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trinsic statistical analysis of samples of networks, motivated by networks representing
text documents in corpus linguistics. We identify networks with their graph Laplacian
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from Euclidean space to the space of graph Laplacians. This framework provides a
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and Charles Dickens.
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1. Introduction

The statistical analysis of networks dates back to at least the 1930’s, however interest
has increased considerably in the 21st century (Kolaczyk, 2009). Networks are able
to represent many different types of data, for example social networks, neuroimaging
data and text documents. In this paper, each observation is a weighted network, de-
noted Gm = (V,E), comprising a set of nodes, V = {v1, v2, . . . , vm}, and a set of
edge weights, E = {wij : wij ≥ 0, 1 ≤ i, j ≤ m}, indicating nodes vi and vj are
either connected by an edge of weight wij > 0, or else unconnected (if wij = 0).
An unweighted network is the special case with wij ∈ {0, 1}. We restrict attention to
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networks that are undirected and without loops, so that wij = wji and wii = 0, then
any such network can be identified with its graph Laplacian matrix L = (lij), defined
as

lij =

{
−wij , if i 6= j∑
k 6=i wik, if i = j

for 1 ≤ i, j ≤ m.

The graph Laplacian matrix can be written as L = D − A, in terms of the adja-
cency matrix, A = (wij), and degree matrix D = diag(

∑m
j=1 w1j , . . . ,

∑m
j=1 wmj) =

diag(A1m), where 1m is the m-vector of ones. The ith diagonal element of D equals
the degree of node i. The space of m×m graph Laplacian matrices is

Lm = {L = (lij) : L = LT ; lij ≤ 0 ∀i 6= j; L1m = 0m}, (1)

where 0m is the m-vector of zeroes. The space Lm is a closed convex subset of the
cone of centred symmetric positive semi-definite m×m matrices:

PSD∗m = {Sm×m : xTSx ≥ 0∀x ∈ Rm; S = ST ; S1m = 0m}, (2)

and Lm is a manifold with corners (Ginestet et al., 2017). The relationship Lm ⊂
PSD∗m is evident as L ∈ Lm satisfies L = LT and L1m = 0m due to the definition
of Lm in (1) and any L ∈ Lm is diagonally dominant, as |lii| =

∑
i6=j |lij |, which is a

sufficient condition for any L ∈ Lm to satisfy xTLx ≥ 0 ∀x ∈ Rm (De Klerk, 2006,
page 232). Both Lm and PSD∗m have dimension m(m− 1)/2.

For the tasks we address the data are a random sample L1, . . . ,Ln from a population
of networks, where each observation is a graph Laplacian Lk ∈ Lm, k = 1, . . . , n
representing networks with a common node set V . Graph Laplacians are not standard
Euclidean data and so for typical statistical tasks such as computing the mean, perform-
ing principal component analysis, regression, and two sample tests on means, standard
Euclidean methods need to be carefully adapted.

To perform statistical analysis on the manifold of graph Laplacians we need to define
suitable metrics. First of all we introduce the Euclidean distance between matrices X
and Y, also known as the Frobenius distance

dE(X,Y) = ‖X− Y‖ = {trace(X− Y)T (X− Y)} 1
2 , (3)

and the Procrustes distance

dS(X,Y) = inf
R∈O(m)

‖X− YR‖, (4)

which involves optimizing over an orthogonal matrix R for the ordinary Procrustes
match of Y to X (Dryden and Mardia, 2016, chapter 7). When the matrices are centred,
as will be the case throughout the paper, this Procrustes distance is also known as the
Procrustes size-and-shape distance (Dryden and Mardia, 2016, chapter 5).
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We will consider two general metrics between graph Laplacians inLm, which are based
on these matrix distances. The Euclidean power metric between graph Laplacians is

dα(L1,L2) = dE(Lα1 ,L
α
2 ), (5)

and the Procrustes power metric between graph Laplacians is

dα,S(L1,L2) = dS(Lα1 ,L
α
2 ), (6)

where the power of the graph Laplacian Lαj , j = 1, 2 is defined in (7). Common choices
of Euclidean power metrics and Procrustes metrics are d1, d 1

2
and d 1

2 ,S
, referred to as

the Euclidean, square root Euclidean and Procrustes size-and-shape metrics respec-
tively (Dryden, Koloydenko and Zhou, 2009). We provide more detail about these met-
rics in Section 3.

Analysing networks by representing them as elements of Lm is an approach also used
by Ginestet et al. (2017). The authors considered the Euclidean metric d1 and derived
a central limit theorem which they used to develop a test of mean difference between
two samples of networks, driven by an application in neuroimaging. Motivation for our
consideration of metrics other than d1 includes evidence that there can be advantages
to using non-Euclidean metrics when interpolating non-Euclidean data, for example
less swelling in the context of positive semi-definite matrices (Dryden, Koloydenko
and Zhou, 2009).

Kolaczyk et al. (2020) have similarly considered using non-Euclidean metrics for net-
work data. Their ‘Procrustean distance’ for unlabelled networks is different from our
Procrustes distance in that they restrict their analogue of R in (4) to be a permutation
matrix, whereas we allow it to be a more general orthogonal matrix. In addition Ko-
laczyk et al. (2020) retain symmetry and have RTYR rather than YR in (4), which we
use following Dryden, Koloydenko and Zhou (2009). Although the metrics are differ-
ent, this connection provides motivation for using our Procrustes metric, for example
where nodes need to be relabelled or combined when computing a distance. Calcu-
lating the Procrustes metric is more straightforward when optimising over orthogonal
matrices compared to permutations, and so orthogonal Procrustes provides a fast ap-
proximation for Procrustes matching with permutations.

2. Application: Jane Austen and Charles Dickens novels

In corpus linguistics, networks are used to model documents comprising a text corpus
(Phillips, 1983). Each node represents a word, and edges indicate words that co-occur
within some span—typically 5 words, which we use henceforth—of each other (Evert,
2008). Our dataset is derived from the full text in novels1 by Jane Austen and Charles
Dickens, as listed in Table 1, obtained from CLiC (Mahlberg et al., 2016). For each
of the 7 Austen and 16 Dickens novels, the “year written” refers to the year in which

1Christmas Carol and Lady Susan are short novellas rather than novels, but we shall use the term “novel”
for each of the works for ease of explanation.
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Author Novel name Abbreviation Year written
Austen Lady Susan LS 1794
Austen Sense and Sensibility SE 1795
Austen Pride and Prejudice PR 1796
Austen Northanger Abbey NO 1798
Austen Mansfield Park MA 1811
Austen Emma EM 1814
Austen Persuasion PE 1815
Dickens The Pickwick Papers PP 1836
Dickens Oliver Twist OT 1837
Dickens Nicholas Nickleby NN 1838
Dickens The Old Curiosity Shop OCS 1840
Dickens Barnaby Rudge BR 1841
Dickens Martin Chuzzlewit MC 1843
Dickens A Christmas Carol C 1843
Dickens Dombey and Son DS 1846
Dickens David Copperfield DC 1849
Dickens Bleak House BH 1852
Dickens Hard Times HT 1854
Dickens Little Dorrit LD 1855
Dickens A Tale of Two Cities TTC 1859
Dickens Great Expectations GE 1860
Dickens Our Mutual Friend OMF 1864
Dickens The Mystery of Edwin Drood ED 1870

TABLE 1
The Jane Austen and Charles Dickens novels from the CLiC database (Mahlberg et al., 2016)

the author started writing the novel; see The Jane Austen Society of North America
(2020) and Charles Dickens Info (2020). Our key statistical goals are to investigate
the authors’ evolving writing styles, by regressing the networks on “year written”; to
explore dominant modes of variability, by developing principal component analysis
for samples of networks; and to test for significance of differences in Austen’s and
Dickens’ writing styles, via a two-sample test of equality of mean networks.

For each Austen and Dickens novel we produce a network representing pairwise word
co-occurrence. If the node set V corresponded to every word in all the novels it would
be very large, with m = 48285, but a relatively small number of words are used far
more than others. The top m = 50 words cover 45.6% of the total word frequency,
m = 1000 cover 79.6%, and m = 10000 cover 96.7%. We focus on a truncated set
of the m most frequent words for the combined set of all novels of both authors. and
the wij’s are the pairwise co-occurrence counts between these words. Hence the node
set V is consistent between all networks with a common labelling of nodes regardless
of novel or author. Although the labelling of the nodes is fixed in our applications, the
Procrustes metric does allow for some relabelling or combining of words. For example
the metric would be useful where equivalent words or spellings are used (e.g. thy versus
your) and more generally where nodes from different novels/authors are not ordered
and they need to be relabelled or combined when computing a distance.

In our analysis we choose m = 1000 as a sensible trade-off between having very large,
very sparse graph Laplacians versus small graph Laplacians of just the most common
words. For each novel and the truncated node set, the network produced is converted
to a graph Laplacian. A pre-processing step for the novels is to normalise each graph
Laplacian in order to remove the gross effects of different lengths of the novels by
dividing each graph Laplacian by its own trace, resulting in a trace of 1 for each novel.

As an indication of the broad similarity of the most common words we list the top 25
words in the table in Appendix A. Of the top 25 words across all novels 22 appear in the
most frequent 25 words for the Dickens novels and 23 for the Austen novels. The words
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not, be, she do not appear in Dickens’ top 25 and the words mr and said do not appear
in Austen’s top 25. Some differences in relative rank are immediately apparent: her,
she, not having higher relative rank in Austen and he, his, mr, said having relatively
higher rank in Dickens.

We initially compare some choices of distance metrics on the Austen and Dickens data
after constructing the graph Laplacians from them = 1000 most frequent words across
all 23 novels. Figure 1 (left column) shows the results of a hierarchical cluster analysis
using Ward’s method (Ward, 1963), based on pairwise distances between novels using
metrics d1, d 1

2
and d 1

2 ,S
. For computing the Procrustes metric we use the shapes

package (Dryden, 2019) in R (R Core Team, 2020).

The dendrograms for square root and Procrustes separate the authors into two very
distinct clusters, whereas for Euclidean distance Dickens’ David Copperfield and Great
Expectations are clustered with Austen’s Lady Susan which is unsatisfactory. The next
sub-division of the Dickens cluster using square root/Procrustes distance splits into
groups of the earlier novels versus later novels, with the exception being the historical
novel A Tale of Two Cities which is clustered with the earlier novels. There is not such
a clear sub-division for Dickens using the Euclidean metric. In the Austen cluster for
square root and Procrustes there is clearly a large distance between Lady Susan and the
rest, where Lady Susan is her earliest work, a short novella published 54 years after
Austen’s death.

Figure 1 (right column) shows corresponding plots of the first two multi-dimensional
scaling (MDS) variables from a classical multi-dimensional scaling analysis. The square
root and Procrustes MDS plots are visually identical, although they are slightly differ-
ent numerically. We see that there is a clear separation in MDS space between Austen’s
and Dickens’ works with a very strong separation in MDS1 using the square root and
Procrustes distances, and less so for Euclidean distance. This example clearly shows
differences when using the metrics, and demonstrates an advantage of using the square
root Euclidean and Procrustes distances compared to the Euclidean distance here.

3. Framework for the statistical analysis of graph Laplacians

3.1. Framework

The general framework we will define in this section for the statistical analysis of graph
Laplacians involves mapping, embedding and projections, shown schematically in Fig-
ure 2.

Distance metrics such as (5) and (6) on manifolds are referred to as intrinsic or ex-
trinsic. An intrinsic distance is the length of a shortest geodesic path in the manifold,
whereas an extrinsic distance is one induced by a Euclidean distance in an embedding
of the manifold (Dryden and Mardia, 2016, p112). On Lm, Euclidean distance d1 is
intrinsic, but in general dα and dα,S are extrinsic with respect to an embedding defined
as follows.
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Fig 1: Cluster analysis and MDS plots based on (from top to bottom) the Euclidean distance, d1, square
root distance, d 1

2
, and Procrustes distance, d 1

2
,S each with m = 1000. The plots display Austen’s novels

in lower case, and Dickens’s novels in upper case.
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Image(Lm)

Mm

Tν(Mm) LmMm ⊂

Idπ−1
ν Fα

PLGαπν

Fig 2: Schematic diagram for the general framework for the statistical analysis of graph Laplacians. The
embedding map Fα and embedding spaceMm are defined in Section 3.2. The identity map is denoted by
Id. The tangent space, Tν(Mm) and associated projections πν and π−1

ν are defined in Section 3.3. The
reverse power map Gα is defined in Section 3.4 and the projection PL is defined in Section 3.5.

3.2. Map and embedding

We write L = UΞUT by the spectral decomposition theorem, with Ξ = diag(ξ1, . . . , ξm)
and U = (u1, . . . ,um), where {ξi}i=1,...,m and {ui}i=1,...,m are the eigenvalues and
corresponding eigenvectors of L. We consider the following map which raises the graph
Laplacian to the power α > 0:

Fα(L) = Lα = UΞαUT : Lm → Image(Lm) ⊂Mm. (7)

We note that Fα is a bijective map (with inverse F−1α ). After applying the transformation
Fα we then consider the image of the graph Laplacian space to be embedded in a
manifold Mm, where statistical analysis is carried out using extrinsic methods. We
will either use the Euclidean distance dE (3) or the Procrustes distance dS (4) in the
embedding manifoldMm.

Our choice of Mm will depend on which metric is used. When using the Euclidean
power distance we take the embedding manifoldMm to be the space of real symmetric
m×m matrices with centred rows and columns

S∗m = {Y = (yij) : Y = YT ; Y1m = 0m}, (8)

which has dimensionm(m−1)/2, which is the same dimension asLm. When using the
Procrustes power distance we take the embedding manifold to be the reflection size-
and-shape space (Dryden, Koloydenko and Zhou, 2009; Dryden and Mardia, 2016,
p67)

RSΣmm−1 = {R(m−1)2/O(m− 1)}, (9)

which also has dimension m(m − 1)/2. The reflection size-and-shape space has sin-
gularities, but away from these singularity sets the space is a Riemannian manifold.

The distance metrics (5) and (6) are isometric to Euclidean distance in S∗m and Pro-
crustes distance in RSΣmm−1 respectively, and can be written as

dα(L1,L2) = ‖Fα(L1)− Fα(L2)‖
dα,S(L1,L2) = inf

R∈O(m)
‖Fα(L1)− Fα(L2)R‖.
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A suitable choice of α > 0 will be dependent on the application. Some discussion
in related work on symmetric positive semi-definite matrices is relevant. Despite the
swelling effect that can be present for α = 1 an advantage in this case is that we have
an intrinsic distance, and the nodes are directly used in the distance calculations rather
than in an embedding space. The parameter α behaves like a Box-Cox transformation
parameter, with α = 1

2 a matrix square root, and α → 0 a matrix logarithm. Large
α gives strong weight to the differences between the largest values in the embedding
space, and small α gives a more even weighting between large and small values. In
Pigoli et al. (2014) the authors considered metrics between covariance operators in-
cluding Procrustes metrics and in the continuous case it is required that α ≥ 1

2 . In
their examples α = 1

2 gave good results when investigating differences between lan-
guages. Dryden, Pennec and Peyrat (2010) also found α = 1

2 was appropriate when us-
ing Box-Cox transformation for comparing diffusion weighted images. The Procrustes
distance with α = 1

2 between two covariance operators is the same as the Wasserstein
distance between two zero mean Gaussian processes with different covariance opera-
tors (Masarotto, Panaretos and Zemel, 2019). The popularity of the Wasserstein metric
as an optimal transport distance between probability distributions (e.g. Villani, 2009,
Chapter 6) lends further support to using both Procrustes version and α = 1

2 . However,
ultimately it is of course up to the user whether to use Procrustes or not, and which α
to choose. In our applications we will compare α = 1 and α = 1

2 .

3.3. Tangent space

To perform statistical analysis we work with a tangent space at pole ν ∈Mm which we
denote by Tν(Mm). A projection from the tangent space Tν(Mm) toMm is written
as

πν : Tν(Mm)→Mm

with inverse projection π−1ν . Standard statistical methods can be applied in the tangent
space, which is a Euclidean space of dimension m(m− 1)/2. Figure 3 shows a simple
visualisation of a tangent space. The tangent space at ν is a Euclidean approximation
touching the manifold Mm. In non-Euclidean spaces a distance is the length of the
shortest geodesic path between two points on a manifold. For specific Riemannian
metrics the tangent projection could be the inverse exponential map, denoted exp−1ν
(Dryden and Mardia, 2016, Chapter 5), and in this case a geodesic becomes a straight
line in the tangent space preserving distance to the pole.

As the graph Laplacian space has centering constraints on the rows and columns, these
constraints are also preserved in our choice of map and embedding to Mm. We can
remove the centering constraints and reduce the dimensions of the matrices when pro-
jecting to a tangent space by pre and post multiplying by the m − 1 × m Helmert
sub-matrix H and its transpose as a component of the projection. The Helmert sub
matrix H, of dimension m− 1×m, has jth row defined as

(hj , . . . , hj︸ ︷︷ ︸
j times

,−jhj , 0, . . . , 0︸ ︷︷ ︸
m−j−1 times

), hj = −(j(j + 1))−
1
2 ,
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d

Tν

ν

O

d

X

Q

π−1
ν

Fig 3: A diagrammatic view of a π−1
ν projection, mapping X from a manifoldMm, here shown schemati-

cally as a sphere, onto the tangent space Tν .

(page 49, Dryden and Mardia (2016)). Note that HHT = Im−1 and HTH = Cm,
where Cm = Im−1m1Tm/m is the m×m centering matrix, Im is the m×m identity
matrix and 1m is the m-vector of ones.

For the Euclidean power metric we use the inverse tangent projection π−1ν to the tangent
space Tν(S∗m) = R

m(m−1)
2 as

π−1ν (X) = vech*{H(X− ν)HT }
πν(Q) = ν + HT vech*−1(Q)H

(10)

where vech∗ is the half vectorisation of a matrix including the diagonal, similar to vech,
but with

√
2 multiplying the elements corresponding to the off-diagonal. In this case

Mm = S∗m as in (8) so has zero curvature, and analysis is unaffected by the choice of ν.
The use of the Helmert sub-matrix ensures that we have the correct numberm(m−1)/2
of tangent coordinates, and is a convenient way of dealing with the centering constraints
inMm.

For the Procrustes power metric we define the map π−1ν to the tangent space
Tν(RSΣmm−1) = R

m(m−1)
2 as

π−1ν (X) = vec{H(XR̂− ν)HT }
πν(Q) = (ν + HT vec−1(Q)H)R̃

(11)

where vec is the vectorise operator obtained from stacking the columns of a matrix,
R̂ is the ordinary Procrustes match of X to ν (Dryden and Mardia, 2016, chapter 7)
and R̃ is the ordinary Procrustes match from (ν + HT vec−1(Q)H) to ν. Note that
the reflection size-and-shape space is a space with positive curvature (Kendall et al.,
1999) and statistical analysis depends on the choice of ν. A sensible choice for ν is the
sample mean, as defined in Section 3.6.
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3.4. Reverse power map

When transforming back from the embedding space to the graph Laplacian space we
choose a practical method which involves first applying a continuous reverse power
map Gα and then a projection PL into graph Laplacian space:

PL ◦Gα :Mm → Lm,

as illustrated in the framework in Figure 2.

We consider four choices for the reverse power map:

Gα(Q) =



(Q)
1
α when 1

α is an odd integer :Mm →Mm(
Q+QT+{(Q+QT )T (Q+QT )}

1
2

4

) 1
α

:Mm → PSD∗m ⊆Mm

(QQT )
1
2α :Mm → PSD∗m ⊆Mm,

(QTQ)
1
2α :Mm → PSD∗m ⊆Mm.

which are suitable for different scenarios depending on whether or not we want to map
to the space of centred positive semi-definite matrices PSD∗m before reversing the
powering of α. In our applications we use the first choice of reverse map for Euclidean
distance d1, which is just the identity map in this case. The second expression before
taking the power 1

α is the closest symmetric positive semi-definite matrix to Q in terms
of Frobenius distance (Higham, 1988), and we use this reverse map for d 1

2
. The third

reverse map removes the orthogonal matrix from the Procrustes match introduced from
the tangent projection in (11) and was used previously by Dryden, Koloydenko and
Zhou (2009). We use the fourth reverse map for d 1

2 ,S
in our applications, where the

orthogonal matrix from the Procrustes match is retained.

3.5. Projection

Suitable choices of projection PL based on the Euclidean power or Procrustes power
metrics are:

Pα(Y) = arg inf
L∈Lm

dE(Y, Fα(L)) :Mm → Lm

Pα,S(Y) = arg inf
L∈Lm

dS(Y, Fα(L)) :Mm → Lm,
(12)

where the Euclidean distance dE and the Procrustes distance dS were defined in (3)
and (4), respectively.

It is desirable that optimisation involved in computing the projection is convex, since
convex optimisation problems have the useful characteristic that any local minimum
must be the unique global minimum (Rockafellar, 1993).
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Result 1. For P1 the projection can be found by solving a convex optimisation problem
with a unique solution, by minimising

f(Y) = d2E(L,Y) =

m∑
i=1

m∑
j=1

(lij − yij)2

subject to: lij − lji = 0, 0 ≤ i, j ≤ m
m∑
j=1

lij = 0, 0 ≤ i ≤ m

lij ≤ 0, 0 ≤ i, j ≤ m and i 6= j.

(13)

It is immediately clear that this is a convex optimization problem since the objective
function is quadratic with Hessian 2Im(m−1)/2, which is strictly positive definite, and
the constraints are linear. The unique global solution for the projection can be found
using quadratic programming. To implement this projection P1 we can, for example,
use either the CVXR (Fu et al., 2020) or rosqp (Anderson, 2018) packages in R (R
Core Team, 2020) to solve the optimisation, and rosqp is particularly fast even for
m = 1000.

Note that the choice of metric for projection does not need to be the same as the choice
of metric for estimation. As the projection for the Euclidean power metric with α = 1
involves convex optimisation we will use PL = P1 throughout for all our metrics. For
α 6= 1 the optimization is not in general convex.

An alternative procedure to using the reverse map followed by a projection could be
to first apply a projection into the image space of graph Laplacians and then apply
an inverse of the embedding map F−1α , in a similar manner to Lin et al. (2017). This
alternative approach is more difficult to work with in general for graph Laplacians,
except for the Euclidean metric with α = 1 when both approaches are equivalent.

3.6. Mean estimation

There are two main types of means on a manifold: an intrinsic mean and an extrin-
sic mean (Dryden and Mardia, 2016, Chapter 6). We define the mean in the graph
Laplacian space using extrinsic means, although the mean when the Euclidean power
distance with α = 1 is used is in fact an intrinsic mean.

We define the population mean for graph Laplacians as

µ = PL(Gα(η)), where η = arg inf
u∈Mm

E[d2(Fα(L), u)], (14)

assuming η exists, and d is either the Euclidean or Procrustes distance in Mm. We
define the sample mean for a set of graph Laplacians as

µ̂ = PL(Gα(η̂)), where η̂ = arg inf
u∈Mm

1

n

n∑
k=1

d2(Fα(Lk), u), (15)
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assuming η̂ exists. For the Euclidean power distance we have

η = E[Fα(L)] (16)

η̂ =
1

n

n∑
k=1

Fα(Lk), (17)

where η, η̂, and hence µ, µ̂, are unique in this case. For the Euclidean power metric
when α = 1, we have µ̂ = η̂ and the mean is a Fréchet intrinsic mean (Fréchet, 1948;
Ginestet et al., 2017) in this case. An alternative discussion of the Fréchet mean is given
by Kolaczyk et al. (2020) who use vectorization rather than the matrices that we use.

For the Procrustes power distance µ and µ̂ may be sets, and the conditions for unique-
ness rely on the curvature of the space (Le, 1995). We will assume uniqueness exists
throughout. In the Procrustes case we assume uniqueness up to orthogonal transforma-
tion.
Result 2. Let Lk, k = 1, . . . , n be a random sample of i.i.d. observations from a
distribution with population mean µ in (14). For the power Euclidean distance dα the
estimator µ̂, in (15), is a consistent estimator of µ.

The proof of this result can be found in Appendix B. Note that a similar result holds
for dα,S where stronger conditions for consistency of η̂ are given in Bhattacharya and
Patrangenaru (2003), but the same projection argument used in the proof holds.

Fig 4: The means of (a) Austen’s novels and (b) Dickens’ novels using d1 based on the top m=1000 word
pairs. In (c) we see edges present in the Austen mean but not Dickens and in (d) the edges present in Dickens
and not Austen means. Zoom in for more detail.
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Figure 4 shows an illustration of the sample means for Austen and Dickens novels using
d1, with the 1000 words arranged in a grid and edges drawn between words which co-
occur with adjacency weight at least 10−5 of the sum of the nodes. The means plots
for both authors are similar, perhaps unsurprisingly as approximately half of the words
in each novel are represented by the first 50 words. Figure (c) shows edges present
in the Austen mean but not in the Dickens mean, and (d) the edges present in the
Dickens mean but not in the Austen mean, to highlight the differences between the two
networks. By zooming in, the mean plots illustrate more co-occurrences involving she,
her by Austen and involving the, his, don’t by Dickens, among many others. These plots
are drawn using the program Cytoscape (Shannon et al., 2003). We shall explore the
differences in more detail later in Section 4.5. Alternative plots comparing the means
using the Euclidean, the square root Euclidean and Procrustes metric can be found in
Appendix C, and all are visually very similar.

3.7. Interpolation and extrapolation

We now consider an interpolation path,
L(c), for c being the position along the path, 0 ≤ c ≤ 1, between the graph Laplacians
at L(0) and L(1). For c < 0 and c > 1 the path L(c) is extrapolating from the graph
Laplacians, at L(0) and L(1). The interpolation and extrapolation path between graph
Laplacians for each metric is defined by first finding the geodesic path in the embedding
spaceMm between the embedded graph Laplacians, which is then projected to Lm.

The interpolation and extrapolation path passing through L1 = PL(Gα(ν)) and L2 is

L(c) = PL(Gα(πν{cπ−1ν (Fα(L2))})). (18)

For the Euclidean power this simplifies to

L(c) = PL(Gα(Fα(L1) + c(Fα(L2)− Fα(L1)))). (19)

Although these paths are geodesics inMm they may not be geodesics when mapped
back to the graph Laplacian space. For the Euclidean power case with α = 1 the
distance d1 is an intrinsic distance and the interpolation paths are minimal geodesics
given by

L(c) = (1− c)L1 + cL2 ∈ Lm 0 ≤ c ≤ 1. (20)

But for α 6= 1 and the Procrustes power metrics for any α the distances are extrinsic.

Figure 5 shows networks evaluated on the interpolation and extrapolation paths at
c ∈ {−5, 0.5, 6} between the mean Austen and Dickens novels when using different
metrics for the 25 nodes corresponding to the most frequent words out of m = 1000
nodes. At c = 6 the feminine words have larger degrees and their edges have larger
weights, for example her to to, of and she to to. For c = −5 the nodes for she and
her are actually removed indicating they have degree 0, which is further evidence of
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the fact Austen used female words more then Dickens. The different choices of metrics
lead to similar interpolation and extrapolation paths in this example, although the d1
extrapolations are more sparse than d 1

2
, which in turn are more sparse than d 1

2 ,S
.

4. Further inference

4.1. Principal component analysis

There are several generalisations of PCA to manifold data, and the approach we define
is similar to Fletcher et al. (2004), by computing PCA in a tangent space and projecting
back to the manifold. Our approach differs from Fletcher et al. (2004) in that we have
the extra layer of embedding the manifold and in addition we apply the reverse map
and projection back to graph Laplacian space. Earlier approaches of PCA in tangent
spaces in shape analysis include Kent (1994) and Cootes et al. (1994).

Let vk = (π−1ν (Fα(Lk))), where ν = η̂ for either the Euclidean or Procrustes power
metric, then S = 1

n

∑n
k=1 vkvTk is an estimated covariance matrix. Suppose S is of rank

r with non-zero eigenvalues λ1, . . . , λr, then the corresponding eigenvectors γ1, . . . ,γr
are the principal components (PCs) in the tangent space, and the PC scores are

skj = γTj vk, for k = 1, . . . , n, j = 1, . . . , r. (21)

The path of the jth PC in Lm is

L(c) = PL(Gα(πν(cλ
1
2
j γj) )), c ∈ R. (22)

For the Euclidean case when α = 1 is chosen, the importance of the ith word in the
principal component γ is given by

πν(γ)ii
(
∑m
j=1 πν(γ)jj)

, for 1 ≤ i ≤ m. (23)

We now apply the methods of PCA to the pooled samples of Austen and Dickens
novels, for m = 1000. The first and second PC scores are plotted in Figure 6 for the
Euclidean, square root Euclidean and Procrustes metrics. Using the Procrustes metric
gave visually identical results to the square root Euclidean as we have specified the
labelling of the nodes using the most common words. The extrinsic regression lines
are included which we will define and explain below. The variance explained by PC 1
and PC 1 and 2 together was 49% and 70%; 37% and 46%; and 37% and 46% for the
Euclidean, square root Euclidean and Procrustes size-and-shape respectively. A benefit
of the square root Euclidean and Procrustes metric is clear here as they separate the
Austen and Dickens novels with a large gap on PC1 where as David Copperfield (DC)
and Persuasion (PE) are very close in PC1 for the Euclidean case. We now analyse the
Euclidean PCs in more detail.
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(a) c = −5 (b) c = 0.5 (c) c = 6

(d) c = −5 (e) c = 0.5 (f) c = 6

(g) c = −5 (h) c = 0.5 (i) c = 6

Fig 5: Networks on the interpolation and extrapolation paths between Dickens’ and Austen’s mean novels
at c = 0.5 (interpolation) and c = −5, c = 6 (extrapolations). Different metrics are used in each row (top
to bottom) d1, d 1

2
and d 1

2
,S . The top 25 words are displayed where the mean novels for the authors are

estimated for each metric respectively using m = 1000.
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Fig 6: Plot of PC 1 and PC 2 scores for the Austen and Dickens novels, shaded in time order (black to
gray, exact times can be found in Table 1) with extrinsic regression lines for Dickens novels (black) and
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Figure 7 contains plots representing the importance and sign of each word in the first
and second Euclidean PC. From Figure 6 a more positive PC 1 score is indicative
of an Austen novel whilst a more negative one a Dickens novel. For a positive PC1
score the nodes her and she have importance whilst for a negative score words such
as his, and he have more importance, which is expected as Austen writes with more
female characters. The second PC is actually similar to a fitted regression line which
we describe in the next section and it is interesting to refer to the dates that the novels
were written in Table 1. For Austen, the PC2 scores tend to be larger for later novels,
and note that Lady Susan (LS) and Persuasion (PE) are her earliest and latest novels
respectively. For Dickens the opposite is true, in that the PC2 scores tend to be smaller
for later novels. Pickwick papers (PP) is Dickens’ earliest and The Mystery of Edwin
Drood (ED) his latest. The second PC has feminine words like her and she as the
most positive words, but more first and second person words, such as I, my and you
as negative words. This is consistent with Austen increasingly using a stylistic device
called free indirect speech in her later novels (Shaw, 1990). Free indirect speech has
the property the third person pronouns, such as she and her are used instead of first
person pronouns, such as I and my.

4.2. Regression

Here we assume the data are the pairs {Lk, tk}, for 1 ≤ k ≤ n in which the Lk ∈
Lm are graph Laplacians to be regressed on covariate vectors tk = (t1k, . . . , t

u
k), and

consider the regression error model

π−1ν (Fα(Lk)) = vech∗(D0 +

u∑
w=1

twk Dw) + ε, ε ∼ Nm(m−1)/2(0,Ω). (24)

In general Ω has a large number of elements, so in practice it is often necessary to
restrict Ω to be diagonal or even isotropic, Ω = ω2Im(m−1)/2.

When using the power Euclidean metric we take ν = 0 and the parameters {D0, . . . ,Du}
in (24) are (m− 1)× (m− 1) symmetric matrices, and they are estimated by solving

(D̂0, . . . , D̂u) = arg min
D0,...,Du

n∑
k=1

‖π−1ν (Fα(Lk))− vech∗(D0 +

u∑
w=1

twk Dw)‖2. (25)

The fitted values are

f(tk) = L̂k = PL

(
Gα

(
πν

(
vech∗

(
D̂0 +

u∑
w=1

twk D̂w

))))
∈ Lm, (26)

and so L̂k predicts a graph Laplacian with covariates tk. The optimisation in (25) is
convex and the parameters of the regression line are found using the standard least
squares approach in the tangent space. This optimisation reduces element-wise for 1 ≤
i, j ≤ m, to m(m− 1)/2 independent optimisations. A similar model can be used for
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the Procrustes power metric but with ν = η̂ and with the vec operator in place of the
vech* operators.

A test for the significance of covariate tw involves the hypotheses H0 : Dw = 0 and
H1 : Dw 6= 0. By Wilks’ Theorem (Wilks, 1962), if H0 is true then the likelihood ratio
test statistic is

T ` = −2 log ∆ = −2

(
sup
D,Dw=0

`(D)− sup
D,Dw 6=0

`(D)

)
∼ χ2

m(m−1)
2

, (27)

approximately when n is large, where D = {D0, . . . ,Du,Ω}, ` is the log-likelihood
function under model (24), and Ω is a diagonal matrix. Using equation (27) H0 is
rejected in favour ofH1 at the 100a% significance level if T ` is greater than the (1−a)
quantile of χ2

m(m−1)
2

.

For the Austen and Dickens data, each novel, represented by a graph Laplacian Lk
is paired with the year, tk, the novel was written. We regress the {Lk} on the {tk}
using the method above with u = 1 for each author. To visualise the regression lines in
Figure 6 we find the fitted values f(tk) for many values of tk for the specific metrics,
and project these to the PC1 and PC2 space. For each metric the regression lines seem
to fit the data well, and could be used to see how writing styles have changed over
time. When the test for regression was performed on the novels the p-values were
extremely small (< 10−16) for both the Austen and Dickens regression lines, for the
Euclidean, square root Euclidean and Procrustes size-and-shape metrics. Hence there
is very strong evidence to believe that the writing style of both authors changes with
time, regardless of which metric we choose.

4.3. A central limit theorem

Consider independent random samples Ak, k = 1, . . . , n where Fα(Ak) have a distri-
bution with mean E(Fα(A)). As the extrinsic mean is based on the arithmetic mean for
the power Euclidean metrics, a central limit holds for the sample mean graph Laplacian,
under the condition var(Fα(A))ij) is finite.
Result 3. For any power Euclidean metric

√
n vech∗ (η̂ − η)

D−→ Nm(m−1)
2

(
0,Σ

)
,

as n → ∞, and recall vech∗ is the vech operator but with
√

2 multiplying the terms
corresponding to the off-diagonal, and Σ is a finite variance matrix.

When α = 1 this result is similar to that in Ginestet et al. (2017) although they work di-
rectly inLm whereas we work in the embedding space. For the Procrustes power metric
a similar central limit theorem result follows providing the more stringent conditions
of Bhattacharya and Patrangenaru (2005) hold.
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4.4. Hypothesis tests

Consider two populations A and B of m × m graph Laplacians with corresponding
population means µA and µB defined in (14) . Given two independent random samples
{A1,A2, . . . ,AnA} and {B1,B2, . . . ,BnB} respectively from A and B, the goal is to
test the hypotheses

H0 : µA = µB and H1 : µA 6= µB .

We define the test statistic as T = d(Â, B̂)2, where Â and B̂ are defined by η̂ in (15)
for the sets A and B respectively and using a suitable metric. Any Euclidean or Pro-
crustes power metric is suitable to use, we however will just consider the Euclidean
TE = d1(ÂE , B̂E)2; the square root Euclidean TH = d 1

2
(ÂH , B̂H)2; and the Pro-

crustes size-and-shape TS = d 1
2 ,S

(ÂS , B̂S)2, where the subscripts {E,H, S} refer to
whether the Euclidean, square root or Procrustes size-and-shape means have been used,
respectively.

Using Result 3, the distribution of the test statistics for large n is given as follows for
the power Euclidean metric.
Result 4. Consider independent random samples of networks of size nA and nB . For
the power Euclidean metric under the null hypothesis,H0: µA = µB , as nA, nB →∞,
such that nA/nB → r ∈ (0,∞):

nAnB
nA + nB

dα(Â, B̂)2
D−→

m(m−1)/2∑
i=1

δiχ
2
1, (28)

in which each χ2
1 is independent and δi are the m(m − 1)/2 non-zero eigenvalues of

Σ = nBΣA+nAΣB
nA+nB

, where ΣA and ΣB are the population covariance matrices from
Result 3 for the respective samples.

In practice Σ needs to be estimated, which can be very high dimensional. In our appli-
cation with m = 1000 this is a symmetric matrix with M(M + 1)/2 parameters where
M = m(m − 1)/2 = 499500. One approach is to use the shrinkage estimator from
Schäfer and Strimmer (2005), as employed by Ginestet et al. (2017), but this is imprac-
tical for our application with m = 1000. If we assume a diagonal matrix Σ = Λ∗ then
the δi correspond to the variances of individual components of the difference in means,
and these can be estimated consistently from method of moments estimators. A further
very simple model would be to have an isotropic covariance matrix with covariance
matrix Σ = σ2Im(m−1)/2, which requires estimation of a single variance parameter
σ2. Note that the likelihood ratio test for regression with test statistic −2 log ∆ in Sec-
tion 4.2 gives an alternative test for equality of means when the covariates are group
labels, but the additional assumption of normality for the observations needs to be made
in that case.

An alternative non-parametric test, which does not depend on large sample asymptotics
is a random permutation test, similar to Preston and Wood (2010) as follows.
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Algorithm 1 Random permutation test to test the equality of means for two sets of
graph Laplacians, A and B, using the test statistic T .
1: Calculate the test statistics betweenA and B, given by T = T (A,B) .
2: Generate random sets A∗ and B∗ of size |A| and |B| respectively, by randomly sampling without re-

placement fromA ∪ B.
3: Compute the test statistic of setsA∗ and B∗, given by T ∗ = T (A∗,B∗).
4: Repeat steps 2 and 3 r times, to give test statistics T ∗1 , T

∗
2 , . . . , T

∗
r .

5: Order the test statistics T ∗(1) ≤ T ∗(2) ≤ . . . ≤ T ∗(r).
6: Calculate the p-value, which is 1− j

r
for the minimum 1 ≤ j ≤ r − 1 satisfying

T ∗(j) < T ≤ T ∗(j + 1), unless T ≤ T ∗(1), in which case the p-value is 1 or if T > T ∗(r), in
which case the p-value is 0.

A limitation of using the permutation test is it assumes exchangeability of the observa-
tions under the null hypothesis (Amaral, Dryden and Wood, 2007). This means under
the null hypothesis the populations A and B are assumed identical. A test based on the
bootstrap is an alternative possibility, which requires weaker assumptions about A and
B, see for example Amaral, Dryden and Wood (2007).

For the Austen and Dickens data have test statistics TE = 0.0011, TH = 0.2759, TS =
0.0691. We compute the p-value from the permutation test with r = 199 permutations
for each of TE , TH , TS and in each case all permuted values were less than the observed
statistics for the data. Hence, in each case the estimated p-value is zero, indicating very
strong evidence for a difference in mean graph Laplacian.

4.5. Exploring differences between authors

The result that the Austen and Dickens novels are highly significantly different is not
unexpected due to the clear difference between Austen and Dickens’ novels seen in the
PCA plot in Figure 6. Also, high-dimensional multivariate tests of global differences
are often significant due to the nature of high-dimensional spaces, where random ob-
servations become approximately orthogonal to each other as the dimension increases
(Hall, Marron and Neeman, 2005). To address this issue further we now focus on the
main edge-specific differences between the Austen and Dickens networks, which is of
strong practical interest.

In particular we examine the off-diagonal elements of µ̂AustenE − µ̂DickensE i.e. the
differences in the mean weighted adjacency matrix, and compare them to appropriate
measures of standard error of the differences using a z-statistic. The histograms of
the off-diagonal individual graph Laplacians are heavy tailed, and a plot of sample
standard deviations versus sample means show an overall average linear increase with
approximate slope β = 0.2, but with a large spread. We shall use this relationship in a
regularised estimate of our choice of standard error.

For a particular co-occurrence pair of words we have weighted adjacency values xi, i =
1, . . . , nA and yj , j = 1, . . . , nB with sample means x̄ and ȳ, and sample standard de-
viations sx and sy . For our analysis here we use the Euclidean mean graph Laplacians.
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We estimate the variance in our sample with a weighted average of the sample vari-
ance and an estimate based on the linear relationship between the mean and standard
deviation, and in particular the population pooled variance is estimated by

s2p =
nA(wAs

2
x + (1− wA)β2x̄2) + nB(wBs

2
y + (1− wB)β2ȳ2)

(nA + nB − 2)
,

where the weights are taken as wA = nA/N,wB = nB/N , where we take N =
200. Note that if all values in one of the samples are 0 (due to no word co-occurrence
pairings in any of that author’s books) then we drop that word pairing from further
analysis, as we are only interested in the relative usage of the word occurrences that
are actually used by both authors. A univariate z-statistic for comparing adjacencies is
then

z =
x̄− ȳ

(q + sp)
√

1
nA

+ 1
nB

, (29)

where we include the regularizing offset q > 0 to avoid highlighting very small differ-
ences in mean adjacency with very small standard errors. The value for q is chosen as
the median of all sp values under consideration.

Exploratory graphical displays are given in Figure 8 as networks where an edge is
drawn between two words if they appear in the top 100 pairs of words ranked according
to the z-statistic in (29). The plots show the more prominent co-occurrences used by
Austen and the more prominent co-occurrences used by Dickens, respectively. The
displays illuminate striking differences between the novelists. For Austen there are very
common pairings of words with her, she, herself, which form important hubs in this
network. Austen also pairs these hubs with more emotional words feelings, felt, feel,
kindness, happiness, affection, pleasure and stronger words power, attention, must,
certainly, advantage and opinion. Also we see more use of letter in Austen, which is
a literary device often used by the author. For Dickens there are more common uses of
abbreviations, especially don’t which is an important hub, and also it’s, i’ll and that’s.
In contrast the Austen network highlights not. Dickens also more prominently pairs
body parts arm, arms, eyes, feet, hair, hand, hands, head, mouth, face, shoulder, legs in
combination with the strong hubs his and the. These hubs are also paired with other
objects, such as door, chair, glass. Finally, Dickens has the more prominent use of pairs
with a sombre word, such as dark, black and dead, which might have been expected.

5. Conclusion

We have developed a general framework for the statistical analysis of graph Laplacians
and considered in particular the power Euclidean, dα, and Procrustes size-and-shape,
dα,S , metrics. The framework is extrinsic except when d1 is used. Other metrics fit in
our extrinsic framework and could be considered. One example is the log metric used
in Bakker, Halappanavar and Sathanur (2018) which uses the embedding Flog(L) =∑l
i=1 log (ξi)uiuTi , and Flog(L) = limα→0

1
α (Fα(L)−F0(L)) where we define 00 = 0
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(below).
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in F0 and l is the rank of L. The metric is then dlog(L1,L2) = ‖Flog(L1)− Flog(L2)‖.
The log embedding is a natural embedding to consider in more detail in further work
and to compare the properties of the log embedding methods with using Fα. The log
embedding been used successfully in many applications, for example for symmet-
ric positive definite matrices extracted from diffusion tensor imaging (DTI) in Bhat-
tacharya and Lin (2017). An extrinsic regression model similar to the ours but using
kernel regression has been developed for manifolds by Lin et al. (2017), and in future
work it would be worth investigating if their results extend to the Fα embedding.

Another metric to consider is the element-wise metric of the form
d∗ρ(L1,L2) = (

∑
i

∑
j |(L1)ij−(L2)ij |ρ)

1
ρ . Of particular interest would be comparing

ρ = 2, which is the Frobenius/Euclidean norm d1, with ρ = 1 which can be similar to
the square root norm (and is identical for diagonal matrices).

One practical issue is the estimation of covariance matrices in models for graph Lapla-
cians. In general form bym graph Laplacians the covariance matrix Ω has a very large
number m(m−1)(m2−m+2)

8 of parameters in the regression model (24). A very large
number n of networks would be needed for estimating the most general form of the
model, and so in practice we assume that the covariance matrix is diagonal. Extending
to non-diagonal parameterised covariance structures could also be sometimes feasible,
e.g. autoregressive models or covariance structure based on the spatial location of the
nodes if that makes sense in particular applications.

In our application we have ordered the 1000 word lists, and we used the ordering of
the most common words from the combined set of novels of both authors. Although
the ordering of most common words is different in each novel, there is consistency in
the broad ordering of common words. It does make sense in our application to keep
a common ordering, and the effect of using the Procrustes distance versus the power
metric is not so large, as we have seen. However, in other applications where there is
a less obvious correspondence between nodes, the Procrustes distance could be very
different.

Our methodology gives appropriate results for comparing co-occurrence networks for
Jane Austen and Charles Dickens novels, but the methodology is widely applicable, for
example to neuroimaging networks and social networks, and such applications will be
explored in further work.
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Appendix A: Most common words

Rank in Rank in Rank in
Word all Dickens Austen

novels novels novels
the 1 1 1
and 2 2 3
to 3 3 2
of 4 4 4
a 5 5 5
i 6 6 7
in 7 7 8

that 8 8 13
it 9 11 10
he 10 10 16
his 11 9 20
was 12 13 9
you 13 12 15
with 14 14 21
her 15 16 6
as 16 15 18

had 17 17 17
for 18 20 19
at 19 21 25
mr 20 18 38
not 21 26 12
be 22 28 14
she 23 31 11
said 24 19 58
have 25 25 23

TABLE 2
The most common 25 words in the Austen and Dickens novels
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Appendix B: Proof for result 2

Let {θ̂n} be a sequence of estimates from a sample set of graph Laplacians
{L1, . . . ,Ln} for a population parameter θ. For θ̂n to be consistent it converges in
probability to θ as n→∞, i.e. for any ε > 0, δ > 0 there exists a number N such that
for all n ≥ N we have P (|θ̂n − θ| > ε) < δ.

When using the power metric dα we have the embedding space Mm as a Euclidean
space. Hence, we know that η̂ ∈ Mm is a consistent estimator of η ∈ Mm, as it
converges in probability to η from the law of large numbers, where η̂, η are defined in
(16),(17). So by the continuous mapping theorem Gα(η̂) converges in probability to
Gα(η) as n→∞.

Gα(η)

Gα(η̂)

µ̂

B(Lm)

β

ζ

µ

(a) Case 1

Gα(η)

B(Lm)

Gα(η̂)

µ̂

ϑ

q

β

ζ

µ

(b) Case 2

Fig 9: 2D representations of the possibly high dimensional faces of Lm illustrating
convergence of means.

We now need to show the convergence in probability holds when we project to Lm.
Recall that Lm ⊂ Mm and both spaces have dimension m(m−1)

2 . Ginestet et al.
(2017) showed that Lm is a closed compact convex subset of an affine space, i.e. each
face of Lm is isometric to a subset of [0,∞)k × Rd−k for some k > 0. Hence the
interior of each face of Lm has zero curvature, and we denote the boundary of Lm as
B(Lm). Let β = |Gα(η̂)−Gα(η)| and ζ = |µ̂− µ|.

There are three cases to consider:

• Case 1: µ is in B(Lm) but not on a corner. In this case the estimator behaves as
in Figure 9a. The estimator Gα(η̂) is orthogonally projected to µ̂, hence due to
Pythagoras’ theorem it is clear ζ ≤ β.
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• Case 2: µ is on a corner of B(Lm). In this case the estimator behaves as in Figure
9b. Clearly π

2 ≤ ϑ ≤ π as Lm is convex (Ginestet et al., 2017). We consider a
point q along the line between Gα(η̂) and Gα(η) such that the angle between µ̂,
µ and q is π

2 . Note ζ ≤ |Gα(η̂) − q| following identical arguments as in case 1,
and clearly |Gα(η̂)− q| ≤ β. Hence ζ ≤ β.

• Case 3: µ is in the interior ofLm, and so Gα(η) = µ and by Pythagoras’ theorem
ζ ≤ β.

From the consistency of Gα(η̂) for any ε > 0, δ > 0 there exists an N such that for
n ≥ N then P (|Gα(η̂)−Gα(η)| > ε) < δ. So, in all three cases we deduce that

P (|µ̂− µ| > ε) = P (ζ > ε) ≤ P (β > ε) = P (|Gα(η̂)−Gα(η)| > ε) < δ

and so µ̂ converges in probability to µ, i.e. µ̂ is a consistent estimator for µ.
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Appendix C: Means for Austen’s and Dickens’ novels

Fig 10: The means of (left) Austen’s novels and (right) Dickens’ novels using d1 (first row), d 1
2

(middle

row) and d 1
2
,S (bottom row) based on the top m=1000 word pairs. Zoom in for more detail.


