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ABSTRACT 

In this paper, we address the finite-dimensionality issues re- 
garding discrete-time risk-sensitive estimation for stochastic 
nonlinear systems. We show that for a bilinear system with 
an unknown parameter, finite-dimensional risk-sensitive es- 
timates can be obtained. A necessary condition is obtained 
for nonlinear systems with no process noise such that one 
can obtain finite-dimensional risk-sensitive estimates. 

1. INTRODUCTION 

It is well known that in optimal stochastic linear filtering 
theory, the Kalman filter achieves the conditional mean es- 
timate or the minimum variance estimate for Gauss-Markov 
systems, and is finite-dimensional for finite-dimensional 
models. Minimum variance estimation for nonlinear sys- 
tems can also be achieved, but via infinite-dimensional fil- 
ters, in general. These filters optimize a quadratic cost 
criterion which is the estimation error energy, and are opti- 
mal under the assumption that  the plant and noise param- 
eters are fully known. They are insensitive to  risks involved 
due to  uncertainties in the plant or the noise process, and 
are termed as risk-neutral filters. Risk-sensitive filters o p  
timize the expectation of the exponential of the estimation 
error energy, thus penalizing all its higher order moments. 
This obviously makes the risk-sensitive filter very cautious 
and robust to  system uncertainties, the degree of cautious- 
ness being determined by a risk-sensitive parameter which 
weights the index of the exponential. 

A contemporary question is: when risk-neutral filters 
are finite-dimensional, are the corresponding risk-sensitive 
versions also finite-dimensional (probably under modified 
conditions)? It appears that  at this stage of our knowledge, 
this question can only be answered on a case by case basis. 
Here we consider two such important cases beyond the well 
understood K h a n  fiter and hidden Markov model filters. 

Risk-sensitive filtering for discrete-time linear Gauss- 
Markov systems addressed in [2] results in a 
finite-dimensional linear filter which is an H, filter. Risk- 
sensitive control problems have been addressed in [3] [4] 
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[5]. A solution to the output feedback risk-sensitive con- 
trol problem for nonlinear discrete-time systems using in- 
formation state feedback techniques resulting in infinite- 
dimensional controllers has been given in [6]. These in- 
formation states have been found t o  be not a conditional 
probability density functions of the states given the ob- 
servations, but that of an augmented plant which includes 
part of the risk-sensitive cost in the state process [9]. Risk- 
sensitive filters for stochastic nonlinear systems have also 
been derived in [i’] and for hidden Markov models with 
finite-discrete state space in [8]. These filters are obtained 
via similar information state techniques where the informa- 
tion states are given by a linear but infinite-dimensional 
recursion (finite-dimensional in case of linear signal mod- 
els and hidden Markov models). The optimizing state es- 
timate is then obtained as the minimizing argument of a 
particular integral involving the information state. There 
are interesting interpretations of the results obtained from 
the risk-sensitive filters when the risk-sensitive parameter 
approaches certain limits. It is shown that when it a p  
proaches zero, the known risk-neutral filters are derived. On 
the other hand, in the small noise limit, the risk-sensitive 
filters have an interpretation [9] in terms of a deterministic 
worst-case noise estimation problem given from a differen- 
tial game. 

As is known from optimal stochastic nonlinear filtering 
theory, the conditional density filter is infinite-dimensional 
in general. Special cases of finite-dimensional filters for 
continuous-time systems, other than linear or discrete-state 
systems, have been found in [ll] [15] [14]. A necessary and 
sufficient condition for the existence of finitedimensional 
optimal filters for a class of discrete-time nonlinear systems 
has been found in [12]. Finite-dimensional risk-sensitive in- 
formation states for continuous-time partially observed risk- 
sensitive control problems have been obtained in [13]. Also, 
the risk-sensitive cost has been generalised to  absorb non- 
linearities to  yield finite-dimensional optimal controllers in 
[lo] and finite-dimensional risk-sensitive filters/smoothers 
in [16] for discrete-time nonlinear systems. 

In this paper, we derive risk-sensitive estimation re- 
sults for discrete-time linear stochastic systems with time- 
varying unknown parameters using reference probability 
methods. These methods use a discrete-time version of 
Girsanov’s Theorem, Fubini’s theorem and Kolmogorov’s 
Extension theorem [I] and have been used to  derive risk- 
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sensitive filtering and control results in [6] [i] [8] [16] [9]. 
The presence of unknown parameters essentially makes it a 
nonlinear problem, thus resulting in an infinite-dimensional 
risk-sensitive filter/estimator in general. Rather than using 
the very general nonlinear risk-sensitive filtering results of 
[7]  by augmenting the parameters to  the state, this prob- 
lem is treated as a special case of such general systems and 
simpler results are obtained. The special case of a bilinear 
structure where the unknown parameters enter the system 
matrices linearly is also considered to obtain closed-form 
finite-dimensional results. 

This paper also explores the finite-dimensionality issues 
for a given class of risk-sensitive cost inhces for the same 
class of nonlinear discrete-time systems as in [12]. The re- 
sults of [12] are extended to obtain a necessary condition 
for the existence of finite-dimensional risk-sensitive filters. 
It is found that this condition is more complicated than 
the corresponding result for risk-neutral conditional expec- 
tation filters in [I21 and not easily verifiable. It remains 
an open question therefore as to whether or not it is pos- 
sible to  find easily verifiable conditions for the existence of 
finite-dimensional risk-sensitive filters for a class of nonlin- 
ear systems for which finite-dimensional risk-neutral filters 
exist under certain conditions. 

2. RISK-SENSITIVE ESTIMATION 

In this section, we introduce the discrete-time stochastic 
nonlinear state space signal model with unknown parame- 
ters and define the problem of risk-sensitive estimation. We 
derive expressions €or unnormalized information states and 
the optimizing risk-sensitive estimate. Finally, we see how 
one can obtain finite-dimensional risk-sensitive estimation 
results when the unknown parameters enter the dynamics 
in a linear manner. 

Consider the following state space model defined on a 
probability space (0,3, P ) :  

zk+l = A(ek+ir zk) + wk+i 
yk = C(ekr 2,) + Ok (1) 

where 2 k  E R " , y k  E IRP. Wk E I R " , { w k } , k  E IN is a 
sequence of i.i.d random variables with a density function +. 
vk E E', {vk}, k E IN is a sequence of i.i.d random variables 
with a strictly positive density function d. A ( B k + l ,  z k )  and 
c(8k, zk) are, in general, nonlinear vector valued functions. 
Note that in (l), we can have the noise processes W k , V k  

scaled by matrices depending on the unknown parameter(s) 
Bit. However, we do not consider that situation for the sake 
of simplicity. Here, 20 or its distribution is supposed to be 
known. 

For simplicity, let us take ek, k E IN to be scalar valued 
and satisfying the following dynamics: 

8 k + l  = f ( 8 k )  + V k + l  (2) 

where f(.) is a real valued nonlinear function in general 
and {vk}, k E IN is a sequence of i .i .d random variables 
with density p. Here, Bo or its distribution is supposed to 
be known. 

Definition 2.1 Let GE+l = u { e o , .  . . . 6 k + l ,  2 0 , .  . . , z k + l ,  

yo.. . . . y t } ,  y," =  yo,. . . , yk} and the corresponding com- 
plete filtrations be {Bk+l} and {yk} respectively. 

The objective of risk-sensitive estimation is to determine 
i k l k  = (iklk, eklk) where 

k - I  

i k l k  = argmin ~ [ e x p ( e { C  ~ ( z r ,  o r ,  i l p ,  8lp) 

+L(zki e k ,  € 3  <)I) 1 y k ]  
1=0 f. s 

(3) 

Here,L(., ., ., .) is assumed to be a convex function quadrat- 
ically upper bounded. Define 

k 

Dk = e x p ( @ { E  L ( Z l , & ,  i t r i r ,  iqi}) 
1=0 

and Ak = nrzo k 4(yk -c ~ J k !  e ,Z k ) l .  Following the techniques 
developed in [l], we define a new measure P ,  under which 
{yk} is a sequence of i.i.d random variables with a density 
d. Using a discrete-time version of Girsanov's theorem, and 
equating the Radon-Nikodym derivative $ / G ~ =  Ak, one 
can show that the original measure P can be derived from 
P. Using a version of Bayes Theorem, it is evident that our 
optimization problem is equivalent to  the following problem 
(where E is the expectation under the new measure): 

i k l k  = argmin E[AkDk--l exp{@L(zk,8k,<, c ) }  I Yk] (4) 

Definition 2.2 Define the unnormalized information state 
qk(2, e) ,  k E IN Such that 

C L  

Now, we state the following Lemma and Theorem without 
proof. 

Lemma 2.1 The unnormalized information state q k ( z , O )  
satisfies the following recursion 

N o t e  2.1 Note that qo(z,e) = i ro(z)po(e)  where X O ( . ) , P O ( . )  

are the densities of zo,& respectively. 

Theorem 2.1 The optimizing risk-sensitive estimate iklk 
i s  given by 
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2.1. Finite-dimensionality issues 

In this section, we will briefly address some 
finite-dimensionality issues associated with such 
risk-sensitive estimation problems. Consider (1) with 4, b, p 
being Gaussian densities and the initial densities for 10, B o ,  
namely n , p O  respectively to be Gaussian as well. Also, 
consider L ( z ,  0 ,  i k l k ,  B k l k )  to be quadratic in nature, i.e., 

where Q > 0. Now, consider (1) again. We will concen- 
trate on the bilinear case, where A ( & + l , Z k )  = A B k + l Z k ,  

C ( e k , z k )  = C & X k .  It is easy to  see that from Lemma 
2.1 that the recursion involving q k ( z ,  8) is going to involve 
quadratic terms in the index of the exponential. Using 
completion of square techniques and integrating over the 
Gaussian densities twice (similar techniques as used in [TI),  
one can get a closed form expression for q k ( 2 , e )  which 
would also be a bivariate Gaussian density and hence finite- 
dimensional. The details of this algebraic manipulation is 
too long for the space available here and hence, are not pro- 
vided. However, similar results can be found in [7]. Now, 
having obtained finite-dimensional information states, the 
optimizing risk-sensitive estimates can be obtained from (7) 
by using similar techniques. Since these estimates will be 
expressed as functions of the parameters of the information 
state, they will be finite-dimensional. 

3. RISK-SENSITIVE ESTIMATION: THE CASE 
WHEN WK = 0 

In this section, we explore the possibilities of obtaining 
finite-dimensional risk-sensitive filters when the process 
noise, W k  is absent. In 1121, a necessary and sufficient condi- 
tion for obtaining finite-dimensional discrete-time nonlinear 
filters was obtained in the context of risk-neutral or mini- 
mum variance estimation for systems free of process noise. 
Here, we try t o  draw parallels of such results in the risk- 
sensitive context. 

Consider (1) and to  make it simple, let us ignore the un- 
known parameter @ k ,  So that A ( @ k + i , Z k )  = A ( l k ) ,  
c ( f ? k + l , Z k )  = c ( Z k ) ,  where A(.),C(.) are still nonlinear 
vector valued functions. For more generality (as in [12]), 
let us a state-dependent noise variance for v k ,  such that 
our &Crete-time nonlinear system is now given by 

Z k + i  = A ( z k )  

y k  = c ( z k ) + q ( z k ) v k  (9) 

Here, assume that V k  N N ( 0 , l ) .  Also, for obvious reasons, 
the index of the exponential in the risk-sensitive cost kernel 
is given by L ( Z k ,  Z k l k ) ,  where L( . ,  .) is quadratically upper 
bounded. 

Now, let us make the following assumptions. 
1. A is a C' ciiieomorphism 
2. q(z) is invertible for every z 

Also, define 

= ( T ( Z ) T ( Z ) ' ) ; ; , ~ , ~  = I7.-.,p 

It is well known that in the context of risk-neutral or mini- 
mum variance estimation, the conditional density filter plays 
an important role. In [la], it is shown that the associ- 
ated unnormalized conditional measure can be expressed in 
terms of finite number of parameters if and only if the fol- 
lowing functional space H = Et - Span{hi, ,  o Ak,  h, o Ak I 
i, j = 1,. . . ,p ,  k 2 0) is finite-dimensional. For proof, see 

We now state the following lemma and theorem without 
1121. 

proof. 

Lemma 3.1 The unnormalized conditional measure q k ( 2 )  

defined b y  p k ( Z ) d Z  = E [ A k - i D k - l I ( Z k  E d z )  I Y k - I ]  Satis- 
fies the following recursion 

where Jj(z) i s  the Jacobian off at z. 

Theorem 3.1 The optimizing risk-sensitive estimate i1;p 
is given b y  

Note that the similarity between (11) and the correspond- 
ing recursion for the unnormalized conditional measure in 
1121 indicates that similar proof techniques can be used to 
derive finitedimensionality conditions for the q k ( z )  as de- 
fined in Lemma 3.1. However, things turn out to be a bit 
more complicated because of the presence of the quantity 
e x p ( B L ( A - ' ( z ) , i k l k )  because i k l k  is a function of yk (as 
can be seen from (12)). Nevertheless, a necessary condition 
can be derived using the following assumptions. Assume 
that @ ( Z )  can be expressed in terms of a finite number of 
parameters B k  = (&(I),  /?k(2) ,  . . . , B k ( Z ) ) .  Now, we assume 
the following, 

= f: Mm,i(z,Bj)yy + Ni( z ,B j )  (13) 
m= 1 

Note here, that j = 0,.  . . , k and y: denotes the I-th element 
of the vector y,, 1 = 1,. . . , p .  

Remark 3.1 An example where this assumption hoIds is 
the case of linear systems, with L(z,y)  = (z - y)'(z - y) 
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where i k ( k  can be expressed as a linear function of yk. De- 
tails can be found in [7]. But for a given nonlinearity. note 
that it is not very easy to verify whether this assumption 
holds or not. 

Defini t ion 3.1 Define the functional space 

Theorem 3.2 A necessary condition for the 
finite-dimensionality of ( I k ( Z )  as defined in Lemma 3.1, for 
the discrete-time nonlinear system (9) with the risk-sensitive 
cost defined as in (3), is HI is finite-dimensional. 

Proof Proof techniques are similar to those of [12]. How- 
0 ever, it is fairly long and cannot be given here. 

4. CONCLUSIONS 

This paper deals with discrete-time finite-dimensional risk- 
sensitive estimation. Risk-sensitive filters, for nonlinew sys- 
tems, are, in general, infinite-dimensional. However, we 
show that in the case of a discrete-time bilinear system with 
an unknown parameter where the parameter enters the dy- 
namics in a linear fashion, one can obtain finite-dimensional 
risk-sensitive estimates. Also, in the case of a system where 
there is no process noise, a necessary condition for obtaining 
finite-dimensional risk-sensitive estimates is given. How- 
ever, this condition is not easily verifiable as its risk-neutral 
counterpart. Extensions of such results for risk-sensitive fil- 
ters can also be made for discrete-time nonlinear systems 
with more generalized measurement noise and also for non- 
linear systems with delay. 
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