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Supporting Information Text15

Raw data will be made available at Harvard Dataverse (https://dataverse.harvard.edu/).16

Social interactions and collective behaviours17

As the density of the arena is increased, termite workers tend to cluster tightly. Under these conditions individuals effectively18

decrease their moving speed in order to engage in social interactions so that the probability of truncating their otherwise free19

trajectories is increased as well. This situation is, however, highly dynamic as cluster of different sizes persistently form and20

disintegrate afterwards. Individuals in the border of a cluster may detach from it but individuals in the center, albeit not21

often, would also spontaneously walk slowly and find their way out from the cluster to explore the arena. Individuals freely22

walking far from the cluster may come across the cluster in its way and may attach to it or not, preferentially (see the following23

VIDEO| 5:03 min, as an example).24

Fig. S1. Examples of termite groups of different sizes forming as the density is increased. Notice also separate individuals wandering around while
exploring a Petri dish of diameter 53 mm.
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Social trapping –or social jamming– may well be a term to describe this process of attaching and detaching from a cluster,25

since it is modulated by social interactions. Social trapping induces waiting times while the individuals stands still (these26

waiting times are known to be power law distributed [1]). It is also a factor to induce the shortening of the exploration steps27

and so it is the collective mechanism that induce a statistical distribution of steps lengths described by power laws, as described28

in the text. A graphical evidence of the emergence of Lévy trajectories patterns can be seen in the examples depicted in29

Figure S2. An extra observational experiment was performed where around 400 workers were located on a large rectangular30

arena (60x40cm). In this experiment, all individuals were initially located at the center of the container and were allowed31

to move from there. Initially they tend to move away until reaching the edges, after an initial transient time, the arena was32

characterized by a heterogeneity in the density and size of social clusters and a number of moving individuals hopping among33

them when detaching and re-attaching. No large clusters were observed but multiple small clusters, this suggests strongly that34

individuals attach preferentially and do not interact all-against-all, simultaneously (see the following VIDEO| 20:00 min, as an35

example)36
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Fig. S2. Visual emergence of Lévy trajectories as the density of workers in the container arena is increased. Individuals wander around while exploring the
Petri dish of diameter 53 mm. Notice that in the low density situation (a), the worker trajectory is mostly ballistic where large steps dominate. In (d) the
focal individual have its trajectories truncated when engaging in social interactions with another individuals. Group sizes are (a) 12, (b) 15, (c) 18 and (d)
29 individuals in a 53 mm Petri dish.

Motion with inert passive obstacles37

In order to test if the emergence of Levy walks could be due to non social mechanical stimulation rather than social interactions,38

a null experiment was designed where inert obstacles were introduced in the arena, as shown in Fig S3, in a range of densities39

and different spatial configurations. Only one termite was introduced and tracked, no social interactions are present but only40

space restrictions due to the obstacles.41

Sandblasted glass arenas with an upside down 53mm diameter Petri dish as cover were used and 1, 10, 13, 16 and 2942

obstacles were introduced glued into the arenas. Each of these obstacles is a cylinder made of steel with 9.3 mm height and43

cross-section area equals to 19.59mm2, close to the mean area occupied by a termite, estimated as 18.53mm2 (antennae and44

“legs” considered). The steel was chosen as it has a smooth surface, so the termite was not able to climb it, and it is chemically45
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Fig. S3. One individual can be seen while exploring an arena with metal poles on it as obstacles in order to simulate the mechanical presence of other
individuals. Arena diameter is 53 mm and the pole diameter is the same average length of an adult termite.

inert as not having smell that could attract (or repel) the termites. The height of the obstacles was chosen so they have about46

the same height as the Petri dish. If they were smaller, the termite could be able to climb it. The identical obstacles were47

glued following three different spatial configurations and a range of densities, as explained below.48

49

Clustering configuration experiment. As a way to represent the space that would be occupied by the inert obstacles, a few50

experiments were performed with confined termites. In these experiments, termites were free to walk in the arenas and pictures51

of the typical pattern of the configuration of them were taken (Fig. S4). Inspired by these pictures, the obstacles were glued in52

the positions indicated by the black dots in Fig. S5. This configuration is referred to as a “clustering pattern”.53

The arenas were prepared with the obstacles forming asymmetrical aggregates with different sizes, and small space between54

each obstacle. In some arenas, one or two obstacles were put apart from the cluster, again to make the configuration of the55

obstacles as similar as possible to real termite clustering configurations. In all cases of this configuration, the clusters did not56
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Fig. S4. Pictures of typical spatial distribution of confined termites forming groups, which motivated the clustering configuration of the obstacles experiment.
At the left, there were no evident clusters and social interactions occurred in pairs mostly (11 individuals). At the center, 12 individuals formed small
clusters, for example four individuals clustered at the top of the arena. At the right, 21 individuals in the container, exhibited few free walking individuals
but also a large size social cluster.

touch the arena’s walls, so the termite could also follow a large unobstructed path close to the arena border.57

Fig. S5. Termite trajectories (red) for 1, 10, 13, 16 and 29 obstacles, placed following the clustering configuration. The black circles represent the real
position and size of the obstacles. Notice that even that there was a fair amount of space between the obstacles, the individuals mostly avoided entering
the clusters.

Examples of the arenas used in this clustering configuration experiment are depicted In Fig. S5, together with the trajectories58

of the termite (red) in each one of them. Black circles represent the real position (and size) of the obstacles. As the borders of59

the arena were unobstructed, individual workers walked close to the borders of the arena, apparently following this pattern60

most of the time. The free paths between the obstacles were rarely explored and, as expected, the termite largely ignored the61

obstacles spending little or no time trying to interact with them.62

63

Obstacles distributed homogeneously. Obstacles placed homogeneously were explored as an alternative spatial configuration.64

As before, the borders of the arena were kept free of obstacles. However, in this configuration there are some wide paths65

between the obstacles, so it is expected that this can influence the walking patterns of the termite. Examples of termite66

trajectories are depicted in Figure S6 where termite trajectories in each arena, with 1, 10, 13, 16 and 29 obstacles, are depicted.67

As before, termite walked most of the time close to the arena border. It was observed that, until 16 obstacles, termites walk68

often between the obstacles, but beyond this number and particularly with 29 obstacles, inner incursions are scarce and termites69

walked almost entirely at the border of the arena.70
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Fig. S6. Termite trajectories (red) are depicted for 1, 10, 13, 16 and 29 obstacles, placed in a random configuration. The black circles represent the real
position and size of the obstacles.

Obstacles forming barriers at the border. Observations indicate that single termites walk mostly following the borders of the71

arena. As a way to modify this persistent behaviour, in our third spatial configuration experiment, the obstacles were placed72

forming barriers in radial directions. Here, the obstacles were glued close to the borders of the arena, as can be see in Figure73

S7 where the termite trajectory is represented in red and the black dots are the obstacles, as before. For this configuration, an74

atypical behaviour was observed. Most of the experiments failed, since the termite was very persistent trying to push or climb75

the obstacles. Eventually, the termites fell upside down and were unable to walk anymore. We succeed in registering only76

three cases were the termite actually walked along the container. The two first cases, where just one obstacle was put in the77

arena, had distinct outcomes. In the first case, the termite follows his trial most of the time, and it explored only a fraction of78

the available space. In the second case, almost all the arena was explored. One should mention that there was no significant79

difference between both experimental conditions (room temperature, luminosity, etc). In the last case, the termite did not80

engaged in trying to push away the obstacles and an intricate pattern resulted.81

As a conclusion, if space restriction were to induce Lévy-like movements due to trajectory truncation one should identify82

Lévy walks as the density of obstacles increased. However, Levy walks were not evident in these experiments, independently of83

the configuration of the obstacles, as explained in the main text.84
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Fig. S7. Termite trajectories (red) for 1 and 29 obstacles, placed in the barrier configuration. The black circles represent the real position and size of the
obstacles.

An agent based model for annular motion85

Our agent-based model was inspired in the walking patterns of termite workers while freely exploring arenas formed by a bond86

paper of size A0. Figure S8 shows a typical trajectory registered with four thousand steps obtained from a termite walk after87

about 140 seconds of video recording. The arrow indicates the start point of the trajectory. It is easy to see that the termite88

follows a trajectory resembling a correlated random walk where a new step is in a direction very close to that of the preceding89

one and few cases with a large deviation (see three cases indicated by the red open circles in figure S8).90

Figure S9 shows the typical distributions obtained for the step size and turn angles for a trajectory of a free termite walk.91

Notice that, the step length distribution is well fitted by a normal function. The mean step value is δ = 1.1mm and the92

standard deviation σ = 0.4mm. Notice as well, that for angles around zero we observed a good exponential fit although, for93

values of the turning angle above a value close to π/2 a deviation is observed. Above this value, an uniform value to the94

distribution is observed. In fact, the solid line in the figure S9 is a fit to the termite data using95

F (θ) = pθ + 1
σθ
√

2π
exp
(
− θ2

2σ2
θ

)
[1]96

with pθ = 0.01 and σθ = 0.4.97

For simplicity, modeled termites are represented by circles of radius a. Termite can stay in two states: active or inactive.98

An active termite becomes inactive with a probability pw and stays inactive by a time interval τ (waiting time) or with99

complementary probability (1− pw) it tries to move. The waiting time is a random variable with a distribution that decays as100

a power-law with slope γ [1].101

The walk of an active termite is described by a persistent random walk, in which the position of the ith termite at (n+ 1)th102

step is given by103

~r n+1
i = ~r ni + ~dr

n+1
i , [2]104

where ~dr
n+1
i , the (n+ 1)th step, is given by105

~dr
n+1
i = δ cos(θni + ηn+1

i )̂i+ δ sin(θni + ηn+1
i )ĵ [3]106

here δ is a random step size chosen from a Gaussian distribution, θni is the direction of the (n)th step and ηn+1
i is a random107

perturbation on the direction of the preceding step chosen ∈ (−π, π) with probability pθ according to a uniform distribution108

and with a complementary probability according to a Gaussian distribution. The figure S10 shows schematically a few steps of109

a walk. Notice that the trajectory becomes ballistic if the variance and pθ → 0 or random if it →∞ and pθ → 1.110

The model evolution rules are as follows.111

i) The waiting time of all inactive termite is updated (subtracted by dt = 1/N) and if it becomes less than zero the112

termite is activated.113

ii) An active individual i is randomly selected. With probability pw it becomes inactive and, with the complementary114

probability, it tries to perform a step according to the equation (2).115

– Once in the AB model overlaps are forbidden, when the individual i met another j the walk is interrupted.116

– And with a probability pcrowd both individuals become inactive with their waiting times τi and τj randomly obtained.117
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Fig. S8. A typical trajectory with four thousands frames on a free arena obtained after 140s. The arrow indicates the start point of the trajectory (blue
circle). Three large deviations in the step direction are highlighted by open circles in red.

iii) The time is updated (t = t+ dt), we return to the rule i and implement it iteratively.118

The figure S10 shows a trajectory of one individual obtained on a free arena after four thousand steps. The trajectory is very119

similar to the termite in figure S8. The parameters used in the simulation were δ = 1, σ = 0.4, pw = 0, pθ = 10−2 and σθ = 0.4.120

Confined termites in an annulus configuration. The simulations are performed in a circular arena with diameter d and in an121

annulus (formed by two concentric circles) where N termites move (see VIDEO| 15:00 min, as an example). Initial condition are122

as follows. N termites are released at random positions on the arena (overlaps are forbidden) and its direction θ0 is randomly123

chosen ∈ [0, 2π). The state of each termite is set as inactive with probability pw and the waiting time is chosen from the124

power-law distribution while another fraction is active. Trajectories obtained after 104 times step using 1, 2, 4 and 16 termites125

for circular and anular arenas are show in Figure S11.126
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Fig. S9. Circles depict (a) the Probability distribution of step size and (b) the typical turning angle as measured from the trajectory of a termite worker
moving freely in the arena. The fits are obtained using the equation 1 and the numerical data considering the proposed model for the termite walk.

Fig. S10. (a) Schematic illustration of the trajectory rule. (b) A trajectory of a modeled termite on a free arena considering a walk with four thousand steps.

A solvable model for annular motion the emergence of Lévy walks in social groups with preferential attachments127

Reynolds (2013)[2] showed how Lévy walks can emerge in social groups with preferential attachments. Here for completeness128

we briefly describe this model, as predicted dependency of the Lévy exponent, µ, on the number of preferential attachments129

matches our observations of termites. Model groups consist of an ignorant but responsive “leader” and its “followers”. The130

leader is responsive to a small number, N , of its followers. The leader moves with constant speed and randomly selects a131

new direction of travel each time it encounters one of its followers –a collision avoidance response–; otherwise it continues to132

move with constant speed along a straight line. Immediately after each such turn the followers regroup around the leader.133

Follower movements comprise a superposition of a straight-line movement and a random walk which, unless stated otherwise,134

is a Brownian walk. The straight-line movement runs parallel to the leaders’ movements and keeps pace with the leader.135

The orthogonal random movements result in occasional encounters with the leader. Analysis reveals that the distribution of136

distances travelled by the leaders (and so followers) between consecutive turns has a power tail with characteristic exponent137

µ = 1 +N/2. These movement patterns correspond to a Lévy walk when N <= 4, and are consistent with our observations of138

confined termites.139

Preferential interactions140

Preferential interactions and individual recognition. As many other social insects, termites are able to recognize their nestmates141

which is important to maintain colony integrity in front of intruders and parasites. How this is achieved at the individual level?142
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Fig. S11. (a) Trajectory of a termite after 104 times step on the circular (of diameter 10a) and annulus (of inner 5a and outer 12a) arena (b). The parameter
used were σ = 0.1, pw = 0, pcrowd = 0, pw = 0.01, pθ = 10−3, σ = 0.2 and ` = 0.4.

It is not very well understood. However individuals can easily recognize other individuals even from the same species but from143

different nests [4]. Another potentially interesting feature of insect social recognition would be ability to recognize specific144

individuals or specific groups. There is only one example of this reported in the literature and that is the case of the paper145

wasps [4] who apparently are able to identify facial features of specific individuals. This complex feature, it has been argued,146

may be associated with an increase of size and sophistication of brain structures, in a conjecture that is known as the Social147

Brain Hypothesis [5,6]. However there is limited evidence, at best, that termite brain has evolved large neuronal structures148

associated to individual recognition [7,8]. Moreover, it has been speculated that the ability of individual recognition and the149

memory involved in keeping a record of social acquaintances is also modulated by brain size in such a way that large brains150

give the opportunity of keeping in memory a large social network.151

The average number of social acquaintances for a given individual –the Dunbar number [9]– is of about 150 in humans152

and would be less in species with less well endowed brains. With their tiny and barely unsophisticated brains, it would153

be almost impossible to think on a Dunbar number for them. However, we are reporting that social interactions among C.154

cumulans individuals seem to be selective and preferential, a feature not reported before with Dunbar-like numbers of less than155

5 nestmates per individual as concluded from the above model and the experimental observations of preferential interactions156

with the methodology described below.157

Experimental evidence of preferential interactions in termites. To retrieve termite positions from the experimental arenas158

we built a custom video tracking algorithm on top of open-sourced libraries of the Python scientific computing ecosystem.159

The computer code is freely available at GitHub (https://github.com/dmrib/trackingtermites) with tracking examples as well. In160

summary, it works as follows.161

Termite detection. The first step consists in informing to the tracking algorithm the initial position of each termite individual.162

This is accomplished with a manual selection screen where the first frame of the video under study is displayed to the user, who163

employs the computer mouse to draw a box around every termite of interest. After the selection, each box is automatically164

recorded under a unique identity that persists until the end of the algorithm’s execution.165

Here, some implementation details are needed to ease understanding of the posterior data analysis stage:166

1. when the users selects a termite area, the bounding box is constrained to 16×16 pixels. This is done in order to have a167

fixed distance parameter for reporting encounters between individuals (please refer to the explanation on how to detect168

encounters for better detail).169

2. we have empirically found that the tracking algorithm works very much better if we try to track the termite abdomen are170

instead of its entire body. This seems to be due to the fact that the abdomen area is seen by the kernelized filter as a171

more stable region leading to better prediction of its position172

Computing positions. After the initial position of each termite is known, this information is fed into the KCF algorithm. It is173

important to notice here that even though the tracking of all the individuals happens in parallel, each individual is evaluated174
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by a different instance of the algorithm. There is no sharing of data or parameters between each execution thread.175

In very broad terms, we can understand each instance as one task of learning a classifier capable of distinguishing the176

appearance of the object being followed from the background of each video frame. This classifier can be evaluated in the177

neighbouring areas of the subsequent frame so that to find the new region containing the object. Each detection provides a new178

image patch that can be used to update the model. Visually the process can be understood as in Figure S12.179

Although effective in most of the duration of the footages, some errors can arise from the temporary occlusion of the object180

being tracked (e.g., by other termites, shadows in the arena, etc). To treat these cases, we introduced tools to let the user to181

interfere directly, manually resolving conflicts and errors. These tools are:182

Frame rate control: the user can manipulate the minimal time interval required to change the frames displayed to the user183

to it is easier to visually inspect the progress of the tracking process and detect errors.184

Restart tracking instance: the user is able to restart the tracker instance, putting it back in a coherent state right before185

errors had arisen.186

Rewind to previous states: the user is able to rewind the tracking algorithm to a previous state, stopping the process,187

making necessary corrections to the bounding box and resume tracking.188

The combination of the above features made this algorithm robust enough to handle the tracking of up to 120 termites189

simultaneously.190

Detecting encounters. Since the termites’ bodies are represented by a bounding box, an encounter between them would cause191

an intersection between these boxes area. By examining a posteriori all positions of each bounding box and expanding boxes to192

include the termite head, we can identify intersections and report the respective termite identities (Figure S13).193

Statistical analysis of preferential attachments. Here we inspected whether termites walking in annular arenas would preferen-194

tially contact some of their nestmates over others along a ca. 30 min period. The step-by-step analysis and the full dataset are195

avaliable at Harvard Dataverse: https://doi.org/10.7910/DVN/7USPOA.196

To do so, we filmed and tracked each individual termite in the confined group, tallying the number of time-steps this focal197

termite spent contacting a given target termite along the whole footage. This has produced a dataset such as:198

Tallied time-steps for a group of 3 individuals.199

--------------------------------------------------200

trajectory focalTermite targetTermite steps201

1 traj00006 termite01 termite02 640202

2 traj00006 termite01 termite03 676203

3 traj00006 termite02 termite01 635204

4 traj00006 termite02 termite03 500205

5 traj00006 termite03 termite01 702206

6 traj00006 termite03 termite02 502207

--------------------------------------------------208

Then, for each individual we averaged number of time-steps it acted as a target of an interaction along the whole footage,209

producing a result such as:210

Averaged time-steps a termite spent as a target.211

------------------------------------------------212

targetTermite steps213

1 termite01 668.5214

2 termite02 571.0215

3 termite03 588.0216

------------------------------------------------217

Then, we ran a Chi-square test to verify whether the proportion of time-steps spent as a target would vary among termite218

individuals. That is to say, we inspected whether these proportions would depart from an uniform distribution and, if so, to219

point to the existence of ‘favourite targets’.220

In case the Chi-square test did point to significant differences, we counted the number of ‘favourites’ within that given221

group. These ‘favourites’ were defined as being the termites whose average number of time-steps spent as a target was larger222

than the global average of targeting time-steps in the whole footage.223

The number of preferred target-termites in each arena (y-var) was then regressed against the number of termites therein224

confined (x-var), in order to inspect how preferential attachments would correlate with group size. Analysis consisted in225

contrasting the model thereby obtained with a model with zero intercept and slope = 1, that is, a model in which favouritism226

was absent. Modelling was performed in R, under Generalised Linear Modelling and normal error distribution, followed by227

residual analysis. Contrasts were made using Akaike Information Criterion (AIC).228
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Fig. S12. The tracking process by means of bounding boxes: (i) the user manually draws a box encompassing the termite’s abodomen; (ii) a classifier
is trained to discriminate between areas containing the object and the background; (iii) the classifier evaluates the neighbourhood around the last
known location of the object and the region with higher probability of containing the object is reported; (iv) a new classifier is trained with the new
position; (v) the process is repeated until the end of the video. Termite drawing modified from DeSouza (2018)[10]. Arthropod drawings at Zenodo.
http://doi.org/10.5281/zenodo.1318188
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Fig. S13. Detecting encounters by recording bounding boxes intersections. Termite drawings modified from DeSouza (2018)[10]. Arthropod drawings at
Zenodo. http://doi.org/10.5281/zenodo.1318188
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More on power-laws in models and real termite data229

Consider the fact that the turning points on a termite walk define a dimensionless time series, u(t) : u(t)=1 if a turn occurred230

at time t otherwise u(t)=0. The net displacement, n(t), of the time series u(t) is given by the running sum n(t)=
∑t

t′=0 u(t′).231

If the values of n(t) are completely uncorrelated and behave like “white noise”, then the root-mean-square value of the running232

sum F =
√
〈(∆n(t)− 〈∆n(t)〉)2〉 ∝ tα where α=1/2 and where ∆n(t) = n(t) − n(t + t0). The angular brackets denote an233

average over all possible times t0 [11]. Short-term correlations in the data may cause the initial slope of a plot of log(F)/log(t)234

to differ from 1/2, although it will still approach 1/2 at longer times. Consequently, Markov processes also give α = 1/2 for235

sufficiently large t. Long-term power-law correlations [11] however, will generate α values 6= 1/2. Most of our data shows that236

α ≈ 0.75, and this implies that long term power-law correlations exist in the data, or in other words, the termite walking237

patterns were similar on all temporal scales.238

On the other hand, mechanistic models that are essentially CCRW can converge on a Lévy motion distribution. Two239

cases are well documented. When searching for patchily distributed resources some foragers switch between extensive and240

intensive search patterns. This can result in bi-phasic walks with bi-exponential step-lengths that can resemble Lévy walks with241

power-law step-lengths [12](Benhamou, 2007). But close resemblance to a Lévy walks requires fine-tuning of the bi-exponential242

walk, i.e. fine-tuning of the distribution of search targets. The search targets in our study (conspecifics) are, however, uniformly243

distributed. Intrinsic multiphasic walks, so-called Weierstrassian random walks, that resemble Lévy walks have been identified in244

mud snails (Hydrobia ulvae) and in mussels (Mytilus edulis) [13-15]. These movement pattern appear to have their mechanistic245

origins in the coupling between neurobiology and motor properties and may be specific to organisms with stick-slip locomotion246

[15].247

Fig. S14. artificial power law superimposed on (a) an agent-based and (b) on real termite data. See the text for more details.

We have plotted termite walking step distributions as accumulated plots because this is the preferred way of doing it in order248

to avoid the binning issues of a frequency plot (Figures 1 and 5, in the main text). We advise against presenting frequency249

plots when the time series are not long enough. We have presented frequency plots in Figure 3 of the main text since these are250

model data and so can be of an arbitrary length (107 points), binning in this case is not a significant problem, especially if251

they are presented more in a qualitative way. it may be interesting, nevertheless, to directly compare frequency plots for a252

qualitative visual comparison. Consider Figure S14(a) where we have matched fairly precisely an example of a segment from a253

step length distribution coming from the agent-based model (red, 105 points) and an artificially generated smooth power-law254

with scaling exponent -1.8 (black, 105 points). In Figure S14(b) we show the same smooth artificial power law with scaling255

exponent -1.8 of length 107 (grey) superimposed on the frequency distribution of the termite data (red, 1500 points) and a256

short artificially generated power law (black, 1500 points) in order to show how well they match the fluctuations of a pure257

power law behavior. As said before, the correct way of presenting step-length distributions is by means of the accumulated plot258

when a careful measure of the scaling exponent is needed.259

Movies260

Movie S1. Termite social clustering, available at https://lape.fisica.unam.mx:/termite/social_clustering.mp4261

Movie S2. Termite social trapping in large container, available at https://lape.fisica.unam.mx:/termite/large_262

container.mp4263
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