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1 Introduction

There is now a wealth of observational evidence in support of an accelerating universe [1–3].
This acceleration is usually attributed to a cosmological fluid known as dark energy whose
microscopic origins are unknown [4] or else some modification of Einstein’s General Theory
of Relativity at large distances [5–7]. In some of the most interesting phenomenological
scenarios, this acceleration can be identified with the dynamics of an ultra-light scalar field
which couples to ordinary matter with gravitational strength. If the scalar continued to
operate in this way at shorter distances - within the scale of the solar system - it would
mediate a fifth fundamental force that so far has not been detected [8, 9]. Viable models
must therefore be able to screen, i.e. suppress, the extra force in environments where it is
known to be small. Only a handful of screening mechanisms are known (see eg [10–19]),
one of which is Vainshtein screening (for a review see [20]). Here, a derivative interaction
term dominates close to a matter source, causing a breakdown of the linear theory and
suppressing the gradient of the scalar field, thus screening the fifth force within a typically
large Vainshtein radius. Vainshtein screening is seen in nonlinear massive gravity [21] and
Galileon-type models [22]. Theories displaying Vainshtein screening necessarily run into
strong coupling at macroscopic scales in order for the derivative interactions to kick in at
sufficiently large distances from the source [23]. For this reason, these theories can only be
properly understood as effective theories with a limited range of validity. Since the breakdown
occurs on macroscopic scales it is important to ask what happens beyond that scale and
what impact it has on Vainshtein screening. This question has been studied before [24, 25],
where it was argued that a generic ultra-violet (UV) completion of a theory with derivative
interactions could introduce further interaction terms that have the potential to destroy the
Vainshtein mechanism. However, the difficulty in addressing this question directly has been
the absence of a known UV completion of a theory that exhibits Vainshtein screening (indeed,
in the case of Galileons [22], it has been argued that a standard Wilsonian UV completion
does not exist [26]).

In this paper, we examine the potential of Vainshtein screening to survive UV completion
directly. This has been made possible with the advent of an interacting massive Galileon
(IMG) and its UV completion presented in [27]. Motivated by that set-up we examine
a generalised set of IMG theories together with their possible UV completions. We show
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Figure 1. Ratio of the scalar fifth force to Newtonian force around a compact object, for the IMG
theories described in the text (Eq. 2.2) (dotted lines) and a possible UV completion for the n = 3
case (Eq. 3.2) (solid black line). The shaded region indicates the distance scales where the behaviour
of the force changes for the different theories. When pushed towards strong coupling, the IMGs show
marked suppression of the fifth force around the compact object. However, because this occurs at
strong coupling, one really ought to work with a description that extends the theory further into the
UV. For the UV complete example shown here (solid black line), we see that there is no longer any
suppression of the fifth force.

that Vainshtein screening does occur for each type of interaction provided the Galileon is
massive. Armed with an extended description at high energies, we are able to see if screening
survives the inclusion of UV corrections. The answer is a resounding no. Through these
explicit examples, it becomes clear that a low energy approximation to any UV theory is not
automatically trustworthy when pushed into a non-perturbative regime. Such conclusions
should not come as a surprise given our understanding of effective field theories in particle
physics. Nevertheless, the conclusion is significant in the context of Vainshtein screening,
where at least some higher order operators are required to become large by construction.
These results cast further doubt on the theoretical viability of Vainshtein screening, even
before observational constraints are attempted.

Our approach combines analytic estimates with a careful numerical analysis. A flavour
of the numerical results are presented in Fig.1 where we plot the ratio of the fifth force to
the standard Newtonian force in the vicinity of a spherically symmetric compact source. The
dotted lines reveal what happens for a family of massive Galileon theories with particular
derivative interactions. In each case, the fifth force is suppressed close to the source as the
derivative interaction begins to dominate. The black solid line is the prediction for a UV
completion of one of these scenarios. It is easy to see that suppression of the fifth force no
longer occurs: the Vainshtein mechanism is completely destroyed by the UV corrections to
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the theory.
The rest of this paper is organised as follows: in the next section, we will identify a

family of higher order Galileon invariant operators that have the potential to Vainshtein
screen, but only when the Galileon is massive. We give simple analytic arguments to indicate
that screening will take place which are then reinforced by our numerical analysis. In section
3 we raise the cut-off of our effective description by integrating in a heavy field. This is done
for each family of interactions considered in section 2. We present a generic analytic argument
for why we expect screening to be spoiled in these UV extended theories. For the special case
already identified in [27], the theory in question is UV complete in the limit MPl → ∞. In
section 4, we perform a numerical analysis on this UV complete theory and see that screening
is destroyed. This allows us to scrutinise the integrating process in detail, and re-examine
operators one would usually neglect due to heavy mass suppression. It turns out that a tower
of higher order operators can no longer be neglected within a certain macroscopic distance
from the source. This is entirely consistent with the generic arguments presented in [24, 25]
and reinforces the idea that Vainshtein screening cannot be taken seriously without a much
better understanding of the UV effects in any particular model. Our numerical methods
and results are presented in section 4, with additional details found in a companion paper
[28]. We conclude in section 5. In the appendix, we consider adding a mass deformation to
so-called Wess-Zumino Galileon theories, and ask whether the screening properties remain
intact.

We work in units with c = ~ = 1, and use the reduced Planck mass MPl = 1/
√

8πG.

2 Interacting Massive Galileons and Vainshtein screening

Galileon theories [22] have been seen to emerge in a variety of interesting cosmological scen-
arios, from DGP gravity [29] to non-linearly realised massive gravity [30]. Although they con-
tain higher order derivative interactions, the field equations remain at second order, thereby
avoiding the Ostrogradski instability [31]. The defining characteristic of a Galileon theory is
one that is invariant under a Galileon transformation π → π+bµx

µ+c in flat space, where bµ
and c are constant and we sum repeated indices following the Einstein conventions. For the
theories with second order field equations defined in [22], the interaction operators shift by
a total derivative under the Galileon transformation and for this reason they are sometimes
referred to as Wess-Zumino interactions [32]. Of course, we can also include interactions that
are manifestly invariant under the Galileon transformation, such as (∂∂π)n, where there are
two (or more) derivatives acting on each insertion of the scalar. These are expected to arise
anyway as effective field theory (EFT) corrections to the leading order interactions.

The Wess-Zumino interactions are known to facilitate Vainshtein screening [22]. Al-
though, as emphasised in the introduction, this goes hand in hand with strong coupling and
concerns about the validity of our effective description when screening is active [24, 25]. One
way to avoid this concern would be to find a UV theory which could reproduce the Vainshtein
mechanism at low energies, but generalises to higher energies. Unfortunately, positivity con-
straints suggest that a standard Wilsonian UV completion of the theory cannot exist [26, 33].
To avoid these bounds, it is necessary to deform the Galileon theory in the infra-red (IR),
in order to change the form of the low energy scattering amplitudes. One of the simplest
deformations is the inclusion of a mass term: although such a term breaks the Galileon
symmetry, the action continues to respect the Galileon non-renormalisation theorem at low
scales [34]. Additionally, loop corrections generated by the addition of a mass term do not
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violate the Galileon symmetry at any order. We then look to be in good shape to have a
well-behaved theory that has some hope of being UV completed.

An example of a UV-complete massive Galileon theory was given in Ref. [27], where,
through the introduction of a single heavy field H, Galileon invariant interactions for the
light Galileon field π can be obtained, with the exception of the mass term. Integrating out
the heavy field to leading order1 yields a single field Galileon theory in π at low energies,
respecting the same symmetry. Generalising the self interaction term for the heavy field to
any integer power n + 1, the IR theory then contains terms of the form (�π)n. Further
details on how this is done can be found in section 3. The non-linear nature of the derivative
interactions opens up the possibility that screening will occur.

With this in mind, we consider the following action assumed to be valid at low energies2,

S[π] =

∫
d4x

(
−1

2
(∂π)2 − 1

2
m2π2 +

ε

n+ 1

(�π)n+1

Λ3n−1
+

πT

MPl

)
(2.1)

where π is a scalar field with mass m, the integer n ∈ {2, 3, 4 . . .} and ε = ±1. One can see
that this action is invariant under the Galileon transformation of π → π + bµx

µ + c, with
the exception of the mass term, verifying that it is indeed a theory of a massive Galileon3.
As usual, the Galileon is coupled to external sources with gravitational strength through
the trace of the energy-momentum tensor T . The theory becomes strongly coupled at some
scale Λ � MPl, reflecting its status as an effective theory only valid at large distances. We
now ask the following: does this theory exhibit Vainshtein screening close to the source and,
if so, how close to the source can we go and still trust its predictions? The latter requires
knowledge of the UV completion to be discussed in the next section.

We proceed by varying the action to obtain the equation of motion,

�π −m2π + εOn =
MS

MPl
δ(x) (2.2)

where On ≡ �(�π)n

Λ3n−1 , and we have chosen a pressureless delta function source of mass MS

with support at x = 0. We shall now look for static, spherically symmetric configurations.
Firstly, considering Eq. (2.2) far from the source, we are in the so-called linear regime,

and the solution has the form πlin ∼ MS
MPl

e−mr

r . In order to determine at what radius we might
expect a breakdown of the linearised theory, and therefore identify a candidate Vainshtein
radius, we evaluate On on the linearised solution, and compare it to the other terms in the
equation of motion. We find that On|πlin ∼ Λ1−3nm2n�πnlin. Assuming that we are well
inside the Compton wavelength of π, we can take the approximation r � m−1, which then

simplifies the expression to On|πlin ∼ Λ1−3nm2n
(
MS
MPl

)n
r−(n+2).

Comparing with the mass term, the ratio On|πlin/m2πlin is given by
(
r
(n)
v
r

)n+1

, where

r
(n)
v ∼ (σSκ

2)
n−1
n+1 Λ−1, with σS ≡ MS

MPl
and κ ≡ m

Λ . We see that so long as σSκ
2 � 1, then the

linearised theory breaks down at some macroscopic scale r
(n)
v � Λ−1. It is worth recognising

that, without a mass term, κ = 0 and there is no screening.

1We do this by substituting the equation of motion for H back into the action. We explicitly computed the
first-order loop corrections to these results and they do not alter the form of the would-be screening operator.

2Note that we employ a different definition of the parameters ε and Λ compared to those of the companion
paper [28].

3For clarity and brevity, we define a massive Galileon in flat space as a theory for which δL ∝ m2 under
the Galileon transformation, up to total derivatives.
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Although we have identified a potential breakdown of the linear theory, we still have not
confirmed the existence of screening; we must examine the non-linear regime and determine
whether the solution supports a screening mechanism. To this end, we neglect the kinetic
and mass terms in (2.2), and integrate the equation to obtain (�π)n

Λ3n−1 ∼ MS
MPl

1
r + c where c

is a constant. If the constant is negligible, we integrate to obtain a solution of the form
π ∼ (σSΛ3n−1)

1
n r2− 1

n . However, if the constant instead dominates, the solution is of the

form π ∼ (cΛ3n−1)
1
n r2 + d. We see that in both cases the scalar force is suppressed at small

radii, consistent with screening.
To complete our analysis, we need to show that the two asymptotic solutions, at large

and small radii, can be consistently matched onto one another. We have not been able to
show this analytically, but our numerical solutions indicate that the two solutions can indeed
be matched (see Fig.1). This suggests that the family of interacting massive Galileon theories
given by equation (2.1) will exhibit Vainshtein screening around a heavy source. However,
given the importance of the derivative interaction in suppressing the force close to the source,
it remains to ask whether or not we really trust this prediction. UV corrections are expected
in order to preserve perturbative unitarity and raise the cut-off of the effective theory. What
effect do these corrections have on the predictions of the theory close to the source?

3 Raising the cut-off eliminates screening

Consider the action,

S[π,H] =

∫
d4x

(
−1

2
(∂π)2 − 1

2
(∂H)2 − 1

2
m2π2

−1

2
M2H2 − αH�π − λHn+1

(n+ 1)!µn−3
+

πT

MPl

)
(3.1)

generalised from [27], where π is the Galileon field, with light mass m, H is some heavy
field of mass M � m, and T is the trace of the energy-momentum tensor of the source,
coupling only to the Galileon field. λ and α are dimensionless coupling coefficients of order
one, although we must impose λ ≥ 0 and |α| < 1 to avoid instabilities. µ is a new high energy
scale representing the new cut-off of the theory when n ≥ 4. For n ∈ {2, 3}, the theory is
well-defined all the way up to the Planck scale. One can see that in each case the action will
transform in the correct way in order to be considered a massive Galileon theory. Variation
yields the following field equations,�π −m2π − α�H = − T

MPl

�H −M2H − α�π − λHn

n!µn−3 = 0 .
(3.2)

We assume as boundary conditions that the fields are everywhere regular and asymptoting
to the vacuum expectation value.

Examining the region far outside the Compton wavelength of H, we can make the
assumption ��M2, which gives

H ∼ − α

M2
�π − λαn(−1)n

n!M2(n+1)

(�π)n

µn−3
+O(λ2) . (3.3)

It should be noted that we have discarded terms of the form
(
�
M2

)j
π in order to write down

this expression. While these are legitimate terms under all of our perturbation expansions,
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they are subdominant in both the linear and non-linear regimes, and only become important
at the Compton wavelength of H, at which point one would have to work with the full UV
theory anyway.

Proceeding, we can write a low energy action as,

S̃ =

∫
d4x

(
−1

2
(∂π)2 − 1

2
m2π2 +

(−1)nλαn+1(�π)n+1

(n+ 1)!M2(n+1)µn−3
+

πT

MPl

)
(3.4)

where we have discarded terms of order λ2 or higher. We then identify this with our IR
theory, and see that we must have M2(n+1)µn−3 ∼ Λ3n−1 and, for n odd, ε = −1. If we
want the UV theory to be able to describe physics at higher energies reliably, we require
it to have a larger strong coupling scale than the corresponding IR theory. For n ∈ {2, 3},
the UV theory is renormalisable in the absence of external sources, but for n ≥ 4 we must

restrict ourselves to Λ < µ. Writing µ = NΛ for N > 1, we see that M = N
3−n

2(n+1) Λ, i.e. the
heavy field must be lighter than the strong coupling scale, in keeping with our intuition from
Wilsonian UV completions.

We now give analytic arguments to explain why we expect screening to be absent in
this extended theory, focussing on the UV complete case with n = 3. We start by rewriting
the equations of motion as follows:�(π − αH)−m2π = ρ

MPl

�(H − απ)− V ′(H) = 0
(3.5)

where V ′(H) = M2H+ λ
3!H

3, and for simplicity the source ρ is taken to be a top-hat function
of radius rs, i.e. ρ(r) = ρ̄Θ(rs − r), so that we may explore the field profiles both inside and
outside the source. The main focus here will be on the solution for the Galileon field, π, since
this is the one probed directly by matter.

We start by assuming that β ≡ �H/V ′(H) varies slowly. This is consistent with the
numerical simulations everywhere away from the source-vacuum transition. In principle the
constant value of β could differ from inside to outside the source. The second equation in
Eq. (3.5) now yields �H = α

1−β−1�π and substituting this into the first equation gives

(Z�−m2)π =
ρ

MPl
(3.6)

where Z ≡ 1 − α2

1−β−1 is assumed to be positive. It is convenient to define effective mass

scales m̄in = m/
√
Zin and m̄out = m/

√
Zout so that this equation has the regular solution:

πin(r) =− ρ̄

MPlm2

[
1− (1 + xout) sinh(m̄inr)

xout sinhxin + xin coshxin

rs
r

]
(3.7)

πout(r) =− ρ̄

MPlm2

[
exout(xin coshxin − sinhxin)

xout sinhxin + xin coshxin

]
rs
r
e−m̄outr (3.8)

where we define xin ≡ x/
√
Zin and xout ≡ x/

√
Zout for x ≡ mrs. Note that the solutions

match at the source-vacuum transition, along with their first derivatives. We will also assume
that the source lies deep within the Compton wavelength of the Galileon, so in other words,
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x� 1. To examine screening, we compare the exterior solution πout with a typical Newtonian

potential, VN = − ρ̄r3s
6MPl

2r
. The ratio

πout/MPl

VN
=

6

x2

[
exout(xin coshxin − sinhxin)

xout sinhxin + xin coshxin

]
e−m̄outr (3.9)

is suppressed in two cases. The first corresponds to Yukawa suppression in the exterior, with
Zout � 1. Alternatively, if Zout & 1, suppression can also occur if the scalar decouples in
the interior, with Zin � 1. We shall now demonstrate that these scenarios are incompatible
with the required profile for H and so screening is not possible, at least up to the caveat of
our approximations.

Recall that �H = α
1−β−1�π = (1−Z)

α �π and so H = (1−Z)
α π + Ĥ where �Ĥ = 0.

Assuming regularity and continuity of H and its first derivative at the transition, we obtain

Hin =
(1− Zin)

α
πin +

(Zout − Zin)

α
xoutπs (3.10)

Hout =
(1− Zout)

α
πout +

(Zout − Zin)

α
(xout + 1)πs

rs

r
(3.11)

where πs ≡ − ρ̄
MPlm2

[
xin coshxin−sinhxin

xout sinhxin+xin coshxin

]
is the value of the Galileon at the transition.

For the case of Yukawa suppression for the exterior Galileon, we have Zout � 1. The
Yukawa suppression allows us to neglect πout in Hout. This means that Hout scales like a
massless field in most of the exterior, and given our definition β ≡ �H/V ′(H), we infer
βout � 1. The problem now is that this gives Zout ≈ 1 in contradiction with the condition
for Yukawa suppression.

For the case of suppression through decoupling of the interior Galileon, we have Zin � 1.

It follows that πin ≈ − ρ̄
6MPlZin

(
3+xout
1+xout

rs
2 − r2

)
and so �Hin ≈ − ρ̄

MPlα
. However, for Zin � 1

we require βin ≈ 1, and so we now expect V ′(Hin) ≈ − ρ̄
MPlα

. This suggests Hin ≈ constant,

in obvious contradiction with �Hin ≈ − ρ̄
MPlα

, except in the trivial limit where ρ̄→ 0.
In summary then, our heuristic analysis seems to suggest that screening of the Galileon

will not be possible when the backreaction of the heavy field is taken into account. Of course,
the assumption of constant �H/V ′(H) was a little crude and the numerics show that this
does not hold particularly well near the vacuum-source transition, casting some doubts on
our right to apply continuity conditions at this point. For these reasons we do not present
our analytics as the main evidence that ultra-violet effects will spoil the Vainshtein effects.
We leave that to the numerics.

4 Numerical methods and results

Determining the screening property of the UV theory analytically is challenging if one is to
avoid some crude assumptions. Likewise, for the IR theory, there is no a-priori guarantee
that it is possible to match between the high- and low-density regimes consistently. We
therefore address the problem numerically, to obtain the solution to the full equations of
motion Eq. (2.2), for n = 2, 3, 4 and Eq. (3.2) for n = 3 across all regimes. For this task,
we have developed the numerical code ϕenics4 [28], building on the FEniCS library[35–37].
ϕenics applies the finite element method to the solution of boundary-value problems relevant

4https://github.com/scaramouche-00/phi-enics
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for screening, and is able compute the fields’ profiles, associated fifth force and high-order
operators accurately across the full simulation box, without restricting to the high- and low-
density regimes to which analytic understanding is generally confined. The finite element
method is well suited for the computation of the high-order operators �(�π)n under study,
for which traditionally employed finite-differencing techniques are not sufficient.

For both theories, we compute the field profiles in the presence of a static spherically
symmetric compact source of mass MS = 1010MPl and radius rs = 1047MPl

−1, following a
smoothed top-hat profile:

ρ(r) =
MS

4π(−2w3)Li3(−er̄/w)

1

exp r−r̄
w + 1

(4.1)

where w = 0.02rs, Li3(x) is the polylogarithm function of order 3 and r̄ is chosen so that 95%
of the source mass is included within rs. In the limit w/rs → 0, this density profile becomes
the step function ρ(r) = 0.95 3MS

4πr3s
Θ(t̄rs − r), where t̄−1 = 3

√
0.95 and Θ is the step function.

The presence or absence of screening is not sensitive to the particular choice of smoothing we
make to the step function density profile. Whilst the specific choice of density profile may
make minor changes to the behaviour of the field profile inside the source and close to the
surface, it leaves the behaviour at larger radii unaffected [28].

For the UV theory, we take the masses of the light and heavy fields to be m = 10−51MPl

and M = 10−48MPl, with coupling constants α = 0.4 and λ = 0.7. For the IR theory, we
take Λ = 2.07 × 10−48 and ε = −1. Note that this choice of parameters corresponds to
different signs for α in the UV theory for n = 2, 3, 4. For both theories, we impose that
the fields be regular and asymptoting to the vacuum expectation value, which imposes the
boundary conditions {φ(∞) = H(∞) = 0;∇φ(0) = ∇H(0) = 0} and {π(∞) = 0;∇π(0) =
0;∇[∇2πn](∞) = 0}. For the IR theory, we supplement these conditions with the requirement
{∇[∇2πn](0) = finite}, which is obtained from the numerical solution to the UV theory
(n = 3). The latter is applied for consistency with the requirement of UV completion.

We shall now give details of the settings used to solve the UV and IR theories. For
both, we use interpolating polynomials of order 5, and the following ϕenics settings:

– UV theory, n = 3: ArcTanExpMesh of 150 points spanning a box r ∈ [0, 1010] × rs,
with parameters k = 8, a = 5 × 10−2, b = 3 × 10−2. Field rescalings: µφ = 1013MPl,
µH = 1012MPl;

– IR theory, n = 2: ArcTanExpMesh of 400 points, spanning a box r ∈ [0, 109]× rs, with
parameters k = 25, a = 5 × 10−2, b = 3 × 10−2 and declustering at rrm = 103rs with
parameters Arm = 1, krm = 10. Field rescaling: µπ = 10−15MPl.

– IR theory, n = 3: ArcTanExpMesh of 700 points spanning a box r ∈ [0, 109] × rs, with
parameters k = 25, a = 5× 10−2, b = 4× 10−2. Field rescaling: µπ = 10−15MPl.

– IR theory, n = 4: ArcTanExpMesh of 600 points spanning a box r ∈ [0, 109] × rs, with
parameters k = 25, a = 5× 10−2, b = 3× 10−2. Field rescaling: µπ = 10−15MPl.

The mesh classes available in ϕenics are discussed extensively in [28]: they apply a nonlinear
transformation to a mesh that is initially equally spaced in order to obtain a discretisation
that is finer along the source-vacuum transition and coarser everywhere else. All numerical
settings reported here are similarly defined in [28] and in the ϕenics documentation.
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In Figure 1, we show the ratio of the scalar force to the Newtonian gravitational force
Fs/FN for the UV theory (n = 3) and the IR theory (n = 2, 3, 4), around the compact object
in Eq. (4.1). When a scalar field couples to matter with a coupling strength MPl, the ratio
is equal to 2 if there is no screening. We can see that this is the case for the UV theory,
where Fs/FN = 2 for r . 1/m, (for r & 1/m the massive field decays exponentially and
the scalar force is correspondingly suppressed). The scenario is radically different for the IR
theories, where strong Vainshtein screening is displayed around the source. Here, the scalar
force is suppressed compared to the Newtonian force by a factor which can be as large as
109, confirming our expectations of Sec. 3.

To understand the absence of screening in the UV theory, and its apparent presence in
the IR, we consider the neglected higher order terms for n = 3. Still under the assumption
��M2, i.e. far from the Compton wavelength of H, we write down the leading order term
for each power of λ, and find them to be of the form:

Xj = (−1)j+1

(
3j

j

)
1

2j + 1
α2j+2

(
λ

3!

)j
�(�π)2j+1M−6j−2 (4.2)

with j ≥ 1. We might, at first, expect that the terms j > 1 are negligible when compared
to X1 ≡ O3 from Sec. 3. However, when evaluated on the full UV solution, we find that
actually these terms become important sooner than O3, and all at roughly the same radius.
We check this numerically, and compute the operators Xj for j = 1, 2, 3, 4 in the UV theory
(n = 3): the result is shown in Figure 2. As expected, the hierarchy of the operators breaks
down. We have verified that this numerical result is independent of the specific source profile
or theory parameters used. Näıvely, we could consider the radius at which the higher-order
operators become important as a new scale at which we might expect the linear theory to
break down: however, this is not borne out by the numerical solution. It is therefore clear
that the operators we initially neglected, along with O3, resum to produce an operator that
is negligible and unable to provide screening at macroscopic distances.

5 Conclusion

In this paper we have explored a class of UV complete theories of massive Galileons, which
at low energy are manifestly Galileon invariant, with the exception of the mass term.

Taking candidate low energy theories, we have shown that operators of the form (�π)n

have the ability to result in Vainshtein screening. This was suggested by our analytic approx-
imations at small and large r. However, to show that the two asymptotic regimes could indeed
be connected to one another, we needed to use numerics. It turned out that our asymptotic
solutions could match and we did not run into any obstacles involving inconsistent boundary
conditions or branch cuts.

Generalising the example action [27] to an arbitrary power of self-interaction for the
heavy field H, we have seen that this class of theories exhibits a massive Galileon symmetry in
the light field π, and that integrating out H only generates terms that respect the symmetry.
However, it turns out operators that would normally be neglected in a näıve analysis of the
IR equation of motion, due to being suppressed by large powers of the heavy mass M , play an
important role in determining the behaviour of the solution, and in fact become relevant at a
larger radius than operators one might have considered leading order. Interestingly, although
individually relevant, these additional operators re-sum to produce a negligible effect, giving
a free field profile all the way up to the source radius. Although our candidate low energy
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Figure 2. The operators Xj in Eq. (4.2), for the UV theory (n = 3); solid (dotted) lines indicate

positive (negative) values. The assumption Xj>1 � O3 ≡ �(�π)3

Λ8 (for Λ8 = 6M8/(λα4)) is clearly
invalid.

theory exhibits screening by virtue of a (�π)n operator, in making contact with the UV we
necessarily introduce additional operators that entirely disrupt this effect. It is clear that
when integrating out a heavy field, a simple truncation is not always sufficient, and in some
cases is catastrophically wrong, forcing a careful consideration of all higher order operators
being neglected.

With Ref. [27] having identified a mass term as a potential deformation to avoid pos-
itivity bounds in Galileon theories, we investigated its consequences in the context of Wess-
Zumino Galileons in the appendix. At first glance the deformation seems to leave the standard
screening picture for this theory unaffected, even when one considers loop corrections. How-
ever, if we try to connect it to some UV completion and view it from an EFT standpoint,
we must necessarily introduce operators that, for heavy enough sources, can dominate over
the standard Wess-Zumino terms. Whether this would ruin the screening enjoyed by the
deformationless theory or simply increase the radius at which screening occurs is unclear,
but the prior results of this paper tell us that the former could be more likely than one might
näıvely expect.
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A Massive Wess-Zumino Galileons

The familiar Wess-Zumino (WZ) Galileons are a popular modified gravity theory, first ap-
pearing in the context of DGP gravity [29, 38], giving rise to second-order field equations
and Vainshtein screening [22]. They are invariant under the standard Galileon symmetry, up
to a total derivative and coupled with the requirement of second-order field equations, this
restricts the action to a finite number of operators. These terms can be organised into what
are known as the cubic, quartic and quintic Galileons [22].

Despite the many desired features WZ Galileons exhibit, they are impeded from a
standard Wilsonian UV completion by the existence of positivity bounds, which restrict the
form of low energy scattering amplitudes for scalar theories [26, 33]. To avoid this limitation,
one may deform the theory at low energies, satisfying the bounds, while attempting to keep
all other features of the theory intact.
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Having shown in section 3 and 4 that a mass term acts unexpectedly in our candidate
theory, we ask whether this type of deformation is acceptable in the context of WZ Galileons,
in particular whether the Vainshtein mechanism is preserved. We consider the action,

S =

∫
d4x

(
−1

2
(∂π)2 − 1

2
m2π2 + WZ terms +

πT

MPl

)
(A.1)

where the WZ terms are the standard cubic, quartic and quintic Galileons. We will assume
for simplicity that the mass term essentially plays no role in screening - its role here is merely
to evade the positivity bounds.

Having posited that simply adding a mass deformation preserves the Vainshtein prop-
erties of the theory, while avoiding positivity bounds, we need to consider whether this
alteration induces other operators that spoil the screening. Thanks to the Galileon non-
renormalisation theorem, neither the mass or the Wess-Zumino couplings receive radiative
corrections [38–41]. However, higher order EFT corrections are of a more general form, which
can be written as

(m2π2)a∂2b(∂∂π)c

Λ4a+2b+3c−4
(A.2)

where a, b, c are positive integers and we have treated m2 as a spurion. At the level of the
equation of motion, this operator yields a term of the form,

O ∼ m2a∂2(b+c)π2a+c−1

Λ4a+2b+3c−4
(A.3)

where for the moment we remain agnostic about where the derivatives are operating. Again
following the standard procedure, we evaluate the operator on the linearised solution in the
static spherically symmetric approximation, for r � m−1, resulting in

O
∣∣∣∣
πlin

∼ m2a

Λ4a+2b+3c−4
m2x 1

r

2(b+c−x) (σS

r

)2a+c−1
(A.4)

where x ∈ [0, b + c] and its value depends on the number of �π insertions in O, and σS ≡
MS/MPl as in Sec. 2. Let us now compare this against a standard WZ operator, which looks
like,

OWZ ∼
(∂∂π)L

Λ3(L−1)
(A.5)

where L = 2, 3, 4. Under the same assumptions, evaluating on the linearised solution gives

OWZ

∣∣∣∣
πlin

∼
( σS

r3Λ3

)L
Λ3 . (A.6)

Comparing the two operators, we obtain a ratio,

O
OWZ

∣∣∣∣
πlin

∼
(r∗
r

)2a+2b+3c−(1+2x+3L)
(A.7)

where the radius r∗ at which the two operators become of comparable size, is given by

r∗ =
1

Λ

(
κ2(a+x)σ2a+c−L−1

S

) 1
2a+2b+3c−(1+2x+3L)

(A.8)
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where κ ≡ m/Λ as in Sec. 2.

We know that screening must be contaminated if O � OWZ at rV = σ
1
3
S Λ−1, the

Vainshtein radius of the WZ theory, as this would mean that when the WZ terms are supposed
to start screening, they would be in fact subdominant to the EFT operators.

Setting σS ≡ κ−t, we obtain

O
OWZ

∣∣∣∣
πlin(rV)

∼ κP (A.9)

where,

P =
2

3
(b+ 1)t+

2

3
a(3− 2t) +

2

3
x(3− t) . (A.10)

If t ≤ 3
2 then P > 0 and the EFT operators are suppressed relative to the WZ terms. However,

if t > 3
2 , then P can be made negative by a sufficiently large choice of a. Incidentally, for the

parameter values that correspond to the original mass deformation, P is positive all the way
up to t > 3, and so we see that EFT corrections are in general more important.

The value of t is essentially dictated by the size of the source, with heavier sources
having a larger t. For the Sun, we can estimate σS ∼ 1039, m ∼ H0, Λ ∼ (1000km)−1, which
gives t ∼ 39

20 . We see that, even for a simple example, EFT terms can spoil the screening of
the WZ operators.

There is a loophole in the above discussion. If the Galileon symmetry is only broken by
the mass term, then Galileon loops will not generate Galileon breaking operators and we do
not obtain arbitrarily high values of a. A similar point was already made in [42]. However,
the presence of a Galileon breaking interaction, beyond the original mass term, should be
enough to generate a full tower of interactions with high values of a. Such terms might be
expected if the breaking of Galileon symmetry is truly inherited from the UV physics and is
present in the couplings between light and heavy fields.
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