may be resolved by noting that the expansion (16) breaks down in either of the limits B → 0
or Rb → ∞; instead the correct expansion should proceed in powers of k1/2.
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Fig. 2 Comparison of the numerically computed growth rates (lines) with the long-wave analysis (symbols), for s = 1, m = 0.5,
Ma = 1, Γ̄ = 0.5, Pes = 108, Peb = 100, Rb = 1. The black thick lines correspond to the “insoluble” limit with B = 0.01, while
the blue thin lines and symbols correspond to B = 1. The symbols represent the asymptotic results found analytically for long waves

The situation is reminiscent of the non-uniformity in the long-wave expansion that has been identified in the
limits s → 0, Ma → ∞, m → 1, and Rb → R∗

b , where R∗
b is a certain finite value, for the similar flow in a channel

(see [4,9]). We emphasise that the failure to achieve consistency with the results for insoluble surfactant in the limit
B → 0 or Rb → ∞ is a facet of the current long-wave approach; taking either of these limits in the solution to
the full transcendental equation det(M) = 0 stemming from (15) recovers the growth of [5], as is discussed in
Appendix B.

3 Results and discussion

We seek numerical solutions for the complex wave speed that satisfies system (15) by solving the linear eigenvalue
problem (12) numerically using a Chebyshev collocation method [9,21]. In practice, it is convenient to solve the
problem in a channel of large aspect ratio 0 ≤ y ≤ n for a suitably large value of n and impose no-slip and no-flux
conditions at the upper wall. We map each fluid region to the canonical domain Y ∈ [−1, 1] by taking

Y = 1 − 2y for y ∈ [0, 1], (21a)

and

Y = −1 + 2(y − 1)

(n − 1)
for y ∈ [1, n]. (21b)

The interface is therefore located at Y = −1, found by setting y = 1 in each fluid region. In our computations to
be presented below we take n = 100, which we found to be sufficiently large for the presence of the upper wall to
have a negligible effect on the results.

Unless specified otherwise, the results presented in this section will take the following parameter values: s = 1,
m = 0.5, Ma = 0.1, Γ̄ = 0.5, Pes = 108, Peb = 100 (the surface Péclet number is taken to be large due to the
small surface diffusion rate Ds which is normally found in practice). The two parameters that control the surfactant
solubility will typically assume values in the ranges 0 ≤ B ≤ 1 and 0 < Rb < ∞ and will be altered accordingly
in order to investigate the impact of the solubility on interfacial stability. We begin by comparing the numerically
computed growth rates to the leading-order long-wave approximations presented in Sect. 2.3 for the two primary
modes. In Fig. 2 the first few modes calculated using the Chebyshev method are shown with solid lines for two
B values and Rb = 1, and the long-wave predictions for the largest value of B are shown with symbols (circles
for mode 1 in Eq. (17) and squares for mode 2 in Eq. (18b)). The thin lines indicate growth rates for B = 0.01 so
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Fig. 3 Growth rate curves for increasing values of B and fixed Rb = 1, Ma = 0.1, with all other parameter values remaining the same
as in Fig. 2

Fig. 4 Growth rate curves for decreasing values of Rb and fixed B = 1, Ma = 0.1, with all other parameter values remaining the same
as in Fig. 2

that the surfactant is almost insoluble, while the thick lines are for soluble surfactant with B = 1. The long-wave
predictions for B = 1 are in excellent agreement with the numerically obtained growth rates for small values of k.

We note that only two modes pass through the origin at k = 0 in Fig. 2, namely the primary modes identified
in Sect. 2.3, and it is these that are responsible for any instability. The remaining modes are secondary modes for
which Im(c) < 0 at k = 0 and they are stable over the entire wave number range. In fact, the secondary modes
were found to be stable at all k for all parameter sets that we examined; in Appendix C, we prove the stability of
these modes in the case of B = 0.‘

Figure 3 demonstrates the effect of varying the Biot number B on the growth rates. The dominant mode for the
insoluble case (B = 0) is unstable over the range 0 ≤ k ≤ kc for kc ≈ 1.4, but is stabilised for any B > 0 at
sufficiently small wavenumbers. For weakly soluble surfactant, that is sufficiently small B, mid-wave instability
occurs over a window of wavenumbers away from zero (this type of instability has also been found in similar
systems, see for example [9,20,22]). For larger values of the Biot number such as B = 0.1, the system is stable
over the entire wavenumber range. Figure 4 illustrates how a similar stabilisation occurs by instead decreasing the
solubility parameter Rb, in which case the maximum value of the growth rate is seen to monotonically decrease
for decreasing values of Rb. Here the system is unstable for large enough Rb and is completely stabilised when Rb

drops below the threshold value Rb ≈ 2.4 and the surfactant solubility is sufficiently strong.
Figure 5 shows the interface concentration energy budget (11b) for the case examined in Fig. 3. The eigenfunctions

are calculated by solving the linear system (12) using the Chebyshev method and applying the normal mode form
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of the disturbances into the energy equations (10b) and (11b). All of the terms in (11b) have been normalised with
the magnitude of the diffusive term DIFC in (10b) (note that DIFG is very small owing to the large Péclet number
Pes and as such is not suitable for the normalisation). For the case B = 0.01 instability occurs when ENG switches
sign at k ≈ 0.19, consistent with Fig. 3; the flow is stable for B = 0.1 (notice also that the terms presented for
B = 0.1 are approximately five times smaller in amplitude than those for B = 0.01). The flux term FLXG is
everywhere negative in both cases: surfactant is overall desorbed from the interface with a stabilising effect on
the flow. Evidently the GSH term is both positive and larger in amplitude than the rest of the terms in the energy
equation (11b), indicating that it is the underlying shear that is driving the instability. Note that as expected the term
ENC in the bulk energy budget (10b) becomes positive when ENG becomes positive, but this is not shown.

3.1 Unbounded flow

The unbounded problem with two semi-infinite fluids separated by an interface was first investigated by [23] in
the absence of surfactant. They found that instability only occurs in the presence of inertia and/or unstable density
stratification. For Stokes flow with equal-density fluids, [5] showed that the flow is stable in the presence of an
insoluble surfactant. Exactly two normal modes exist in this case—a hydrodynamic mode and a Marangoni mode—
both of which can be found in a closed form.

The unbounded case of two semi-infinite fluids is effectively attained in the present formulation by considering
a perturbation of sufficiently short wavelength. There are then only two length scales in the problem provided by
the groupings Dsμ1/γ0 and Dbμ1/γ0, the latter associated with surfactant solubility. Thus for insoluble surfactant
with negligible surface diffusivity, Ds = 0, there is no natural length scale and the growth rates are independent of
the wave number. Even with negligible surface diffusivity (in our calculations we have assumed Pes = 108 � 1),
the growth rates for the soluble unbounded problem do depend on the wavenumber underscoring the importance of
the length scale Dbμ1/γ0. We note that the hydrodynamic mode is identical to that obtained in the case of a clean
flow.

For two semi-infinite fluids, the coefficient b2 in (14) must vanish to ensure a bounded concentration in the
far-field. Looking at the form of ζ in (14) suggests the scaling c ∼ k−1/3 in order to retain solubility effects in the
analysis. We can then expand the wave speed as c = c0k−1/3 + · · · in the transcendental equation, and we find that
to satisfy the equation at leading order we need

Ai′(z) = 0 with z = (−isPeb)
1/3s−1c0. (22)

It is known that the derivative of the Airy function Ai′(z) only has zeros on the negative real axis and there are
an infinite number of them [24]. Consider this infinite set of roots zn = −ξn < 0, n = 1, 2, . . ., with ξn > 0.
The leading-order wave speed c0 can then be written as c0 = −Aξneiπ/6, where coefficient A = s2/3Pe−1/3

b is a
positive constant. Hence any solution for c0 lies on a line in the third quadrant, at an angle of 30◦ with the negative
real axis. The leading-order growth rate is therefore stable since Im(c0) = −Aξn/2 < 0 for all values of n.

We have provided above some analytical evidence that the growth rates of an unbounded flow are stable for
small values of k. For arbitrary values of k, the stability of the growth rates is supported by the numerical results
presented earlier that correspond to a semi-infinite flow. In particular, it has been demonstrated that all growth rates
are stable for sufficiently short waves (this is also true for Fig. 2 at larger k not shown in the plot).

4 Conclusions

We have investigated the linear stability of an interface between two sheared viscous fluids above a flat wall, in
the case when the thinner fluid layer is filled with a soluble surfactant. In particular, we have found that a soluble
surfactant has a stabilising impact on the flow. We performed a linear stability analysis for Stokes flow and analysed
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Fig. 5 Variation of the energy budgets of interfacial surfactant from Eq. (11b), for the same parameter set as in Fig. 3 and B = 0.01
(left) or B = 0.1 (right). All quantities are normalised by the diffusion in the bulk, DIFC

the behaviour of the growth rates for different surfactant solubilities. According to Pozrikidis & Hill [5], in the case
of insoluble surfactant the flow is always unstable to some perturbation of finite wavelength. We have found that
the flow is completely stabilised when the surfactant is sufficiently soluble. Long-wave disturbances are stabilised
by a relatively low level of solubility, but mid-wave instability is supported for weakly soluble surfactant; that is,
perturbations of moderate wavelengths may be unstable.

The results discussed above were obtained numerically for disturbances of arbitrary wavelength by solving
a linear eigenvalue problem for the wave speed of the perturbations. We have also examined the linear system
analytically in the case of large-wavelength disturbances using an asymptotic approach. Somewhat unexpectedly,
the leading-order forms of the dominant growth rates do not reduce to those found for an insoluble surfactant when
the appropriate limits are applied, a discrepancy that we attribute to a non-uniformity in the relevant asymptotic
expansion.

We have also carried out an energy budget analysis which provided insight into which of the terms in the surfactant
transport equation are key for (de)stabilisation when this is supported. Specifically, we have demonstrated that a
term proportional to the shear rate at the interface dominates over all other terms and hence, in keeping with previous
studies with insoluble surfactant, it is shear that provides the key component to drive the instability.

It is interesting to contrast the results of this study with those in [12,13] for a film flow down an inclined
substrate, where it was found that solubility has a destabilising effect. Therefore different flow fields disrupt the
uniform surfactant distribution at the interface in different ways, leading to Marangoni stresses that may be stabilising
(gravity-driven film flow with inertia) or destabilising (shear-driven film flow, as here). However, in both cases the
effect of increasing solubility is to mitigate the respective trend, i.e. the stabilising/destabilising effect becomes
weaker.

Finally, we have examined the importance of the wall in determining the stability of the flow. In common with the
findings of Pozrikidis & Hill [5] for insoluble surfactant, we have found that the presence of the wall is necessary
for interfacial instability when the surfactant is soluble. This outcome is suggested by our numerical and analytical
results (based on asymptotic analysis for long-wave perturbations) for an unbounded flow. The physical role played
by the wall in destabilising the flow remains an open question and is the subject of our current investigations.
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Appendix A: Kinetic energy budget

To obtain an equation for the kinetic energy, the linearised momentum equations (with Re �= 0)

Re
(
ûi t + ūi · ∇ ûi + ûi · ∇ ūi

) = −∇ p̂i + mi∇2ûi , ∇ · ûi = 0, (23)

are multiplied by the perturbation velocities, ûi and v̂i , respectively, and are then integrated over the respective flow
regions and added together. In particular, the vertical integration spans the height of each fluid for y ∈ [ai , bi ],
i = 1, 2, where a1 = 0, b1 = 1 and a2 = 1, b2 = ∞, while integration in the horizontal direction takes place in
a wavelength [0,�], with � = 2π/k and k is the wavenumber (horizontal periodicity is assumed). The pressure
terms are then eliminated by using the boundary conditions on the wall, the velocity continuity condition at the
interface, and the linearised stress balance equations at the interface. The continuity equation is also applied and
the resulting energy budget equation is the following:

KIN + REY = DIS + TEN + TAN + MAR, (24a)

where

KIN =
2∑

i=1

Re
d

dt

∫ �

0

∫ bi

ai

1

2

(
û2
i + v̂2

i

)
dy dx,

REY =
2∑

i=1

Re
∫ �

0

∫ bi

ai
ū′
i ûi v̂i dy dx,

DIS = −
2∑

i=1

mi

∫ �

0

∫ bi

ai

(
2û2

i x + 2v̂2
iy + (ûiy + v̂i x )

2
)

dy dx,

TEN = γ̄

∫ �

0
ĥxx v̂1

∣∣∣
y=1

dx,

TAN =
∫ �

0
(û1 − û2)(û1y + v̂1x )

∣∣∣
y=1

dx,

MAR = − Ma

(1 − Γ̄ )

∫ �

0
Γ̂x û2

∣∣∣
y=1

dx, (24b)

cf. [25–27]. The first term on the left-hand side, KIN, is the spatially averaged rate of change of the kinetic energy
of the disturbances (and is proportional to the growth rate, [17]), while the second term, REY, is the energy transfer
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from the basic flow to the disturbances via the Reynolds stresses [25]. Both of these terms are proportional to the
Reynolds number in the film, which is minuscule due to the small fluid thickness; while these terms are left in the
energy budget for completeness, in practice they are both zero for the problem considered here and so Eq. (24b)
cannot be used to determine whether the flow is stable or unstable. The terms on the right-hand side are explained as
follows: term DIS is viscous dissipation and is always negative; term TEN represents the rate of work done against
the interfacial tension in deforming the interface [17,26] (a term involving the hydrostatic pressure gradient would
also be added here had the effect of density stratification been also considered); term TAN represents the transfer
of energy from the basic flow to the perturbed flow at the interface [23]—this term is non-zero since the viscosities
are unequal, m �= 1; and finally, term MAR is due to the Marangoni stresses at the interface.

Appendix B: Insoluble surfactant limits

Limit B → 0

In this limit the mass flux Jb tends to zero and the adsorption/desorption process to/from the interface is suspended.
The two normal modes obtained via linear stability analysis are the same as those coming from the insoluble
surfactant case, as expected. Now there is an infinite number of additional modes that are always stable; the origin
of these modes is from the bulk equation, which is now decoupled from the rest of the system and is solved with
homogeneous boundary conditions C̃ ′(0) = C̃ ′(1) = 0.

Limit Rb → ∞

In this case, the linearised interfacial flux becomes

J̃b = B

(
RbC̃(1)(1 − Γ̄ ) − Γ̃

(1 − Γ̄ )

)
∼ BRb(1 − Γ̄ )C̃(1) as Rb → ∞. (25)

The second boundary condition in (12g) then becomes C̃ ′(1) + PebBRb(1 − Γ̄ )C̃(1) = 0, hence in the limit
Rb → ∞ the condition simplifies to C̃(1) = 0. Consequently, none of the flux terms will remain in the linearised
transport equation for the surfactant at the interface (since the only surviving term, seen in Eq. (25), is C̃(1) = 0
as found above), and hence the interfacial equation is reduced to that for insoluble surfactant. Finally, we note
that the bulk equation is again decoupled from the rest of the system but is now solved with boundary conditions
C̃ ′(0) = C̃(1) = 0, in which case all modes found numerically are seen to not pass through the origin k = 0.

Appendix C: Normal modes of the bulk equation for B = 0

In the case of insoluble surfactant obtained by setting B = 0, the linearised bulk equation (12f) is solved with
homogeneous boundary conditions C̃ ′(0) = C̃ ′(1) = 0. We will show that all modes originating from the bulk
concentration system are stable. Multiplying (12f) by the complex conjugate C̃∗, integrating over the vertical fluid
domain [0, 1], applying integration by parts, and using the boundary conditions, result in

−
∫ 1

0
|C̃ ′(y)|2 dy −

∫ 1

0

[
k2 + ikPebsy − ikPebc

]
|C̃(y)|2 dy = 0. (26)
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Solving for the wave speed gives

c = s

∫ 1
0 y|C̃(y)|2 dy∫ 1
0 |C̃(y)|2 dy

− 1

kPeb

(∫ 1
0 |C̃ ′(y)|2 dy∫ 1
0 |C̃(y)|2 dy

+ k2

)
i, (27)

therefore it is clear that Re(c) > 0 and Im(c) < 0, and hence the growth rates have the property λ = k Im(c) ≤ 0
for all k ≥ 0.
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