
Symmetries in Algebra and Number Theory
(I. KERSTEN, R. MEYER eds.), p. 11–26
Georg-August Universität Göttingen, 2008

L-FUNCTIONS, AUTOMORPHIC FORMS, AND ARITHMETIC

Valentin Blomer
Department of Mathematics, University of Toronto
E-mail : vblomer@math.toronto.edu

Gergely Harcos
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
E-mail : gharcos@renyi.hu

Abstract . We give a short, informal survey on the role of automorphic L-functions in number
theory. We present the strongest currently known subconvexity bounds for twisted L-functions
over number fields due to the authors and give various arithmetic applications. This is based on a
talk of the first author.

1. L-functions

Suppose you are given an interesting sequence a(n), n ∈N, of complex numbers

that you would like to investigate. The method of analytic number theory is to

encode this sequence in a generating function. There are several choices, and if

some multiplicativity is involved, one might consider the Dirichlet series

(1) L(s) =
∞∑

n=1

a(n)

ns .

If we assume a(n) ¿ε nε for all ε> 0, or even only an average bound
∑

n≤x |a(n)|¿ε

x1+ε, then (1) converges absolutely and uniformly on compacta in ℜs > 1, and thus

defines a holomorphic function. We can hope that in this way we translate the

arithmetic of the sequence a(n) into analytic properties of the function L(s), and
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indeed there is very often a remarkable interplay between arithmetic and analysis.

Let us look at a few examples (see also [21, 27, 32]):

1) Let a(n) = 1 for all n. While it is debatable if this is an interesting sequence, it

gives no doubt an interesting object: the Riemann ζ-function

ζ(s) :=
∞∑

n=1

1

ns =∏
p

(
1− 1

p s

)−1

, ℜs > 1.

The Euler product shows that ζ(s) 6= 0 in ℜs > 1, and it is a classical fact that the

non-vanishing of ζ on the line ℜs = 1 is equivalent(1) to the prime number theorem

π(x) := #{p ≤ x | p prime} ∼ x

log x
, x →∞.

The ζ-function can be extended meromorphically to all of C, and one has more

precisely an equivalence(2)

ζ(s) 6= 0 in ℜs > 1−δ for some 0 < δ≤ 1/2

⇐⇒ π(x) =
∫ x

2

d t

log t
+O(x1−δ+ε) for some 0 < δ≤ 1/2 and all ε> 0.

This shows a very precise translation of an arithmetic statement (distribution of

prime numbers) into an analytic statement (location of zeros).

2) Let K /Q be a number field and let a(n) := #{integral ideals a | N a = n}. This

gives the Dedekind ζ-function

ζK (s) :=
∞∑

n=1

a(n)

ns =∑
a

1

(N a)s ,

which has a simple pole at s = 1. The analytic class number formula states

res
s=1

ζK (s) = 2r1 (2π)r2 Rh

w
p|D| ,

where as usual r1, r2 are the number of real resp. pairs of complex embeddings of K

into C, R is the regulator, h is the class number, w is the number of roots of unity in

K and D is the discriminant. In other words, we find all algebraic invariants of K in

the Laurent expansion of ζK at s = 1.

(1)Of course, since both statements are true, they are in particular equivalent. But even without knowing

the truth of either of these statements one can deduce one from the other.
(2)Here it is unknown if either of these statement holds for some δ> 0.
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3) Let χ be a primitive Dirichlet character to some large modulus q . This gives

rise to a Dirichlet L-function

L(s,χ) :=
∞∑

n=1

χ(n)

ns ,

which again can be continued to an entire function. In practice, one often encoun-

ters character sums of the type
∑

n≤x χ(n), and one would expect that there is a lot of

cancellation in such a sum. For example, for x = q one even has
∑

n≤q χ(n) = 0. Can-

cellation becomes a very delicate matter if the sum is short, i.e. if x is small compared

to q . The Lindelöf hypothesis for L(s,χ) states that L(1/2+ i t ,χ) ¿ε ((1+|t |)q)ε for

all ε> 0. This is not known, but it would imply∑
n≤x

χ(n) ¿ε x1/2+ε

for all ε > 0 and for all x > 0. Again there is an intimate connection between an

arithmetic statement (equidistribution of character values to small arguments) and

an analytic statement (growth on vertical lines).

4) If E/Q is an elliptic curve, we know by Mordell’s theorem that the set of rational

points on E is a finitely generated Abelian group, E(Q) ∼= Zr ⊕Etor(Q). The rank r

seems to be an elusive object; however, it is relatively simple to count points on (the

reduction of) E over finite fields, and we can define

aE (p) := p +1−#E(Fp )
p

p

for a prime p. This can be extended in a more or less natural way to all integers,

and yields an L-function LE (s) =∑
aE (n)n−s . It is, in general, very hard to prove that

this can be extended to an entire function, and is part of the seminal work of Wiles

(and others) [9, 39, 43]. Given that LE (1/2) exists, the Birch and Swinnerton-Dyer

conjecture states (among other things) that the rank can be recovered from the

Laurent expansion at 1/2, namely ords=1/2 LE (s) = r .

We observe that all four examples depend on an appropriate analytic continua-

tion of the respective L-function and provide a connection between the arithmetic

input and some analytic properties outside the region of absolute convergence.

Every decent L-function has a functional equation of the form

(2) L(s)G(s) = ηL(1− s̄)G(1− s)



14 Symmetries in Algebra and Number Theory, 2008

where |η| = 1 and

G(s) = N s/2
d∏

j=1
π−s/2Γ

(
s +µ j

2

)
for some integer N ∈N and some complex numbers µ1, . . . ,µd . The complexity of an

L-function is measured by its analytic conductor

(3) C :=C (t ) := N
d∏

j=1
(1+|t +µ j |), t =ℑs.

Since we are assuming that L(s) converges absolutely in ℜs > 1, we have L(s) ¿ 1 in

ℜs = 1+ε. The functional equation (2) and Stirling’s formula translate this into(3)

L(s) ¿C 1/2+ε on ℜs =−ε. If we assume in addition that L is of finite order (in the

sense of complex analysis), which is always satisfied in applications, then a standard

argument shows

(4) L(1/2+ i t ) ¿C (t )1/4+ε.

This is usually referred to as the convexity bound, and any exponent smaller than 1/4

is called a subconvexity bound. If the generalized Riemann hypothesis holds for the

L-function in question, then 1/4 can be replaced with 0.

2. Automorphic forms on GL2

Let G := PSL2(R). We have the Iwasawa decomposition G = N AK where

N :=
{(

1 x

1

)∣∣∣ x ∈R
}

, A :=
{(

y1/2

y−1/2

)∣∣∣ y > 0

}
,

K :=
{(

cosθ sinθ

−sinθ cosθ

)∣∣∣ θ ∈ [0,π)

}
.

The group K = PSO2(R) is a maximal compact subgroup of G . Let

Γ := Γ0(N ) :=
{(

a b

c d

)
∈ PSL2(Z) | c ≡ 0(mod N )

}
.

(3)Throughout this note, ε> 0 denotes an arbitrarily small constant, not necessarily the same on each

occurrence.
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Then G acts on L2(Γ\G) by the right regular representation, ρ(g )(φ)(x) :=φ(xg ) for

φ ∈ L2(Γ\G), and we have a G-equivariant decomposition

(5) L2(Γ\G) =C ·1⊕⊕
π

Vπ⊕
∑
a

∫
R

Ha(t )d t

into the constant functions, cuspidal irreducible representations (π,Vπ) and Eisen-

stein series for the cusps a (that enter the picture because Γ\G is not compact). Each

Vπ decomposes further according to the characters of K :

Vπ =
⊕

q∈2Z
Vπ,q

(in the Hilbert space sense), and it is known that dimVπ,q ≤ 1. The left and right

G-invariant Laplace operator

∆ :=−y2(∂2
x +∂2

y )+ y∂x∂θ

acts (by a generalized version of Schur’s lemma) on each Vπ as a scalar λπ ∈ R. In

algebraic terms, this is the Casimir element (up to normalization) of the universal

enveloping algebra U (g). Sometimes we need a variant of the space L2(Γ\G). For

a character χ of modulus dividing N let L2(Γ\G) denote the L2-space of functions

G →C that transform under Γ as f (( a b
c d )g ) =χ(d) f (g ) for ( a b

c d ) ∈ Γ.

Why is the space L2(Γ\G) interesting? One reason is that it is equipped with

additional structure. In general there is no left action of G an L2(Γ\G): if f is Γ-

invariant, then f (g ·.) is only g−1Γg -invariant. However, ifΓ= Γ0(N ) and g ∈ PSL2(Q),

then g−1Γg contains some finite index subgroup of Γ0(N ), and using a suitable

average, we can get back to Γ0(N ). This is a special feature of groups like Γ0(N ) (as

opposed to arbitrary discrete subgroups of G) and yields a family of naturally defined

operators {Tn | n ∈N} that forms a commutative algebra, which also commutes with

∆, since ∆ is left G-invariant. Mostly for technical reasons we consider only the

subspace L2
new(Γ\G) whose irreducible representations are generated by so-called

newforms, i.e. they do not come from subgroups with smaller index in PSL2(Z).

Then each operator Tn acts on each Vπ ⊆ L2
new(Γ\G) as a scalar λπ(n), and a function

φ ∈Vπ,q has a Fourier-Whittaker expansion

φ

((
y1/2 x y−1/2

0 y−1/2

)(
cosθ sinθ

−sinθ cosθ

))

= e i qθ
∑

n 6=0

λπ(n)p|n| W
sgn(n)q/2,

p
1/4−λπ (4π|n|y)e(nx),
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where as usual e(x) denotes the additive character e2πi x , Wα,β is the Whittaker func-

tion(4) [42, Chapter 16] and λ(−n) = ηλ(n) with η ∈ {−1,0,1}. This is relevant for us,

because the Hecke eigenvalues λπ(n) carry often number theoretic information.

Examples. 1) Hecke [25] - Maaß [31]: Let N be the discriminant of the field

K =Q(
p

N ) and χ the character of the extension K /Q. Then there is a representation

(π,Vπ) ⊆ L2
new(Γ\G ,χ) with λπ = 1/4, such that λπ(n) = #{ideals a⊆OK |N a= n}.

2) Wiles et al. [9, 39, 43]: Let E/Q be an elliptic curve. Then there is a represen-

tation (π,Vπ) ⊆ L2
new(Γ\G) with λπ = 0, such that λπ(p) = (p +1−#E(Fp ))/

p
p for all

primes p.

Langlands’ philosophy suggests that “all interesting objects" arise in this way for

suitable Γ and G . In any case, for each representation (π,Vπ) ⊆ L2
new(Γ\G) we can

define an L-function

L(π, s) :=
∞∑

n=1

λπ(n)

ns ,

and we hope to learn more about Hecke eigenvalues by studying L(π, s) from an

analytic point of view.

If we work over a number field K /Qwith class number h > 1, the above setup is

not appropriate. One could work with h copies of G modulo certain conjugates of Γ,

but it is better to work adelically. For each place v of K let Kv be the completion and

Ov the ring of integers (if v |∞, then Ov = Kv ). Then the adele ring is the restricted

product

A= ∏
v

′
Kv

with respect to the sets Ov , with K embedded diagonally. There is a natural surjec-

tion from A× to the group of non-zero fractional ideals of K , and we often do not

distinguish between an idele and its image. Again GL2(A) acts by the right regular

representation on L2(A× GL2(K )\GL2(A)) whereA× is identified with the center of

GL2(A). This setting has no dependence on the level of the subgroup any more, since

it treats simultaneously all subgroups Γ0(c), with c an ideal in K . If we want to make

the level explicit, we define

K (c) := ∏
p finite

K (cp) ⊆ GL2(Afin)

(4)In the special case q = 0, this reduces essentially to a Bessel K -function.
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for a nonzero ideal c, where

K (cp) :=
{(

a b

c d

)
∈ GL2(Kp)

∣∣∣ a,d ∈Op, b ∈ d−1
p , c ∈ dpc, ad −bc ∈O×

p

}
with d the different of K . The conductor of an irreducible representation (π,Vπ)

contained in L2(A× GL2(K )\GL2(A)) is the smallest ideal such that Vπ contains a

right K (c)-invariant vector (which is automatically a “newvector"). The Fourier

expansion in the adelic setting reads

φ

((
y x

1

))
= ∑

r∈K ×

λπ(r yfin)√
N (r yfin)

Wφ(r y∞)ψ(r x),

where y = y∞× yfin ∈ A×, x ∈ A, φ a smooth vector in some cuspidal irreducible

representation π, N the norm, Wφ a product of Whittaker functions, ψ the standard

additive character on A, and λπ(r yfin) depends only on the fractional ideal repre-

sented by r yfin and is non-zero only if this ideal is integral.

How can we get new automorphic forms out of given ones? A typical way is

twisting, and the simplest twist is by a character (that is, by an automorphic form

on GL1). Let χ : K ×\A× → S1 be a Hecke character of conductor q (that is, q is the

largest ideal such that χ is trivial on finite ideles ≡ 1 mod q), and define the twist of a

representation π on GL2 with χ by

π⊗χ(g ) :=χ(det g )π(g ).

This is another representation on GL2, and if the integral ideal a is coprime to the

conductors of π and χ, then λπ⊗χ(a) = λπ(a)χ(a). If χ has conductor q and π has

conductor c coprime to q, then π⊗χ has conductor cq2, so the conductor of the

character enters quadratically.

3. Subconvexity for automorphic L-functions

The following result is a combination of the results in [7, 6, 5]. We are interested

in bounding a twisted automorphic L-functions in terms of the conductor of the

twisting character, where the other parameters are essentially kept fixed.

Theorem 1 . Let K be a totally real number field of degree d, π an irreducible cuspidal

representation on GL2(A), χ a Hecke character of conductor q and C = C (t ,π) the

analytic conductor of L(s,π) in the sense of (3). Then

L(π⊗χ,1/2+ i t ) ¿C A(N q)1/2−δ+ε
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where N denotes the norm, A is some absolute constant, ε> 0 is arbitrarily small,

and δ= 1
11 in general, and δ= 1

8 if K =Q.

More precisely, the constant δ in the general case(5) is 1
8 (1−2θ) > 1

11 where θ is

the a bound towards the Ramanujan conjecture (currently θ ≤ 1/9 is known [29] and

θ = 0 is conjectured).

The convexity bound in this context is L(π⊗χ,1/2+i t ) ¿t ,π,ε (N q)1/2+ε. The first

subconvex bound in this direction was δ= 1/22 for K =Q by Duke, Friedlander and

Iwaniec [19] and an important contribution came from Bykovskĭı [12] that inspired

both [16] and [6]. Our bound δ = 1/8 matches the quality of Burgess’ celebrated

bound [11], where the case π an Eisenstein series is treated.

Over a number field K other than Q a subconvexity bound was for a long time an

open problem. In an unpublished manuscript [13] (see also [14]), Cogdell, Piatetskii-

Shapiro and Sarnak obtained δ = 1/18 for holomorphic Hilbert cusp forms using

deep bounds for triple products [35]. As an application of an ingenious and very

flexible geometric method, Venkatesh [40] (see also [34]) proved recently – among

other things – Theorem 1 with δ= 1/24. Our method is quite different from all of

these works and will yield in particular as a by-product a solution of a problem of

Selberg, see Theorem 2 below.

We will only sketch briefly the ideas that go into the proof; it rests on the following

ingredients(6):

– the amplification method [19] and an approximate functional equation [23]

(this is essentially standard),

– the spectral decomposition of Dirichlet series associated with a shifted convo-

lution sum [7] (solving a problem of Selberg) which makes good use of

– the Kirillov model and Sobolev norms [2].

Let us look at the first point. To start with, we have to find a way to work con-

veniently with the values L(π⊗χ,1/2+ i t) since a priori they exist only by analytic

continuation (or perhaps as a conditionally convergent series which is not useful

in practice either). However, often a suitably truncated part of a divergent or con-

ditionally convergent series gives a good approximation of the quantity that one

(5)At the time of writing, we need some technical assumptions that can most likely be removed with a

little extra work.
(6)The proof for K =Q uses a somewhat different methods which avoid the dependence on Ramanujan

bounds, see [6].
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is interested in. For L-functions this can be made precise with an approximate

functional equation, and in fact the first about C 1/2 terms of an L-function with

analytic conductor C are a very good approximation on the critical line ℜs = 1/2. In

other words, for all practical purposes

(6) L(1/2,π⊗χ) ∼ ∑
N a∼N q

λπ(a)χ(a)

(N a)1/2

and similarly for other points on the critical line, where ∼ has to be understood in a

very broad sense. Note by the way, that the trivial bound would recover the convexity

estimate. Now that we have an explicit description of L(s,π⊗χ) as a finite sum, let

us try to exhibit cancellation in such sums. Let us first look at a simple example(7).

Suppose you want to prove that |sin x +cos x| ≤p
2. There are certainly many ways

of proving this. Here is one: Square the left hand side and add a “spectrally useful"

nonnegative quantity:

|sin x +cos x|2 +|sin x −cos x|2 = 2.

Now drop the second term, and the proof is complete. In a similar way, it is useful to

embed an L-function into a family. First let us cut the sum (6) into h pieces according

to the ideal class of the ideal a. For simplicity we will only work with the principal

class. We consider now the second moment∑
ω∈Ω

|L(π⊗ω,1/2+ i t )|2,

whereΩ is a family of characters containingχ, for example the family of all characters

of (O/q)×. These characters are in general not Hecke characters, because they may

not be trivial on units, and so strictly speaking the expression L(π⊗ω,1/2+ i t)

does not make sense as a value of an automorphic L-function. It is typical in this

context to consider such “fake-moments"; after all, we are free to add to our original

quantity L(π⊗χ,1/2+ i t ) whatever we want as long as it is non-negative. Here the

expression L(π⊗ω,1/2+ i t) is just a notation for a suitable Dirichlet polynomial

whose coefficients behave roughly like λπ((α))ω(α) on principal ideals (α). This

family is of size about N q; so even if we assume a sort of Generalized Lindelöf

hypothesis in the sense L(π⊗ω,1/2+ i t ) ¿t ,π 1, we can bound the above sum only

by N q which after taking the square-root just recovers the convexity bound. The

problem here is that our family, although very convenient to work with, is quite

(7)which can be viewed as an instance of arts and science in mathematics: it is art to find the second term,

and it is science to prove the trigonometric identity
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large. One could try to evaluate a fourth moment instead of a second moment,

in which case one could take the fourth root at the end, but our current analytic

techniques are not strong enough to estimate a fourth moment appropriately. The

idea of Duke-Friedlander-Iwaniec [19] is to weight the sum in our favor so as to

highlight the one term we are interested in, but not the other ones that we drop at

the end anyway. Hence as a refinement, we consider

(7)
∑
ω∈Ω

|A(ω)|2|L(π⊗ω,1/2+ i t )|2,

where A(ω) is an “amplifier" that is large for ω= χ, and rather small otherwise. In

practice, A(ω) will be a short Dirichlet polynomial, e.g.

A(ω) = ∑
N (α)∼L

χ(α)ω̄(α),

where L is a parameter that we can optimize later. Now we open the square and sum

over ω. This shows that we have to bound nontrivally sums roughly of the form

(8)
∑

n1,n2∈OK ∩B
α1n1≡α2n2 (mod q)

λπ(n1)λ̄π(n2),

where α1, α2 are of norm about L (they come from the amplifier), and B is a box in

Minkowski space of the form

nσ1 , . . . ,nσd ³ (N q)1/d

with σ1, . . . ,σd the embeddings of K into R. We break this sum into pieces according

to the value of

(9) q :=α1n1 −α2n2 ∈ q.

The term q = 0 is the diagonal term, and pretty straightforward to handle. Let us now

assume q 6= 0. Expressions of the type (8) with a summation condition of type (9) are

usually called shifted convolution sums. Selberg [37] considered in 1965 Dirichlet

series (overQ) of the type

Dq (s) := ∑
n1−n2=q

λπ(n1)λ̄π(n2)

(n1 +n2)s

(which is not an automorphic L-function!) and proved in some cases an analytic

continuation to some right half plane ℜs > 1−δ with δ> 0, however, without good

control of the size in s and q (which is crucial for all known applications). Progress

in this respect has been made by Good [22], Jutila [28], Sarnak [35] and Motohashi

[33]. Our method, based on the Kirillov model and Sobolev norms gives not only the
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analytic continuation with good growth estimates, but also the pleasing structural

insight that the series Dq (s) can be decomposed according to the decomposition (5).

We present the result in the simplest case [7]. The general case is treated in [5].

Theorem 2 . Let k > 60 and q > 0 be any integers, and λ(n) Hecke eigenvalues of

any irreducible cuspidal representation on GL2 of conductor 1. Then there exist

holomorphic functions Fπ in the strip 1/2 <ℜs < 3/2 (depending on k) such that∑
m−n=q

λ(n)λ(m)(nm)(k−1)/2

(n +m)s+k−1
= q1/2−s

∫
λπ(q)Fπ(s)dπ, ℜs > 1,

and ∫
|Fπ(s)|dπ¿ε |s|22,

1

2
+ε≤ℜs ≤ 3

2
,

where the integral is taken over the union of the discrete spectrum and the continuous

spectrum.

Armed with Theorem 2 (or rather a slight generalization thereof) it is relatively

straightforward to complete the proof of Theorem 1.

4. Applications

Although at first sight Theorem 1 may seem as some purely analytic trickery, it

has, in accordance with the general philosophy of L-functions, interesting arithmetic

applications. Perhaps the most appealing application of Theorem 1 is in combina-

tion with the formula of Waldspurger [41] and its extensions to number fields. More

precisely, let π̃ be a cuspidal representation on the double cover S̃L2, generated by

a half-integral weight modular form satisfying some technical assumptions, and π

the representation on GL2 given by theta correspondence (“Shimura lift"). Then for

squarefree m, Waldspurger’s formula relates the square of the m-th Fourier coeffi-

cient of π̃ to L(π⊗χm ,1/2) where χm is the quadratic character corresponding to the

extension K (
p

m)/K . In this way, Theorem 1 yields the currently best known bounds

for Fourier coefficients of half-integral weight Hilbert modular forms.

One particular situation where such bounds are needed, are asymptotic formulae

for the number of representations of totally positive integers by ternary quadratic

forms, see [3] for an overview of this topic overQ. Hilbert’s eleventh problem asks

more generally which integers are (integrally) represented by a given n-ary quadratic

form Q over a number field K . If Q is a binary form, it corresponds to some element

in the class group of a quadratic extension of K (see [17] for a nice account overQ).
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If Q is indefinite at some archimedean place, Siegel [38] for n ≥ 4 and Kneser [30]

and Hsia [26] for n = 3 proved a local-to-global principle, so Siegel’s mass formula

tells us exactly which integers are represented by Q. If Q is positive definite at every

archimedean place and n ≥ 4, again Siegel’s mass formula and simple bounds for

Fourier coefficients of Hilbert modular forms give a complete answer (some care

has to be taken in the case n = 4). The only remaining case of Q positive definite and

n = 3 was solved by Duke and Schulze-Pillot [20] for K =Q. For arbitrary totally real

K , the result was announced in [13] with a sketch of the proof being given in [14] in

the class number one case. Combining the argument in [14] with Theorem 1 and

Waldspurger’s formula e.g. in the version of Baruch-Mao [1] one derives:

Theorem 3 (cf. [14, 13]). Let K be a totally real number field and let Q be a positive

integral ternary quadratic form over K . Then there is an ineffective constant c > 0

such that every totally positive squarefree integer m ∈OK with N m ≥ c is represented

integrally by Q if and only if it is integrally represented over every completion of K .

The representation of non-squarefree integers is quite subtle, but in principle can

again be characterized by more involved local considerations, cf. e.g. [36].

Theorem 3 can be refined in various ways and also made quantitative, which

yields for example applications of the following type: Gauß proved in his Disquisi-

tiones that a rational integer n can be written as a sum of three squares if and only

if it is not of the form 4k (8m +7), and if it is in addition not divisible by a very high

power of 2, the number of such representations is about L(1,χn)
p

n which by Siegel’s

theorem is n1/2+o(1). Hence one may ask if all integers satisfying some natural con-

gruence conditions can still be written as a sum of three squares of numbers with

certain restrictions, e.g. sums of three squares of primes, or sums of three squares of

squarefree numbers or sums of three squares of smooth numbers etc. Combining

the previous results with a carefully designed sieve (the vector sieve as developed by

Brüdern and Fouvry [10]) one can for example prove [4, 3]:

Theorem 4 . Let(8) n ≡ 3 (mod 24), 5 - n, be sufficiently large, and let γ= 1/567. Then

n is the sum of three squares of integers with all their prime factors greater than nγ.

The number of such representations exceeds À n1/2−ε. In particular, every such n is

the sum of three squares having at most 284 prime factors.

(8)In [3, Proposition 3.1] the condition n ≡ 3 (mod 8) has to be replaced by n ≡ 3 (mod 24).
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For similar results of this flavor see [3].

A different type of application of Theorem 1 can be found in [15] (cf. also [40, 44])

that generalizes work of Duke [18]: Under the assumption of a subconvex bound as

above it is proved that a certain family of Heegner points and certain d-dimensional

subvarieties are equidistributed on the Hilbert modular variety PSL2(OK )\H d . For

example, if K =Q, and −D is the discriminant of an imaginary quadratic field, then

each ideal class a= (a, 1
2 (b −p−D)), say, in the class group ofQ(

p−D) gives a Heeg-

ner point z = (b −p−D)/(2a) in X := PSL2(Z)\H . If D →∞, these points become

denser and denser in X , and the above statement says that they become actually

equidistributed (with an explicit rate of decay) with respect to the standard measure

y−2d xd y on X . In order to prove this, one has to sum the values of a test function at

these Heegner points, and by a spectral decomposition one can assume that the test

function is an eigenform of the Laplacian. This leads to certain Weyl sums, which

can be expressed as central values of twisted L-functions. Using bounds for the

L-values as in Theorem 1, one derives an equidistribution statement.

Finally we note that the subconvex bound in Theorem 1 (in particular for K =Q)

is a crucial input for certain subconvex bounds of higher degree L-functions, which

in turn have other arithmetic applications. We refer the reader to [24, 8] for more

details.
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