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Abstract

We prove that every bilocal automorphism of a matrix algebra is either
an inner automorphism, or an inner anti-automorphism, or it is of a very
special degenerate form. Bijective continuous bilocal automorphisms of
a unital standard operator algebra on an infinite-dimensional separable
complex Banach space are automorphisms.
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1 Introduction and statement of the main re-
sults

In 1990, Kadison, and Larson and Sourour [3, 4] initiated the study of local
derivations and local automorphisms. Let B be an algebra. Then a linear map
φ : B → B is called a local automorphism (a local derivation) if for every x ∈ B
there exists an automorphism (a derivation) φx : B → B (depending on x) such
that φ(x) = φx(x). The question is, of course, under what conditions every
local automorphism (local derivation) must be an automorphism (a derivation).
There is a vast literature on local maps. Many references can be found in the
book [5].

Let X be a complex Banach space and B(X) the algebra of all bounded linear
operators on X. Larson and Sourour [4] proved that every local derivation of
B(X) is a derivation. Moreover, every surjective local automorphism of B(X)
is an automorphism provided that X is infinite-dimensional. If X is finite-
dimensional, dimX = n, then we can identify B(X) with the algebra Mn(C)
of all n × n complex matrices. Larson and Sourour proved that every local
automorphism of Mn(C) is either an automorphism or an anti-automorphism.
Note that they did not need the surjectivity assumption in the finite-dimensional
case.

A surprising extension of the result of Larson and Sourour on local deriva-
tions was given in [11]. Let us first recall that a closed subalgebra A ⊂ B(X)
is called standard if F(X) ⊂ A, where F(X) ⊂ B(X) is the subset of all finite
rank operators. The algebra A is unital if it contains the identity. Zhu and
Xiong defined a linear map φ : A → B(X) to be a bilocal derivation if for every
T ∈ A and x ∈ X there exists a derivation φT,x : A → B(X), depending on
both T and x, such that φ(T )x = φT,x(T )x. Clearly, every local derivation is a
bilocal derivation. Zhu and Xiong proved that if A is a unital standard operator
algebra on a complex Banach space X and φ : A → B(X) is a bilocal derivation,
then φ must be a derivation.

Recently, Molnár [6] showed that bilocal ∗-automorphisms (the notion should
be self-explanatory) on operator algebras are not necessarily ∗-automorphisms.
More precisely, if H is an infinite-dimensional separable Hilbert space, then
φ : B(H) → B(H) is a bilocal ∗-automorphism if and only if φ is a uni-
tal ∗-endomorphism of B(H). In the finite-dimensional case φ is a bilocal ∗-
automorphism if and only if φ is a Jordan ∗-automorphism. At the end of the
paper [6] he asked what happens if the group of ∗-automorphisms of B(H) is
replaced by the larger group of all automorphisms of B(H).

This research was motivated by the above question. In the finite-dimensional
case we do not want to restrict ourselves to matrices over the complex field, and
therefore we will introduce the notion of bilocal automorphisms for operator
algebras on vector spaces over an arbitrary field.

Let U be a linear space over a field F, L(U) the algebra of all linear operators
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on U , and A ⊂ L(U) a subalgebra of L(U). A linear map φ : A → A is said to
be a bilocal automorphism if for every T ∈ A and every u ∈ U there exists an
automorphism φT,u of A, depending on T and u, such that

φ(T )u = φT,u(T )u.

We will be interested in two special cases. In the first case where dimU = n <∞
and A = L(U) we identify A with Mn(F), the algebra of all n×n matrices over
F. Then U is identified with the set Fn of all n × 1 matrices over F. For a
matrix T ∈Mn(F) we denote its transpose by T tr. The second case we want to
consider is when U = X is a complex Banach space and A is a unital standard
operator algebra on X.

In order to formulate our first result we need to introduce the notion of
full nonsingular subspaces of Mn(F). A linear subspace V ⊂ Mn(F) is called
a nonsingular subspace if every nonzero element of V is invertible. It is called
a full nonsingular subspace if in addition dimV = n. Some remarks on the
existence of such subspces can be found in the last section of this note.

Theorem 1.1 Let φ : Mn(F) → Mn(F) be a linear map. Then φ is a bilocal
automorphism if and only if one of the following holds:

• there exists an invertible matrix A ∈ Mn(F) such that φ(T ) = ATA−1,
T ∈Mn(F), or

• there exists an invertible matrix A ∈ Mn(F) such that φ(T ) = AT trA−1,
T ∈Mn(F), or

• there exist a full nonsingular subspace V ⊂Mn(F), a nonzero x ∈ Fn, and
a linear bijection α : Fn → V satisfying α(x) = I such that φ(T ) = α(Tx),
T ∈Mn(F), or

• there exist a full nonsingular subspace V ⊂ Mn(F), a nonzero x ∈ Fn,
and a linear bijection α : Fn → V satisfying α(x) = I such that φ(T ) =
α(T trx), T ∈Mn(F).

In the infinite-dimensional case we have the following result.

Theorem 1.2 Let X be an infinite-dimensional separable complex Banach space
and A a unital standard operator algebra on X. Assume that a linear map
φ : A → A is continuous and bijective. Then φ is a bilocal automorphism if and
only if it is an automorphism.

As we will show in the last section the assumptions of bijectivity and sepa-
rability are indispensable in the above statement. We conjecture that the same
conclusion holds without the continuity assumption. Some remarks on this con-
jecture and a related open problem will be presented at the end of this note.
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2 Proofs

Let U be a linear space over a field F and T : U → U a linear operator. We
denote by σp(T ) the set of all eigenvalues of T (in the case when U is a complex
Banach space and T is a bounded operator, this set is called the point spectrum
of T ).

We will call a subalgebra A ⊂ L(U) a regular operator algebra on U if the
following conditions are fulfilled:

• I ∈ A,

• every automorphism φ of A is spatial, that is, there exists an invertible
A ∈ L(U) such that φ(T ) = ATA−1, T ∈ A, and

• for every pair of linearly independent vectors u, v ∈ U and every pair of
linearly independent vectors x, y ∈ U there exists an invertible A ∈ A
such that Ax = u and Ay = v.

The following observation is crucial in the proofs of our main results.

Proposition 2.1 Let A be a regular operator algebra on U and φ : A → A a
linear map. Then φ is a bilocal automorphism if and only if φ is unital and for
every T ∈ A we have σp(φ(T )) ⊂ σp(T ).

Proof. Assume first that φ is a bilocal automorphism. Then clearly, φ is unital.
Suppose that λ ∈ F is an eigenvalue of φ(T ), that is, we have φ(T )u = λu for
some nonzero u ∈ U . We know that

φ(T )u = ATA−1u

for some invertible A ∈ L(U). It follows that

T (A−1u) = A−1φ(T )u = A−1(λu) = λ(A−1u),

and thus, λ is an eigenvalue of T , as desired.
To prove the other direction, assume that φ is unital and that σp(φ(T )) ⊂

σp(T ) for every T ∈ A. We need to prove that φ is a bilocal automorphism,
that is, for every T ∈ A and every u ∈ U we need to find an automorphism
φT,u of A such that φ(T )u = φT,u(T )u. We will prove even more, namely that
φT,u can be chosen to be inner. To see this we have to show that for every
T ∈ A and every u ∈ U there exists an invertible operator A ∈ A such that
φ(T )u = ATA−1u. Obviously, this is trivial when T = 0 or u = 0. So, assume
they are both nonzero. Set v = φ(T )u. We will distinguish two possibilities.

Let us first assume that u and v are linearly dependent. Since u 6= 0, we have
v = λu for some scalar λ. Hence, φ(T )u = λu, and therefore, λ ∈ σp(φ(T )) ⊂
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σp(T ). Consequently, there exists a nonzero z ∈ U such that Tz = λz. We can
find an invertible operator A ∈ A such that Az = u. Then

ATA−1u = ATz = λAz = λu = v = φ(T )u.

The proof in the first case is completed.
It remains to consider the case when u and v are linearly independent. In

particular, φ(T ) 6∈ FI, and because φ is unital, T 6∈ FI. It follows that we can
find linearly independent vectors x, y ∈ U such that Tx = y. Moreover, there
exists an invertible A ∈ A satisfying u = Ax and v = Ay. Then again

ATA−1u = ATx = Ay = v = φ(T )u.

2

Once we have the above statement, the main result in the finite-dimensional
case follows rather easily from the recent characterization of linear preservers of
invertibility on matrix algebras due to de Seguins Pazzis [8].

Proof of Theorem 1.1. Clearly, if φ is an automorphism, then it is a bilocal
automorphism. It is well-known (see for example [10]) that every matrix is
similar to its transpose, and therefore, every anti-automorphism is a bilocal
automorphism as well. Assume next that there exist a full nonsingular subspace
V ⊂ Mn(F), a nonzero vector x ∈ Fn, and a linear bijection α : Fn → V
satisfying α(x) = I such that φ(T ) = α(Tx). Then φ(I) = I. Moreover, if T
is invertible, then Tx 6= 0, and consequently, φ(T ) = α(Tx) is invertible. In
order to prove that φ is a bilocal automorphism we first observe that Mn(F) is a
regular operator algebra and then all we need to show is that σp(φ(T )) ⊂ σp(T )
for every T ∈Mn(F). Assume that T ∈Mn(F) and let λ be a scalar such that
λ 6∈ σp(T ). Then λI − T is invertible, and hence λI − φ(T ) is invertible, or
equivalently, λ 6∈ σp(φ(T )), as desired. In the same way we verify that φ of the
fourth form given in the conclusion of the theorem is a bilocal automorphism.

Now, assume that φ is a bilocal automorphism. Then it is unital. Moreover,
it preserves invertibility. Indeed, all we need to show is that for every invertible
T ∈ Mn(F), the operator φ(T ) has trivial kernel. This follows directly from
the definition of bilocal automorphisms. Hence, we can apply the main theorem
from [8] which characterizes linear maps on Mn(F) preserving invertibility. The
desired conclusion follows directly from [8, Theorem 2] and the fact that φ is
unital.

2

We now turn to the proof of our second main result.

Proof of Theorem 1.2. By the result of Chernoff [1], every automorphism of
A is spatial. Assume that x, y ∈ X are linearly independent and that also
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u, v ∈ X are linearly independent. Then X can be writen as a direct sum
X = span {x, y, u, v} ⊕ Z for some closed subspace Z. Clearly, there exists
an invertible linear operator A1 : span {x, y, u, v} → span {x, y, u, v} satisfying
A1x = u and A1y = v. Define a linear operator A : X → X by Az = A1z if
z ∈ span {x, y, u, v} and Az = z whenever z ∈ Z. Obviously, Ax = u, Ay = v,
A is a bounded invertible linear operator and A ∈ CI +F(X) ⊂ A. Hence, the
algebra A is a regular operator algebra.

By the open mapping theorem the inverse of the bilocal automorphism φ is
bounded. We denote it by ψ. We know that φ is unital and then the same must
be true for ψ. It is our aim now to show that for every T ∈ A we have

σap(T ) ⊂ σap(ψ(T )).

Here, σap(T ) denotes the approximate point spectrum of T , that is, the set of
all complex numbers λ such that T − λ is not bounded below.

So, assume that λ ∈ σap(T ). Then we can find a sequence (xn) of vectors
of norm one in X such that ‖(T − λ)xn‖ → 0. Set (T − λ)xn = yn. By Hahn-
Banach theorem we can find a sequence (fn) of norm one functionals in the
dual space X ′ such that fn(xn) = 1, n = 1, 2, . . . For each positive integer n we
introduce an operator Sn = T − λ − yn ⊗ fn. Here, for any z ∈ X and g ∈ X ′
the operator z ⊗ g : X → X is defined by (z ⊗ g)w = g(w)z, w ∈ X. Because
fn is a functional of norm one we have ‖yn⊗ fn‖ ≤ ‖yn‖, and consequently, the
sequence (Sn) of operators in A tends to T − λ.

We know that σp(φ(T )) ⊂ σp(T ) for every T ∈ A. It follows that σp(T ) ⊂
σp(ψ(T )) for every T ∈ A. This together with Snxn = 0 yields that 0 ∈
σp(ψ(Sn)) for every positive integer n. By the continuity of the map ψ, the
sequence (ψ(Sn)) converges to ψ(T ) − λ. We claim that 0 ∈ σap(ψ(T ) − λ).
Indeed, if this was not true, then there would exist a positive constant c such
that ‖(ψ(T ) − λ)w‖ ≥ c for every w ∈ X of norm one. In particular, this
would be true for each w belonging to the kernel of ψ(Sn). As this kernel is
nontrivial for every positive integer n, we would have that the distance between
ψ(T ) − λ and ψ(Sn) is at least c, a contradiction. Hence, 0 ∈ σap(ψ(T ) − λ),
and consequently, λ ∈ σap(ψ(T )), as desired.

We have proved that σap(T ) ⊂ σap(ψ(T )) for every T ∈ A. Equivalently,
σap(φ(T )) ⊂ σap(T ) for every T ∈ A. By [2, Theorem 4.4], φ is either a spatial
automorphism, or a spatial anti-automorphism. In order to complete the proof
we need to show that the second case cannot occur.

Assume on the contrary, that we have the second possibility, that is, there
exists an invertible bounded linear map A : X ′ → X such that φ(T ) = AT ′A−1

for every T ∈ A. We will show that there exists T ∈ A such that T is injective
but T ′ is not injective. Assume for a moment that we have already found such an
operator T . Then we can find a nonzero x ∈ X such that AT ′A−1x = φ(T )x =
0. On the other hand, since φ is a bilocal automorphism, there exists a bounded
invertible operator B such that φ(T )x = BTB−1x 6= 0, a contradiction.
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Thus, we will complete the proof by finding T ∈ A being injective and having
a noninjective adjoint. Since X is separable, we can apply the result of Ovsepian
and Pe lczyński [7] on the existence of a fundamental and total biorthogonal
sequence (xn, fn) ⊂ X×X ′ that satisfies the condition sup ‖xn‖ ‖fn‖ = M <∞.
Define

T =

∞∑
n=1

2−nxn+1 ⊗ fn

and observe that since
∑N
n=1 2−nxn+1 ⊗ fn ∈ A for every positive integer N

and A is closed, the operator T belongs to A. If Tx = 0 for some x ∈ X, then∑∞
n=1 2−nfn(x)xn+1 = 0, and consequently, fn(x) = 0 for every positive integer

n which yields that x = 0. On the other hand,

T ′ =

∞∑
n=1

2−nfn ⊗ κxn+1,

where κ is the canonical embedding of X into X ′′, and then obviously, T ′f1 = 0.

2

3 Final remarks

Let n be an integer, n ≥ 2. If F is algebraically closed, then there are no full
nonsingular subspaces of Mn(F). On the other hand, if F is a finite field of
cardinality ps, p prime, then there exist full nonsingular subspaces of Mn(F)
for every n ≥ 2. And finally, Mn(R) contains a full nonsingular subspace if
and only if n ∈ {2, 4, 8}. All these are well-known facts. For a more detailed
explanation we refer to [8, 9].

We complete this note by making some remarks on the indispensability of
the bijectivity, separability, and continuity assumptions in Theorem 1.2. We
first show that without the bijectivity assumption the behaviour of bilocal
automorphisms may be quite wild. Indeed, let H be an infinite-dimensional
Hilbert space. Then H can be identified with H ⊕ H, and consequently, the
elements of B(H) can be represented as 2 × 2 matrices with entries in B(H).
Let ϕ : B(H) → B(H) be any linear map satisfying ϕ(I) = 0. We define
φ : B(H) → B(H) in the following way. We first identify the target space with
the algebra of all 2× 2 operator matrices and then set

φ(T ) =

[
T ϕ(T )
0 T

]
, T ∈ B(H).

The map φ is clearly unital. It is straightforward to verify that σp(φ(T )) ⊂
σp(T ) for every T ∈ B(H). By Proposition 2.1, the map φ is a bilocal automor-
phism. However, ϕ behaves on a complemented subspace of the one-dimensional
subspace of scalar operators arbitrarily.
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In order to show that Theorem 1.2 does not hold true without the separabil-
ity assumption, take a nonseparable Hilbert space H with the orthonormal basis
{eα : α ∈ ∆} and define a conjugate-linear bijective involution J : H → H by

J

(∑
α∈∆

λαeα

)
=
∑
α∈∆

λαeα

for every
∑
α∈∆ λαeα ∈ H. Denote by K(H) the ideal of all compact operators.

For an operator T ∈ B(H) we denote by σ(T ) the spectrum of T . The map
T 7→ JT ∗J , T ∈ B(H), is an anti-automorphism of B(H), and therefore, σ(T ) =
σ(JT ∗J) for every T ∈ B(H). Since H is nonseparable, we have σ(T ) = σp(T )
for every T ∈ K(H). Indeed, all nonzero members of the spectrum of a compact
operator are eigenvalues, and because H is nonseparable, 0 belongs to the point
spectrum of each compact operator. Hence,

σp(JT
∗J) = σp(T )

for every T ∈ K(H), and consequently, σp(JT
∗J) = σp(T ) for every T ∈ A =

CI ⊕ K(H). Thus, the map φ : A → A defined by φ(T ) = JT ∗J , T ∈ A,
is a bilocal automorphism. However, it is not an automorphism (it is an anti-
automorphism).

We believe that Theorem 1.2 holds true without the continuity assumption.
It is clear from our proof that one way of proving such a statement would be
to show that bijective linear maps on unital standard operator algebras com-
pressing the point spectrum are necessarily automorphisms. This problem is
of independent interest. Bijective linear maps on standard operator algebras
compressing various parts of spectrum have been studied a lot (see [2] and the
references therein). But as far as we know this kind of results have been ob-
tained only for spectral sets having the property that they are nonempty for
every operator T . Of course, there are a lot of operators with empty point
spectrum. The other possibility would be to employ the automatic continuity
techniques and prove directly that bilocal automorphisms are bounded. If one
can prove such an automatic continuity result, then one would get the structural
result for point spectrum compressing maps as a corollary (see Proposition 2.1).
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