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Highlights:  

 Supplemental UV decreased photosynthesis by 30% and activated antioxidant defence. 
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 Chloroplast antioxidants APX and Fe-SOD were activated more than other pathways. 

 Under low PAR/UV conditions acclimation to UV may not rely on H2O2 signals. 
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Abstract  1 

Greenhouse grown tobacco (Nicotiana tabacum L. cv. Petit Havana) plants were exposed to 2 

supplemental UV centred at 318 nm and corresponding to 13.6 kJ m-2 d-1 biologically effective UV-B 3 

(280-315 nm) radiation. After 6 days this treatment decreased photosynthesis by 30%. Leaves 4 

responded by a large increase in UV-absorbing pigment content and antioxidant capacities. UV-5 

stimulated defence against ROS was strongest in chloroplasts, since activities of plastid enzymes 6 

FeSOD and APX had larger relative increases than other, non-plastid specific SODs or peroxidases. In 7 

addition, non-enzymatic defence against hydroxyl radicals was doubled in UV treated leaves as 8 

compared to controls. In UV treated leaves, the extent of activation of ROS neutralizing capacities 9 

followed a peroxidases > hydroxyl-radical neutralization > SOD order. These results suggest that 10 

highly effective hydrogen peroxide neutralization is the focal point of surviving UV-inducible 11 

oxidative stress and argue against a direct signalling role of hydrogen peroxide in maintaining 12 

adaptation to UV, at least in laboratory experiments. 13 

 14 

1. Introduction 15 

Recent research shows that at mid-latitudes of the Northern hemisphere ambient solar 16 

ultraviolet (280-400 nm) radiation is rather a developmental signal than a direct stressor for plants 17 

(Brosché and Strid, 2003; Jenkins, 2009; Ballaré et al., 2011; Hideg et al. 2013). However, the same 18 

UV wavelengths may cause reactive oxygen species (ROS) mediated oxidative stress when applied in 19 

controlled environments, such as growth cabinets or greenhouses where PAR to UV ratios are lower 20 

than in nature. Whether these treatments result in severe cell damage or acclimative responses 21 

depends on several factors including growth conditions preceding the UV treatment as well as doses 22 

and wavelength distribution of the applied artificial UV source. Metabolic responses include an 23 

increase in epidermal UV absorbing pigment content and in cellular antioxidants (Carletti et al., 24 

2003; Yannarelli et al., 2006; Fini et al., 2011; Majer and Hideg, 2012a, 2012b). When applied at very 25 

high (20-40-times of ambient) intensities, 312 nm centred UV-B generated a variety of reactive 26 

oxygen species (ROS) in leaves including superoxide and hydroxyl radicals at concentrations 27 

detectable by EPR spin trapping (Hideg and Vass, 1996). UV irradiation of leaf segments pre-loaded 28 

with either superoxide radical or singlet oxygen selective fluorescent ROS probes showed that when 29 

UV was applied alone, without PAR, higher energy UV-B and lower energy UV-A generated different 30 

ROS (Barta et al., 2004). Since these methods are not sensitive enough to quantify ROS in leaf tissues 31 

exposed to lower, near-ambient UV intensities, the presence of ROS in such experiments is only 32 

assumed from increased antioxidant activities (Carletti et al., 2003; Fini et al., 2011; Majer and 33 

Hideg, 2012a). The aim of the present study was to explore acclimative responses of tobacco leaves 34 
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to supplementary UV radiation in a controlled environment experiment, in terms of ROS specific 1 

antioxidants. Daily UV-B doses applied in our experiment were approximately 1.8-times higher than 2 

ambient doses in the Northern hemisphere (latitude 46o) in summer (Bassman et al., 2001) and were 3 

applied in combination with lower than ambient PAR, which aggravates the effect of UV. 4 

Consequently, our results cannot be directly related to naturally occurring UV but may help to 5 

further elucidate plant responses to these conditions. 6 

2. Methods 7 

2.1. Plant growing and UV treatment conditions 8 

 Tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) plants were grown in growth chambers 9 

(Fitoclima D1200, Aralab, Portugal) at 25/20 oC, at 16 h daily irradiation with ca. 150 µmol m-2 s-1 10 

photosynthetic photon flux density (PPFD). Four-week old plants were treated for 6 days afterwards, 11 

in two groups each containing three plants. The first group (UV plants) was exposed to low dose 12 

supplemental UV radiation from Q-Panel UVB-313EL tubes (Q-Lab Ltd., Bolton, UK) through a 13 

cellulose diacetate filter (Courtaulds Chemicals, Derby, UK) and the second group (control plants) 14 

were kept under PAR only. The applied UV was centred at 318 nm (Majer and Hideg, 2012a) and 15 

corresponded to 15.6 kJ m-2 d-1 global (280-400 nm) or 13.6 kJ m-2 d-1 UV-B (280-315 nm) biologically 16 

effective dose as calculated using the Biological Spectral Weighting Function developed by Flint and 17 

Caldwell (2003). PAR was 50-55 µmol m-2 s-1 PPFD for both UV and control plants. At the end of the 18 

6-day treatment, the last fully-developed leaf (at the 3rd-4th node) was chosen from each plant for 19 

analysis. Photosynthesis and electron transport (section 2.2) were measured on intact plants, and 20 

the same leaves were sampled for pigment and antioxidant analyses (2.3-2.4). The whole 21 

experiment was repeated with newly grown plants using the same growth and treatment conditions. 22 

2.2. Photosynthesis and variable chlorophyll fluorescence measurements 23 

 Photosynthesis was characterized by CO2 uptake (µmol CO2 m-2 s-1) measured on intact 24 

leaves at 200 µmol photons m-2 s-1 PPFD using a LI-6400 Portable Photosynthesis System (LI-COR 25 

Environmental, Lincoln, Nebraska USA). Following this, plants were kept in darkness for 30 min 26 

before chlorophyll fluorescence measurements were made using the MAXI-version of the Imaging-27 

PAM (Heinz Walz GmbH, Effeltrich, Germany). Maximal (Fv/Fm) and light acclimated effective PS II 28 

quantum yields (Y(II)) were determined according to Genty et al. (1989). Light acclimated Y(II) was 29 

measured at the end of a 5 min exposure to 55 µmol m-2 s-1 actinic light. 30 

2.3. Pigment analysis 31 

 Two 1 cm diameter discs were cut from each leaf and soaked in either 80 % acetone or 32 

acidified methanol at 4oC in darkness for 24 hours. Following this, leaf discs were ground in the same 33 

medium and centrifuged (3000 x g, 5 min, 4oC). Supernatants made from acetone extracts were used 34 
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for photometric determination of chlorophyll and carotenoid contents, based on absorbances 1 

measured at 664.6, 646.6 and 440.5 nm (Yang et al., 1998). Supernatants of acidified methanol 2 

extracts were used for assessing total UV-B absorption (the area under the absorption curve 3 

integrated between 280-315 nm). Absorption measurements were carried out using a Shimadzu 4 

UV1601 photometer.  5 

2.4. Antioxidant measurements 6 

Twelve leaf discs (diameter=1 cm) were weighed and ground first in liquid nitrogen then in 7 

0.8 mL Na-phosphate buffer (50 mM, pH 7.0, 1 mM EDTA). When processing leaf discs for ascorbate 8 

peroxidase activity measurements, the isolating buffer contained 5 mM ascorbate in addition to the 9 

above components. Cell debris was removed by low speed centrifugation (3000 x g, 5 min, 4o C), 10 

then supernatants were re-centrifuged at higher speed (30,000 x g, 25 min, 4oC). Protein contents of 11 

the extracts were determined using the standard Bradford assay (Bradford 1976) and samples were 12 

stored at -80 oC until performing antioxidant measurements. 13 

2.4.1. Photometric antioxidant capacity measurements 14 

Hydroxyl radical (OH) scavenging was determined based on the ability of the leaf extracts to 15 

inhibit the formation of the OH-mediated oxidation of low fluorescence terephthalate acid (1,4-16 

benzenedicarboxylic acid, TPA) to high fluorescence 2-hydroxyterephthalate (HTPA). HTPA 17 

fluorescence was measured using a Quanta Master QM-1 spectrofluorometer (Photon Technology 18 

Inc., Birmingham, New Jersey, USA), and OH antioxidant capacities of leaf extracts were 19 

characterized by their half-inhibitory concentration on HTPA formation as described earlier 20 

(Stoyanova et al., 2011). Ethanol was used for calibration and OH antioxidant capacities of leaf 21 

extracts were given as µM ethanol equivalent g-1 leaf fresh weight. 22 

Peroxidase (EC 1.11.1.7) activity was tested using the ABTS method (Childs and Bardsley, 23 

1975). The reagent solution contained 10% ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic 24 

acid) in 50 mM citrate buffer (pH 5.0) and 360 µM H2O2. The POD activity of the samples was tested 25 

against the activity of standard horseradish peroxidase (Sigma) and was expressed as unit POD mg-1 26 

protein.  27 

SOD activity was measured as inhibition of superoxide-induced reduction of nitro blue 28 

tetrazolium (NBT) to formazan (Giannopolitis and Ries, 1977) as described earlier (Majer et al., 29 

2010). The reaction mixture contained 0.015 U xanthine-oxidase in 50 mM Na-phosphate buffer (pH 30 

7.2) with 0.3 mM EDTA, 0.2 mM xanthine, and formazan production was measured as absorption 31 

change at 560 nm. Results were expressed as unit SOD mg-1 protein. 32 

FRAP (ferric reducing antioxidant power) assay was carried out according to a modification 33 

of the original medicinal biochemical assay (Benzie and Strain, 1996) as detailed in Majer and Hideg 34 
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(2012b). Ascorbic acid (AsA) was used for calibration and FRAP values were expressed as µmol AsA 1 

equivalents g-1 leaf fresh weight. 2 

2.4.2. SOD and APX activity measurements using native PAGE 3 

To determine enzyme activities, samples were first separated on SDS free native 12% PAGE. 4 

Gels for APX activity contained 4 mM ascorbate. After separation, gels were rinsed either in distilled 5 

water (SOD gels) or in a 50 mM Na-phosphate buffer (pH 7.0) containing 4 mM ascorbate (APX gels). 6 

This was followed by staining procedures which were carried out at room temperature. 7 

SOD activities were determined as described by Song et al. (2007). First gels were incubated 8 

in darkness for 30 min in a 50 mM Na-phosphate buffer (pH 7.8) containing 1 mM EDTA, 0.05 mM 9 

riboflavin, 0.1 mM NBT and 0.3% N,N,N′′,N′′-tetramethylethylenediamine (TEMED). Following this, 10 

gels were rinsed in water and illuminated for 15 min to make the colourless bands with SOD 11 

activities in the purple-stained gel visible. To separate various SOD isoforms, either 2 mM KCN (a 12 

Cu/Zn-SOD inhibitor) or 2 mM H2O2 (inhibitor of FeSOD and Cu/Zn-SOD) was added to the staining 13 

mixture.  14 

APX activity was determined according to Mittler and Zilinkas (1993). Gels were first 15 

incubated in a Na-phosphate buffer (pH 7.8) containing 8 mM ascorbate and 4 mM H2O2, then rinsed 16 

with buffer and stained with a mixture containing 2.45 mM nitroblue tetrazolium (NBT) and 28 mM 17 

TEMED in 50 mM Na-phosphate buffer (pH 7.8). APX activity was visualized as colourless bands on 18 

the greyish-blue gel, where the colouration was caused by TEMED-formazan, formed in a reaction 19 

between TEMED-NBT and ascorbate. 20 

 Gels were analysed with ImageJ software (Schneider et al., 2012) to quantify relative 21 

activities. Changes in SOD and APX activities brought about by the preceding UV treatment of leaves 22 

were determined as percentages of control leaf values. 23 

2.5. Statistics 24 

 With the exception of native PAGE based enzyme activity measurements, all parameters 25 

were measured six-times, using six different leaves representing two biological repetitions and 3-3 26 

parallels of UV or control samples in each repetition. Samples were pooled for SOD and APX 27 

activities in gels and these were measured twice, representing the two biological repetitions. 28 

Student’s t-test was used to compare means and to calculate P-values, and differences were 29 

considered significant at P<0.05.  30 

 31 

3. Results and Discussion 32 

3.1. Photosynthetic responses to supplemental UV 33 
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Figure 1 illustrates changes induced by the 6-day supplemental UV treatment in tobacco leaves. 1 

Photosynthesis measured as CO2 uptake at 200 µmol photons m-2 s-1 was 30% lower than in controls 2 

(Fig.1A). Both potential (maximum, Fv/Fm) quantum yields and effective (Y(II)) PSII quantum yields 3 

were lower in UV treated leaves than in controls. Y(II) was only 18% lower when measured at 55 4 

µmol photons m-2 s-1 (which was the PAR applied during the UV treatment) and the difference 5 

between UV treated and control leaves was even smaller, 8-12%, when measured at 200 µmol 6 

photons m-2 s-1 (data not shown). High doses of UV-B were shown to have a direct effect on stomata 7 

(Nogues et al. 1999), in addition to changes in mesophyll photosynthesis including a decrease in 8 

both the amount and the activity of Rubisco (Strid et al., 1990; Allen et al., 1997). Supplemental UV 9 

did not result in a significant change in stomata conductance and caused a larger decrease in 10 

photosynthetic CO2 uptake than in photochemical yield, suggesting that a partial inactivation of dark 11 

reactions contributes to the lower photosynthesis in UV treated leaves. This implies that the applied 12 

supplemental UV resulted in stress, although a major part of photosynthesis was maintained during 13 

the treatment allowing acclimatory responses to occur.  14 

3.2. Pigment responses to supplemental UV 15 

The taxing nature of supplemental UV is also shown by a significant, 12 and 34% loss of leaf 16 

chlorophyll and carotenoid contents respectively, by the end of the 6-day treatment (Fig.1A). On the 17 

other hand, a large, 80% increase in UV-absorbing pigment content supports the occurrence of 18 

acclimatory processes. Whole leaf extracts contain both epidermal UV screening pigments and 19 

various other UV absorbing flavonoids with primarily antioxidant functions (Caldwell et al., 1983; 20 

Middleton and Teramura, 1993; Zhang and Björn, 2009). An increase in UV absorbing pigment 21 

content is a common response when UV is applied to greenhouse grown plants (Liu et al., 1995; 22 

Carletti et al., 2003; Garcia Macias et al., 2007). Several plant metabolites, for example various 23 

flavonoids feature both UV absorbing and antioxidant characteristics (Agati and Tattini 2010; Majer 24 

et al., 2014). In our experiment, the observed strong increase in the UV absorbing capacity of leaf 25 

extracts suggested an increase in non-enzymatic antioxidants, which were assessed as total 26 

antioxidant capacity.  27 

 28 

3.3. Antioxidant responses to supplemental UV 29 

Extracts from UV treated leaves had more than twice (236%) the total antioxidant capacity 30 

(measured as FRAP) compared to untreated leaves (Fig.1B). In addition to this total capacity, specific 31 

ROS neutralizing capacities were also measured. The applied UV treatment had no significant effect 32 

on either total superoxide scavenging capacity (data not shown) or Cu/Zn-SOD, but increased the 33 

activity of chloroplast-located Fe-SOD by 65 % (Fig.1B). Chloroplastic Cu/Zn-SOD in tobacco is only 34 
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present in detectable amounts in immature leaves, and the abundant isoform in chloroplasts is Fe-1 

SOD which is present at a relatively constant level in photosynthetic tissues of various ages (Van 2 

Camp et al., 1997). The observed large increase in Fe-SOD in UV-treated leaves suggests a plastid 3 

response. Our Fe-SOD activity data are in agreement with the result of Kliebenstein et al. (1998) who 4 

reported increased gene expression and protein levels of Fe-SOD in Arabidopsis in response to 15 kJ 5 

m-2 d-1 UV-B, a condition very similar to the one applied in our experiment. Increased superoxide 6 

neutralization leads to higher H2O2 concentrations; thus a successful acclimation to UV also requires 7 

effective H2O2 antioxidants. In our experiment, both total peroxidase and plastid APX activities 8 

increased to much larger extents (by 170 and 340%, respectively) than Fe-SOD (Fig.1B). These results 9 

differ from those found by Fini et al. (2011) in wild privet (Ligustrum vulgare) leaves exposed to 10 

higher supplemental UV doses (803 kJ m-2 UV-A + 38.8 kJ m-2 UV-B). In their experiment both SOD 11 

and APX increased by approximately 30-40% by the 8th day of treatment but decreased afterwards 12 

to or even below activities measured in control leaves (Fini et al., 2011). The authors attributed the 13 

observed steep decline in APX activity to an acclimative response, assuming that higher plastid H2O2 14 

concentrations prompted signalling to increase flavonoid biosynthesis (Fini et al., 2011). In another 15 

study, Yannarelli et al. (2006) found that sunflower plants acclimatized to 15 or 30 kJ m−2 biologically 16 

effective UV-B through the induction of various peroxidases, but not of APX which remained 17 

unaltered. Although differences in UV sources, UV dose and plant species make direct comparisons 18 

with these studies difficult, our data clearly contradict observations of decreased or unaltered APX 19 

activities in response to UV-B. In our experiment, the marked increase in peroxidase defence, 20 

especially in APX, suggests that increased H2O2 concentrations in UV exposed leaves are hazardous 21 

rather than beneficial. It is important to note that although tobacco leaves reportedly contain 22 

catalase forms which also possess peroxidatic activity (Havir and McHale 1987) the assay applied in 23 

our study may underestimate total H2O2 neutralizing activities due to its insensitivity to 24 

monofunctional forms. The importance of efficient defence against H2O2 may be explained by the 25 

possibility of UV-B inducible photo-cleavage of H2O2 yielding highly oxidizing hydroxyl radicals 26 

(Czégény et al. 2014). This is supported by the observation that protection against OH was doubled 27 

in UV-B exposed leaves (Fig.1B). In addition, ferric reducing capacities were also enhanced 28 

protecting against an UV-B independent, Fenton-type H2O2 → OH reaction, although to a smaller 29 

extent than that of peroxidase defence (Fig.1B). 30 

 31 

4. Conclusions 32 

In leaves H2O2 is part of the complex signalling network that may induce acclimatory defence 33 

responses as well as cell death (Neill et al., 2002; Apel and Hirt, 2004). ROS concentrations during 34 
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acclimative responses should be optimized to fulfil signalling roles while avoiding oxidative damage. 1 

It was recently suggested that not only concentrations per se, but ratios of different ROS, determine 2 

the activation of the defence network or programmed cell death. According to Sabater and Martin 3 

(2013) a high (1O2 + O2
–•)/ H2O2 concentration ratio could trigger a transition from defence to 4 

senescence responses. It follows from this model that when relatively low PAR results in lower 5 

photooxidative pressure which is less likely to lead to chloroplastic 1O2 production it takes less H2O2 6 

to keep (1O2 + O2
–•)/ H2O2 low. Accordingly, supplemental UV-B treatment in our experiment resulted 7 

in augmented H2O2 neutralization allowing high chloroplastic peroxidase activity to protect from 8 

possible UV-B induced hydroxyl radical production (Czégény et al. 2014) without risking an increase 9 

in (1O2 + O2
–•)/ H2O2. This situation is different from experiments where high intensity PAR or 10 

sunlight is supplemented with UV radiation, which reportedly results in partial suppression of leaf 11 

peroxidase activities (Fini et al., 2011). 12 

 13 
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Figure caption 

Figure 1 

Tobacco leaf responses to 6-day supplementary UV treatment 

Black and red symbols correspond to untreated (PAR only) and UV-B treated (PAR+UV-B) leaves, 

respectively. 

Changes in (A) leaf photosynthesis, photochemical quantum yields, pigment content and (B) 

antioxidant capacities are shown as % of corresponding values in untreated leaves. Data points 

represent averages and error bars correspond to standard deviations (n=3 for Fe-SOD, Cu/Zn-SOD 

and APX, n=6 for all other samples). 

100% values are: Photosynthesis, 6.731.14 µmol CO2 m
-2 s-1 uptake; Maximum PSII quantum yield 

Fv/Fm, 0.7830.005; Effective PSII quantum yield at 55 µmol photons m-2 s-1 Y(II), 0.6070.022; Total 

carotenoid content (Car) 1.8340.701 µg g-1 FW; Total chlorophyll content (Chl) 23.9782.916 µg g-1 

FW; Total UV-B absorbing pigment content (UV abs) 35.43552.116 OD nm; Total peroxidase activity 

(POD) 295.87556.606 Unit mg-1 protein; FRAP 1.5960.131 AsA equivalents g-1 FW; OH antioxidant 

capacity, 89.3663.013 µmol ethanol equivalents g-1 FW. Fe-SOD, Cu/Zn-SOD and APX activity data 

were evaluated using native gel images and activities were not quantified as enzyme units. 
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