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Abstract

Synonymous constraint elements (SCEs) are protein-coding genomic regions with very low synonymous mutation rates
believed to carry additional, overlapping functions. Thousands of such potentially multi-functional elements were recently
discovered by analyzing the levels and patterns of evolutionary conservation in human coding exons. These elements
provide a good opportunity to improve our understanding of how the redundant nature of the genetic code is exploited in
the cell. Our premise is that the protein segments encoded by such elements might better comply with the increased
functional demands if they are structurally less constrained (i.e. intrinsically disordered). To test this idea, we investigated
the protein segments encoded by SCEs with computational tools to describe the underlying structural properties. In
addition to SCEs, we examined the level of disorder, secondary structure, and sequence complexity of protein regions
overlapping with experimentally validated splice regulatory sites. We show that multi-functional gene regions translate into
protein segments that are significantly enriched in structural disorder and compositional bias, while they are depleted in
secondary structure and domain annotations compared to reference segments of similar lengths. This tendency suggests
that relaxed protein structural constraints provide an advantage when accommodating multiple overlapping functions in
coding regions.
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Introduction

The rapid development of comparative genomics approaches

along with the fast increase in the number of sequenced genomes

provides us with a clearer view on evolutionarily conserved and

hence potentially functional genome regions [1]. All the under-

lying approaches are based on the notion that mutations affecting

functionally important regions are deleterious and hence are likely

to be eliminated from the population by purifying selection, while

mutations affecting ‘junk DNA’ are neutral and can accumulate

during evolution [2,3]. The increase in the number of sequenced

genomes supports the discovery of new functional elements of

different types [4–8] by enhancing the power and resolution of

detecting constrained regions [9–13]. However, these depend not

only on the number but also on the diversity of species compared

[14]. Sequences from closely related organisms might simply not

have had enough time to change and hence they can be mistakenly

assigned as conserved without functional importance. On the

other hand, alignments from distantly related genomes are suitable

for detecting constrained genome regions, although they may

overlook recently evolved functionalities.

A recent comparative genomics study of 29 mammalian species

identified constrained elements that cover 4.2% of the human

genome [15]. Since 20 of the 29 genomes were selected and newly

sequenced for the analysis, the power of detecting evolutionary

constraints was largely improved compared to previous approaches

[16,17]. In the resulting robust genomic alignment, the levels and

patterns of evolutionary conservation reflected the number and

type of different functionalities fulfilled by a given genome region.

Lindblad-Toh and colleagues applied phylogenetic codon models

to find small windows in known open reading frames (ORFs) that

exhibited unusually low rates of synonymous substitution and

identified a surprisingly large number (,10000) of synonymous

constraint elements (SCEs) within human coding exons [15]. SCEs

are protein-coding regions in which synonymous mutation rates

are extremely low compared to the average rate of the complete

ORF in which they are located, as well as compared to the average

rate of the given ORFome, indicating additional sequence

constraints beyond those dictated by the structure and function

of the protein [15,18]. These additional constraints most

frequently stem from the demands of regulatory sites involved in

translation initiation and transcript splicing. SCEs can also contain

target sequences for miRNAs, or sequence-specific DNA-binding

proteins such as transcription factors. They could code for another

protein segment in shifted reading frames (dual-coding), for

functionally important mRNA structures, or for non-coding/

regulatory RNAs (Figure 1). Most of these potential overlapping

functions are present among the examples described by Lin MF

and colleagues [18]. In these cases, one can imagine that the DNA

sequence bears signs of competing demands of 1) DNA function, 2)

RNA function, and 3) protein function. The interplay between

diverse functionalities could in principle result in DNA regions

PLOS Computational Biology | www.ploscompbiol.org 1 May 2014 | Volume 10 | Issue 5 | e1003607

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the Academy's Library

https://core.ac.uk/display/42925325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003607&domain=pdf


serving three or even more different needs. Interestingly, in these

dual- or multi-functional DNA regions the changes in the amino

acid sequence of the encoded protein segments are restricted by

the second functionality, which could influence their capability to

form structured elements and folded domains. The question is how

the corresponding protein segments can overcome these difficul-

ties. In our opinion, such protein regions might show rather

relaxed structural constraints, i.e. enrichment in low sequence

complexity or, at least, in structural disorder.

Structural disorder in proteomes was discovered only a decade

ago [19–22], and since then intrinsically disordered proteins (IDPs)

constitute a new, fast developing field of structural biology [23].

Intrinsically disordered regions (IDRs), which function as ensem-

bles of different conformations [22], are well predictable based on

their unique amino acid composition [20,24], widespread in

eukaryotic proteomes [25–27], and are abundant in proteins of

signaling and regulatory roles [19,28]. From an evolutionary point

of view, due to their increased tolerance against mutations, IDRs

undergo more rapid changes than globular domains [27].

Additionally, they are frequently subject to enhanced positive

Darwinian selection [29]. Although proteins containing long IDRs

are evolutionarily more constrained, IDRs themselves are less

constrained and more enriched in single nucleotide polymor-

phisms (SNPs) than any regular secondary structure type [30]. The

increased tolerance to mutations stems from the lack of defined

secondary or tertiary structure and consequently reduced struc-

tural constraints, which predisposes IDRs to be more tolerant of

restrictions affecting their coding sequences. For instance, multi-

functionality in alternatively spliced gene regions that can give rise

to distinct protein chains in different reading frames appears to

correlate with protein disorder [31].

Here, we describe a comprehensive computational analysis of

the structural preferences of protein segments encoded by

potentially multi-functional gene regions. This work aims to

provide a better understanding of the limitations of the genetic

code in terms of encoded complexity through the detailed analysis

of genomic sites that take advantage of its redundant nature.

Materials and Methods

SCE data collection
Data on SCEs detected at three different resolutions have been

downloaded from the webpage published in support of the 29

mammalian genomes project [15,18]. The provided genomic

locations apply for the NCBI36/hg18 assembly of the human

genome. The analysis was performed on all three datasets of 9, 15

and 30 codon resolutions (containing 11882, 10757 and 8933

SCEs, respectively).

Identification of SCE-encoded protein segments
We have used the programmatic access option of the Ensembl

database [32] release 54 to find the protein segments correspond-

ing to the listed SCE genomic locations. The exon segment(s) listed

for each SCE were mapped onto the protein coding sequences

(CDSs) of all transcripts of the given gene. A match against the

canonical isoform’s CDS had preference over the others and only

one segment was accepted even in case of multiple matching

transcripts. The boundaries of the match with the CDS explicitly

defined the SCE-encoded protein regions; all residues with at least

one nucleotide overlapping the SCE sequence were taken into

account. In the majority of the cases the mapping could be

performed directly, however, in some cases we had to use the Basic

Local Alignment Search Tool (BLAST; version 2.2.25) to locate

the SCEs on the CDSs due to nucleotide mismatches. In these

BLAST searches, soft masking and the dust option were switched

off. In the case of segments coming from the 9- and 15-codon

resolution datasets, the short option of nucleotide BLAST was

applied.

For a small fraction of the data (135 (,1.14%), 120 (,1.12%)

and 8 (,0.1%) data points for the 9, 15 and 30-codon resolution

datasets, respectively) no reliable match between the SCE

Figure 1. Possible overlapping functions fulfilled by synony-
mously constrained coding regions. The primary function of a
given coding DNA segment is indicated at the top, while at the bottom,
different types of possible second functions that could be maintained
by the same DNA segment, are summarized. These functions can be
grouped into two major classes, depending on the need for an extra
molecule fulfilling the extra task. These two are then further divided
according to the molecule type involved.
doi:10.1371/journal.pcbi.1003607.g001

Author Summary

Certain genomic regions code for multiple, overlapping
functionalities that can be detected by analyzing the levels
and patterns of their evolutionary conservation. The
redundant nature of the genetic code facilitates the
appearance of such multi-functional gene regions through
evolution. At many of these sites the DNA sequence
encodes a protein segment and in parallel to that another
function, e.g. regulatory sites involved in translation
initiation and transcript splicing. However, it has never
been studied how the corresponding protein segments
can tolerate that their primary sequences, and conse-
quently their structures, are restricted by the sequences of
the overlapping functionalities. To answer this question,
we analyzed a recently published, large set of human,
potentially multi-functional coding regions for the struc-
tural properties of encoded proteins with a variety of
computational structure prediction tools. We examined
the level of disorder, secondary structure, and sequence
complexity of the corresponding protein regions, and
found that multi-functional gene regions translate into
protein segments that are significantly enriched in
structurally disordered and compositionally biased regions,
while they are depleted in secondary structure and domain
annotations compared to reference segments of similar
lengths. This tendency suggests that protein structural
disorder provides evolutionary advantage when accom-
modating multiple overlapping functions in coding
regions.

Multi-functional Gene Regions Encode Disordered Protein Segments
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sequence and the corresponding CDSs was obtained due to

multiple consecutive gaps. These cases were excluded from further

analyses.

Prediction of protein structural properties
The IUPred method (long window option) [33] was used to

predict protein disorder, while regions of low sequence complexity

were defined by SEG (default parameters) [34,35]. Secondary

structure was assigned by PSIPRED v3.3 (without using PSI-

BLAST profiles) [36], and domains were identified by the

PfamScan [37] tool using only the more reliable A-class

domains/motifs/repeats/families listed in Pfam release 25.

Here, we briefly summarize the considerations that influenced

our choice of prediction methods for this study. IUPred is a widely

used disorder prediction method, one of the few that are freely

available not only as a web server but also as a ready to install

software package. It is fast and can smartly handle obstacles, such

as letter codes of non-conventional amino acids or extremely long

proteins, making it suitable for analyzing proteome-scale data.

Most importantly, it is based on clear physical principles that allow

for easy understanding and interpretation of its prediction results

[33]. IUPred is thought to provide direct proof for the existence of

structural disorder, relying purely on residue-residue interaction

energies, without being pre-trained on protein disorder datasets

[33,38]. Additionally, IUPred is considered to be rather conser-

vative, which means that it is not prone to overestimate the

abundance of structural disorder. Another feature that makes

IUPred an ideal choice for the current study is that, in contrast to

many other predictors, it does not take sequence complexity into

account when estimating the disordered nature of a protein region,

i.e. it is orthogonal to SEG. SEG is a widely used method for the

identification of low sequence complexity segments, even applied

as a pre-filtering step in BLAST searches [39]. SEG is based on a

simple formula that describes the compositional complexity of a

given sequence window with defined length and assigns it as low

complexity if the calculated value is below a given cut-off [34,35].

Due to this, the prediction outputs provided by SEG are also easy

to understand and interpret. Finally, PSIPRED is a popular

secondary structure prediction method that is reasonably accurate

and fast, and besides the web server, it also has a freely available

version for local use. PSIPRED can be optionally run without

creating PSI-BLAST profiles that enables predictions on pro-

teome-scale data in reasonably short times.

The structural properties of each protein segment (SCE-

encoded or reference) were obtained by retrieving the correspond-

ing values from the predictions of the full-length proteins. This

way, the segments were studied in their natural sequence

environment and systematic termini biases could be avoided.

The following measures were used to describe the structural

properties of the segments: 1) the fraction of disordered residues

(scoring $0.5 by IUPred), also referred to as disorder content, 2)

the fraction of residues in low-complexity regions, 3) the fraction of

residues in regular secondary structure elements (helix or

extended), also referred to as secondary structure content, and 4)

the fraction of residues in any predicted Pfam entities. The

segments were also grouped in a binary manner for each predicted

structural property (e.g. disordered/non-disordered); we assigned a

segment to a given structural property if at least 50% of its residues

were predicted as such.

Since PSIPRED failed to predict secondary structure for

proteins larger than 10,000 residues, we had to exclude the titin

gene [Ensembl 54: ENSG00000155657] and its products from our

analysis to maintain the consistency of our data. Due to this

reason, there were 13, 9 and 6 SCEs excluded from the 9, 15 and

30-codon resolution SCE datasets, respectively.

Selection of suitable reference datasets
For each SCE-encoded protein segment, a segment of equal

length was randomly picked from the SCE-containing subset of

human proteins in a way that the residue boundaries of the

proteins were not exceeded. This way undesired reference

segments containing artificially fused termini of two different

proteins could be avoided. Consequently, we acquired one set of

randomly selected reference segments for each SCE dataset and

defined their structural properties as previously described.

Identification of experimentally validated disordered
protein segments overlapping SCEs

We looked for direct matches between the 15-codon resolution

SCE-encoded sequences and the human DisProt 6.02 proteins

[40], and counted the overlaps with the annotated disordered

regions. To gain suitable reference values, we randomly selected,

for each human DisProt protein, one human canonical protein

matching in length (within +5%), and transferred the annotated

disordered segment boundaries onto them. Then we matched the

SCE-encoded sequences against the randomly selected proteins

and counted the overlaps with the segment boundaries. This way,

we could maintain the length distribution and the fraction of N- or

C-terminal segments of the DisProt set within our random set. The

whole procedure was repeated five times to gain multiple reference

values. Then we used Yates’ chi-square test to compare the

median of the reference values (expected) to the tested value.

Investigation of experimentally validated splicing factor
binding sites (SFBSs)

We downloaded a set of 211 experimentally verified SFBSs

from the SpliceAid-F database [41] that reside in human exons

and span more than 4 but less than 50 nucleotides. After filtering

out mutant genes and sites with redundant chromosomal locations,

we obtained 64 unique binding sites. Out of these, 62 could be

successfully mapped onto Ensembl transcripts. The two SFBSs in

the FAS gene overlapped with several transcripts coding for two

distinct protein chains (due to two overlapping exons in shifted

reading frames). Here, we accepted two transcripts per SFBS

representing distinct coding frames. The corresponding protein

segments were identified for all SFBSs, similarly as for SCEs, and

their structural properties were calculated in the same way. The

random selection of reference segments of equal length was also

performed for SFBSs using the whole human canonical proteome.

Statistical evaluation
Since our datasets failed the Kolmogorov-Smirnov normality

test, we applied Mann-Whitney U test to compare the properties

of SCE-containing proteins (represented by the 9-codon resolution

dataset, the one with the highest number of entries) with the

human canonical proteome, and also to compare the four

predicted structural properties of SCE-encoded and SFBS-

encoded protein segments to those of their equivalent reference

segments. Due to the multiplicity of comparisons between these

datasets, Bonferroni corrections were applied, which resulted in

lowered significance thresholds of p = 0.01 and p = 0.0125,

respectively.

We also applied Yates’ chi-square test to compare the SCE-

encoded segment datasets (observed values) with their reference

sets (expected values) using the number of at least 50% assigned

segments in case of each structural property. Again, Bonferroni

Multi-functional Gene Regions Encode Disordered Protein Segments
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correction was applied when setting the significance thresholds

(p = 0.0125).

For testing the correlation between the structural properties of

the SCE-encoded segments and the detection window size, we

applied Spearman’s correlation test. To show that the structural

properties of the three SCE datasets differ we used Kruskal-Wallis

tests. The differences were further analyzed by Dunn’s multiple

comparison tests.

In the case of the SFBS data, the residue-level analysis was

performed by Yates’ chi-square test. We counted the overall

number of residues of predicted disorder/low complexity/domain

or secondary structure in SFBS segments and used these (and their

complementary values) as observed values for testing. The

expected values were obtained by multiplying the sum of SFBS

segment lengths by the fraction of residues assigned to the given

structural property in the whole canonical proteome. Bonferroni

corrections were applied on the significance thresholds. GraphPad

Prism 6 was used for statistical testing and preparation of Figure 2.

Description of proteins used as case studies
We have used the following Ensemble proteins as examples:

HOXA2 [ENSEMBL 54: ENSP00000222718]; canonical

BRCA1 [ENSEMBL 54: ENSP00000350283]; shorter BRCA1

isoform translated from the introduced alternative translation start

site: [ENSEMBL 54: ENSP00000377288]; canonical FAS [EN-

SEMBL 54: ENSP00000360942], non-canonical FAS in alterna-

tive reading frame: [ENSEMBL 54: ENSP00000318464]; CBP

[ENSEMBL 54: ENSP00000371502], and p300 [ENSEMBL 54:

ENSP00000263253].

Results

Structural analysis of human SCE-encoded protein
segments

The large collection of human SCEs (three datasets representing

detection resolutions of 9, 15 and 30 codons) was adopted from

Lin et al [18]. Due to the stringent filtering criteria applied in

detecting SCEs, we consider the published dataset as a collection

of potentially multi-functional coding regions, and hence did not

perform any further filtering steps. The SCEs were mapped onto

human proteins and the structural properties of the resulting

protein segments (11734, 10628 and 8919 segments in the three

datasets, respectively) were determined by a variety of structure

prediction methods. IUPred was used to predict structural

Figure 2. Comparison of SCE-encoded protein segments with reference segments from four structural aspects. Human SCE-encoded
protein segments are compared to randomly selected protein segments of the SCE-containing proteins with same length distribution from four
structural aspects. A segment is accepted to belong to a given structural property if at least 50% of its residues are positively assigned by the
corresponding prediction method. Percent of segments assigned with A) structural disorder (IUPred), B) low sequence complexity (SEG), C) domain
annotation (PfamScan) and D) secondary structure (PSIPRED) for SCE-encoded and reference segment datasets of all three detection resolutions. The
numbers of segments for each property were compared between the SCE and reference datasets using Yates’ chi-square test with the corresponding
p-values indicated above the bars.
doi:10.1371/journal.pcbi.1003607.g002

Multi-functional Gene Regions Encode Disordered Protein Segments
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disorder, SEG for low sequence complexity, and PSIPRED v3.3

for secondary structure. Pfam entities (domains/families/motifs

and repeats; hereafter collectively referred to as domains) were

identified by the PfamScan method. The predictions were always

obtained for full-length proteins and the segments of interest were

excised subsequently. The fractions of assigned residues were

defined in each SCE-encoded protein segment for each structural

property. All details on SCE-encoded protein segments are

provided in the Supporting Information, Tables S1, S2 and S3

for resolutions 9, 15 and 30 codons, respectively.

First, we compared the set of SCE-containing proteins with the

whole human canonical proteome to identify an adequate

reference dataset for statistical comparisons of the SCE-encoded

protein segments. SCE-containing proteins were significantly

longer, more disordered and enriched in low complexity regions

compared to the proteome (Figure S1). Consequently, we used

only this subset of proteins for obtaining reference segments, to

ensure that the observed structural differences do not derive from

the general distinctive characteristics of proteins containing SCE

regions. The reference segments were randomly selected from

SCE-containing proteins, preserving the length-distribution of the

SCE-encoded segments, and their structural properties were

determined as described above. Information on the randomly

selected datasets is provided in Tables S4, S5 and S6 for

resolutions 9, 15 and 30 codons, respectively.

The number of segments with 50% or more residues assigned to

a given structural property was compared between the SCE-

encoded segments and the reference segments (Figure 2). Statis-

tical comparisons showed that significantly more SCE-encoded

protein segments of high resolution (9 and 15 codons) are

structurally disordered and compositionally biased than reference

segments, while there are less SCE-encoded protein segments

assigned with secondary structure and annotated domain regions

(Yates’ chi-square tests). In case of the low, 30-codon resolution,

however, the differences between the numbers of SCE and

reference segments calculated for relative domain overlaps and

structural disorder were below the threshold of statistical

significance (Figure 2A, 2C).

The fractions of residues positively assigned with the structural

properties were also directly compared between the SCE-encoded

and reference segments using Mann-Whitney U test (Figure S2).

The results of this approach were in agreement with the results

described above and confirmed the previous analysis. Data on

these statistical analyses are provided in Tables S7 and S8.

The structural properties of SCE-encoded protein
segments correlate with the window size of SCE
detection

Three different datasets were obtained by varying the window

size when screening the genome for SCEs [18]. The above

described differences between the structural properties of the SCE

and reference datasets seemingly increased with decreasing

window size, i.e. increasing resolution (Figure 2). To further

investigate this relationship, we applied different statistical

approaches. First, we made an attempt to choose one descriptive

value for each structural property that represents the distribution

of the data well, which was then correlated with the window size

used for SCE detection. We used the third quartile (75th

percentile) for structural disorder, the median for secondary

structure, and the 90th percentile for low sequence complexity.

Because of their binary nature, data on domain content could not

be represented by a single value and hence were not correlated

with the window size (small segments are located either within or

outside of domains but rarely at the borderlines). Spearman’s

correlation showed that each structural property can be described

as a monotonic function of the detection window size. Disorder

and low sequence complexity content increased with decreasing

window size and therefore gave a negative Spearman’s rank

correlation coefficient (r = 21 in both), while the correlation

between secondary structure content and window size was positive

(r = 1).

These values demonstrate the monotonic relationship between

the structural properties and window size, but, since there are only

three data points corresponding to the three windows applied, we

additionally used a direct approach to analyze the differences

between the whole datasets. For each investigated structural

property, we applied Kruskal-Wallis test to see whether the three

datasets significantly differ. Dunn’s multiple comparison tests were

used to further study these differences and they showed that each

dataset significantly differs from the other two, considering both

low sequence complexity and secondary structure content. The 9-

and 15-codon resolution datasets did not differ significantly in

disorder and domain residue content. However, the 9- and 30-

codon resolution datasets showed significant difference in all four

properties (Table S9). Since the reference datasets showed only

negligible differences in their structural properties (Figure 2, Figure

S2), we can assume that the above described significant structural

differences stem from the multi-functional nature of SCEs and are

not due to the difference in their length distributions.

This correlation between window size and detected structural

properties is expected due to the short length of regulatory

elements. In fact, most regulatory elements on both, the DNA-

(e.g. transcription regulatory sites) or RNA- (e.g. translation

initiation and splicing regulatory sites) levels are usually less than

15 nucleotides in length, which is shorter than the window size of

the highest resolution detection. This means that at larger window

sizes the actual SCE covers only a small fraction of the window (15

and 30 codons), i.e. the measured structural property represents a

mixture of synonymously constrained and single constrained

regions, making it difficult to sort them out. Considering this, the

gradual diminution of structural bias with window size supports

our original assumption that protein-coding sequences under

selection for overlapping functions are subject to locally reduced

structural constraints. The presence of this relationship in our

datasets also provides good support for our approach and indicates

its specific nature.

Experimentally validated disordered protein segments
are significantly enriched in SCEs

We directly matched the 15-codon resolution SCE-encoded

protein sequences onto human proteins in DisProt 6.02, the

database of experimentally verified disordered protein segments.

We found 67 matches that completely (40) or partially (27)

overlapped with the annotated disordered segments. Applying

equivalent random reference sets (see Methods) instead of DisProt,

we obtained 23, 29, 40, 41 and 43 matches (median = 40), i.e.,

DisProt regions contain significantly more SCEs than expected by

chance (Yates’ chi-square test, p = 2.693E-05).

Analysing the structural properties of protein segments
overlapping experimentally identified splicing factor
binding sites (SFBSs)

The SCE datasets used for the above statistical analyses were

generated by the in silico detection of low synonymous mutation

rates in the genome which resulted in a large amount of data

providing suitable statistical power for the analyses. Unfortunately,

the size of the datasets did not allow for individual observations

Multi-functional Gene Regions Encode Disordered Protein Segments
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and experimental verification of the potential secondary function-

alities in the identified regions. Therefore, a smaller set of

experimentally validated exonic SFBSs was used to probe into the

structural properties of protein segments overlapping with multi-

functional coding regions.

The frequent occurrence of splicing regulatory sites in the

coding regions of human mRNAs is one of the most prominent

factors contributing to the large number of detected SCEs [18],

which makes them ideal candidates for a more detailed analysis. A

set of human exonic SFBSs verified in binding and splicing assays

has been downloaded from the SpliceAid-F database and filtered

for length and redundancy. Finally, 64 single-nucleotide resolution

binding regions were mapped onto protein-coding Ensembl

transcripts (out of these, only three overlap with SCEs, so we

can consider these datasets as independent) and the corresponding

protein segments were subjected to similar structural analyses as

previously described for SCEs (details are provided in Table S10).

The comparison of the structural properties of SFBS-overlap-

ping protein segments with the corresponding reference set

showed enrichment in structural disorder and depletion in

predicted secondary structure. Due to the considerably smaller

size of this dataset, the observed tendencies are not as pronounced

as in the case of SCEs, but they are still statistically significant

(Mann-Whitney U tests; p-value = 0.003 and p-value = 0.011 for

disorder enrichment and secondary structure depletion, respec-

tively). In domain annotations and low sequence complexity

content, on the other hand, they showed no significant difference

from the reference (Mann-Whitney U tests; p-value = 0.090 and p-

value = 0.422, respectively). A general bias in experimental data

towards domain regions of proteins is probably the cause of the

slight enrichment of SFBS-overlapping protein regions in domain

residues. This ‘‘domain-bias’’ in experimental research is possibly

the result of the preferential investigation of mRNAs which carry

mutations potentially causing splicing defects that affect the

functionality of the encoded protein and thus cause disease. The

SpliceAid-F database is rich in data derived from splicing assays

carried out with mutated genes, supporting this explanation. In

contrast to disordered regions, functional domains are more

sensitive to alterations, including splicing defects as well as single-

residue changes. This is due to the fact that the functionality of

domains depends usually strictly on structure and the change of

one critical residue can result in the loss of structural stability and

impair function. IDRs, on the other hand, are more robust and,

because their functionally important residues are only located in

short stretches (short linear motifs), less affected by missense

mutations. In accord, we can assume that in our SFBS set the

relatively frequent overlaps with domain annotations are caused

by the bias in selecting mRNA segments for experiments, and not

by the biased nature of SFBS in general.

The SFBS-encoded protein regions did not differ significantly

from the random set in their low sequence complexity content

(Mann-Whitney U test; p-value = 0.422), which is again probably

due to the domain bias and the fact that the default window size of

the SEG algorithm is 12 residues, more than twice the size of

protein fragments overlapping with SFBSs (mean = 5.5 residues,

median 4 = residues). This latter problem, unfortunately, cannot

be overcome by substantially decreasing the window size of SEG

for our purpose, because it would compromise the reliability of the

method.

We additionally compared the structural properties of the

SFBS-encoded protein segments and the human proteome at the

single-residue level. The SFBS-overlapping protein residues show

an almost two-fold enrichment in structural disorder (Yates’ chi-

square test; chi-square = 114.161; p = 0) and an approximately

1.5-fold enrichment in low sequence complexity (chi-

square = 10.909; p = 9.6E-04). Also, they display a strong deple-

tion in secondary structure of approximately 2/3 (chi-

square = 32.1; p = 1.0E-08) and 1.5-fold enrichment in residues

with domain annotations (chi-square = 66.613; p = 0).

Demonstrating the structural properties of SCE-encoded
protein segments with specific examples

The second functionality of SCEs - besides protein coding - is

defined in only a few cases. Here, we list some well-known

examples of different types of overlapping functionalities together

with their protein structural properties.

The Hox genes are rich in SCEs, primarily because of the large

number of expression regulatory elements embedded in their

coding exons [18]. In HOXA2, protein coding overlaps with two

distinct synonymously constrained regions (both detected at all

three resolution levels), each covering previously described

enhancer elements that act in distinct regions of the developing

brain (Figure 3). In overlap with residues 35–38, a highly

conserved HOX-PBX responsive element was reported to drive

expression in rhombomere 4 [42]. More downstream (in the range

of residues 261–313), a series of SOX2 binding sites was shown to

drive expression in rhombomere 2 [43]. Both regions are located

outside the sole domain of the protein (the homeobox) and a

pronounced shift towards lower structural constraints was detected

in both. The residues overlapping the HOX-PBX responsive

element were predicted as having low sequence complexity and

partial disorder (Figure 3A), and the corresponding region was

devoid of regular secondary structure elements. The two residues

predicted to fall in helical and extended conformation in this

region cannot form a real secondary structure and also, their

corresponding PSIPRED confidence scores were very low, so we

considered them erroneously assigned by the prediction method.

The other segment of 53 residues, although not displaying reduced

levels of sequence complexity, was predicted to be almost

completely disordered and contained a single, four-residue

predicted a-helix with relatively low confidence values (Figure 3B).

Breast cancer type 1 susceptibility protein (BRCA1) presents a

good example for SCEs overlapping with validated translation

initiation regulatory sites. BRCA1 is an E3 ubiquitin ligase playing

a central role in DNA damage response [44,45]. The protein

contains an N-terminal RING (really interesting new gene)

domain and two tandem BRCT (after the C-terminal domain of

a breast cancer susceptibility protein) domains in its C-terminus.

These are separated by a more than 1500 residues long,

experimentally validated disordered region [46] that mediates a

plethora of interactions. Only one synonymously constrained

region was detected in BRCA1, and it overlapped with an

alternative translation start site, which was shown to mediate the

translation of a shorter BRCA1 isoform that lacks the RING

domain. The corresponding segment of the canonical protein is in

the long linker region, and is predicted to be mostly disordered

with only a few predicted secondary structure elements (Figure 4).

Nuclear magnetic resonance (NMR) and circular dichroism (CD)

spectroscopy experiments performed on larger segments contain-

ing this region confirmed that this part of BRCA1 is disordered

and forms only very limited amounts of secondary structure, if any

[46].

The FAS gene has a relatively long region annotated as dual-

coding (i.e. overlapping exons translated into protein sequence in

different reading frames) that contains two adjacent, experimen-

tally validated splicing factor binding sites. In fact, these two sites

represent triple-function regions and serve as examples for sites

involved in splicing regulation. To the best of our knowledge, such

Multi-functional Gene Regions Encode Disordered Protein Segments
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Figure 4. The alternative translation start site within BRCA1 translates into a mostly disordered protein segment. The CDS fragment
corresponding to residues 275–310 in the canonical BRCA1 isoform is presented in a light blue box at the top, with a validated alternative translation
start site (ATSS) highlighted in yellow. The domain map of the canonical isoform is shown below the CDS with the domains coloured purple (residue
boundaries assigned based on the UniProtKB) and the region surrounding the mentioned ATSS marked by darker grey. The protein segment in
question is enlarged from the domain map and the identified SCEs and predicted structural properties are indicated below by dark blue bars, as
explained for Figure 3.
doi:10.1371/journal.pcbi.1003607.g004

Figure 3. DNA-level secondary functions in coding regions: The case of the HOXA2 gene. The homeobox protein Hox-A2 is represented by
a light grey bar, with its sole domain (homeobox) and antp-type motif colored purple (residue boundaries assigned based on the UniProtKB
annotation) and its SCE-overlapping N-terminal region marked by dark grey. The CDS corresponding to this segment is shown above the domain
map in a light blue box with the region of multi-functionality (a HOX-PBX responsive element) highlighted in yellow. The corresponding peptide
sequence is presented in a purple box with the precise locations of detected SCEs, predicted disordered regions, low sequence complexity segments
and secondary structure elements (H – helix, E – extended) represented as dark blue bars below the protein sequence. B) The enhancer-rich region
corresponding to residues 261–313 of the same Hox protein is presented in a similar fashion as in panel A.
doi:10.1371/journal.pcbi.1003607.g003
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sites have not been described in eukaryotic genomes before. We

examined the corresponding regions of both isoforms from a

structural aspect (Figure 5). In the canonical protein chain, the

three residues corresponding to the shorter binding site do not

appear to be disordered or of low complexity, and secondary

structure elements are also not predicted here. Interestingly, the

residues overlapping the longer binding site reside within the only

transmembrane helix region of the protein (assigned by Uni-

ProtKB [47]). This region is predicted as low complexity by SEG,

since five out of six residues are leucines with only a single cysteine

breaking the repeat. Obviously, it is not predicted as disordered by

IUPred, which assigns very low scores to a stretch of hydrophobic

residues (meaning highly ordered). In the other isoform, the

residues overlapping with the binding sites are located in the C-

terminal tail and they are not assigned as membrane spanning.

The residues corresponding to the shorter binding site are at the

border of a predicted disordered region, while the longer binding

site encodes for residues predicted to be of low sequence

complexity when using SEG with window size 10.

It is clear that in both cases the triple functionality is somewhat

compensated for by the protein. The shorter site is located in a

disordered region in at least one of the two protein chains, while the

long binding site encodes for compositionally biased segments in

both. Interestingly, Lin et al did not detect SCEs overlapping this

region by any of the three applied resolutions. However, considering

their rather stringent filtering criteria [18], this could also have other

reasons than the lack of low levels of synonymous rate constraint.

At the 15-codon resolution, Lin and co-workers detected SCEs

in about 6000 human genes (,35% of the genes). This vast set of

genes was checked for biases towards certain Gene Ontology (GO)

annotations, and genes involved in ‘‘chromatin modification’’

turned out to be the most enriched in SCEs (,twofold enrichment)

[18]. For instance, several SCEs were detected in the genes of the

modular transcription coactivators CBP (CREB-binding protein)

and p300 (E1A binding protein p300), and we therefore

investigated the structural properties of the corresponding protein

segments (Figure 6). Interestingly, despite CBP having seven, and

p300 having four, SCE-overlapping regions (in the dataset of 15-

codon resolution), none of these is located in well-folded domains.

In p300, one of the four SCEs overlaps with the nuclear

coactivator binding domain (NCBD), which was previously

described as a molten globule [48] and was predicted to be

completely disordered (Figure 6A). In CBP, one of the seven SCEs

overlaps with the nuclear receptor interacting domain (NRID),

which actually is a short binding motif that lies in a segment

predicted to be completely disordered in both proteins (Figure 6B).

In fact, all 11 regions are predicted to be completely disordered by

IUPred and 7 overlap with regions of predicted low sequence

complexity. At the same time, none of them show more than 50%

secondary structure content, and six of them have no secondary

structure elements (or contained only a single residue assigned as

such). Interestingly, despite the high sequence similarity of the two

proteins, the SCE-overlapping regions are differently distributed

along their chains. This could have two reasons: 1) the differences

between the structure of the two genes demand different splicing

regulation (for instance, CBP has much longer introns resulting in

a large difference in overall gene sizes) or 2) the overlapping

functionalities evolved after the divergence of CBP and p300 from

the ancestral gene.

Discussion

It has been previously demonstrated that evolutionary rates of

proteins are constrained by additional functions encoded by their

genes, for instance, when functional RNAs are encoded on the

same or opposite strand as protein chains [49]. Apart from a

specific study on human dual-coding regions [31], however, such

multi-functional coding regions have never been comprehensively

studied from the protein structural aspect. We performed a

thorough computational analysis on such regions using several

carefully chosen structure prediction methods.

First, we investigated this phenomenon on a large scale, by

mapping a recently published, high-resolution dataset of human

SCEs onto the human proteome and predicting the structural

features of the resulting protein segments. We observed a

significant enrichment of structural disorder and low sequence

complexity, and depletion in regular secondary structure elements

and domain annotations. These results imply that the increased

functional demands on coding regions of the DNA coincide with

structurally biased segments on the protein level. In general,

structurally disordered and/or compositionally biased protein

segments have lower structural constraints than regions of regular

secondary structure elements or globular domains, which confers

them enhanced mutation tolerance [27]. Due to this reason, such

Figure 5. Validated splicing factor binding sites embedded in a dual-coding region. The domain map of the canonical apoptosis-
mediating surface antigen FAS is shown at the top, with domains marked by light purple and the only transmembrane region (TRM) marked by
darker purple (residue boundaries assigned based on the UniProtKB). The boundaries of the region that overlaps the two splicing factor binding sites
are provided, and the CDS corresponding to the given region is presented below the domain map. The two splicing factor binding sites are
highlighted by yellow in the CDS with the names of the corresponding splicing factors indicated. The overlapping residues are similarly highlighted in
the sequences of the two distinct protein isoforms. The predicted protein structural properties are indicated below as in Figure 3.
doi:10.1371/journal.pcbi.1003607.g005
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structurally less constrained protein regions can obviously better

accommodate restraints affecting their coding regions. Here, we

provide evidence that the encoded polypeptide is compositionally

and/or structurally biased in diverse cases of multiple coding,

including a variety of short regulatory elements (either on DNA- or

on RNA-level).

The observed structural effects were more pronounced when

the actual regions of multi-functionality were identified with higher

Figure 6. The SCEs of human CBP and p300 are differently distributed along their chains and avoid structured domains. The human
p300 (A) and CBP (B) are represented by grey bars at the top part of the panels, with their domains (boundaries adopted from a relevant review [19])
coloured purple and their regions corresponding to 15-codon resolution SCEs coloured with darker grey. Below the domain maps the predicted
IUPred disorder patterns are shown in dark blue, where values above 0.5 are interpreted as disorder. The SCE-encoded regions are lettered from the
N- towards the C-terminus in each protein and are reflected onto the prediction curves. Their structural properties are provided as in Figure 3.
doi:10.1371/journal.pcbi.1003607.g006
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precision. We observed a decrease in relative structural disorder

and low sequence complexity content of SCE-encoded segments

with increasing SCE detection window size, while their secondary

structure content was positively correlated. Also, the datasets of

different resolutions were found to be significantly different from

each other for most of the structural properties investigated.

Larger windows also span protein segments devoid of overlapping

functionalities. Hence, the gradual decrease of structural devia-

tions with increasing window size can be considered as further

evidence for counterbalancing forces that maintain weak structural

constraints in the affected protein regions selectively.

As another proof of the structurally biased nature of protein

segments encoded by multi-functional gene regions, we found that

the validated disordered regions of the DisProt database are highly

enriched in SCEs compared to equivalent reference segments.

To provide further evidence for our hypothesis, we also analysed

an independent set of human exonic splicing factor binding sites

that have been experimentally validated and identified at single

nucleotide resolution. Despite the paucity of data and the observed

bias towards domain regions, we found a significant enrichment in

structural disorder, depletion in secondary structure elements, and,

on a residue-level, enrichment in low sequence complexity in these

segments. These results obtained at single nucleotide resolution

further strengthen our initial hypothesis about a compensatory

mechanism playing a role in multi-functional coding regions. It

seems that multiple demands on DNA level coincide with a local

decrease of protein structural constraints even within the boundaries

of domains. Additionally, the surprisingly small overlap between the

computationally detected SCEs and the experimentally verified

SFBSs implies that Lin et al. [18] applied very stringent filtering

criteria in SCE detection, and thus there are certainly many multi-

functional coding regions in the human genome that were not

identified by them as SCEs.

Besides general statistical analyses, we have also examined a few

important human proteins with different types of well-described

overlapping functionalities. The correlation between overlapping

DNA- and RNA-level regulatory sites and lack of local protein

structure is clear in these cases, as well as the tendency of such

multi-functional regions to reside outside well-folded domains. We

further investigated a special case of triple functionality (Figure 5),

in which splicing regulatory sites overlap with a longer region of

dual protein coding and encode for structural/compositional

biases in both protein isoforms.

It is important to emphasize that the coincidence between

protein disorder and nucleotide-level functionality does not reveal

the causative relationship between the two. There are two possible

scenarios: (1) either the protein with an IDR existed first and the

corresponding gene region could adopt an additional functionality

due to the less stringent structural constraints of the encoded IDR,

or (2) the other functionality existed first, which demanded

reduced structural constraints in the overlapping protein. Obvi-

ously, none of these two scenarios might apply exclusively, since

the ,10000 examined multi-functional regions certainly provide

examples for both. Human CBP and p300, for instance, seem to

follow the first scenario. They are paralogues, showing a very high

level of sequence conservation, but their detected SCEs are not

similarly distributed along their chains (Figure 6). This implies that

the overlapping regulatory functionalities represented by the

detected SCEs appeared after the duplication of their ancestral

gene i.e. the starting point of their evolutionary divergence. We

have shown that these additional functionalities preferentially

evolved at exon regions that could more easily accommodate them

due to the lack of counteracting constraints in their encoded

polypeptide chains.

In all, our results demonstrate that the level of complexity

encoded by a genomic region of a given length is limited, and in

case of multiple competing functions this limitation results in

compromises. Since regulatory functions at DNA or RNA level are

primarily fulfilled by short stretches of nucleotides, their informa-

tion content cannot be reduced, which makes their sequences

strictly conserved. Proteins, however, can be considered as longer

functional elements, many of their residues are not crucial for their

function and structural integrity, and are thus rather free to

change. This is particularly true for regions of structural disorder

and low sequence complexity, while globular domains are less

flexible in this regard. In accord, we report here that genomic

regions with multiple functionalities are more likely to overlap with

protein regions of lower structural constraints, which suggests a

trend towards the rational distribution of functional elements

within the coding regions of genomes.

Supporting Information

Figure S1 Comparison of the SCE-containing subset of
human proteins with the whole human canonical
proteome from five aspects. The lengths and the investigated

structural properties of human SCE-containing proteins were

compared to those of the human canonical proteome. The fraction

of disordered residues (disorder content) was calculated based on

predictions of the IUPred method and the fraction of residues in

regions of low complexity was assigned according to SEG for each

protein. The fraction of residues located in Pfam entities (domain

content) was predicted by PfamScan, and the fraction of residues

in secondary structure elements was calculated based on

PSIPRED predictions. The sides of boxes show the 25th and the

75th percentile of the data, while the inner horizontal line

indicates the median. The whiskers stand for the minimum and

the maximum of the data. The two protein sets were compared by

Mann-Whitney U test for each aspect and the corresponding p-

values are provided above the boxes. Due to the multiplicity of

comparisons performed on the two datasets, the significance

thresholds were adjusted by Bonferroni correction (p = 0.01).

(TIF)

Figure S2 Comparison of SCE-encoded protein segments
with randomly selected segments of the SCE-containing
subset of human proteins. The structural properties of human

SCE-encoded protein segments are compared to those of randomly

selected segments from human SCE-containing proteins with the

same length distribution. A) Fraction of disordered residues

predicted by the IUPred method, B) fraction of residues in regions

of SEG-assigned low sequence complexity, C) fraction of residues

located in Pfam domains, and D) fraction of residues in secondary

structure elements predicted by PSIPRED. The datasets are shown

in the order of decreasing resolution (increasing window size)

starting from the x axis, and each SCE dataset (dark grey) is followed

by the equivalent random reference set (white). The sides of boxes

correspond the 25th and the 75th percentile of the data, the vertical

lines in the middle indicate the medians, while the small crosses

stand for the means. The whiskers indicate the minimum and the

maximum. The absence of boxes in case of the low sequence

complexity data for the 9- and 15-codon resolution datasets indicate

that the vast majority (.75%) of these smaller segments do not

overlap with any low sequence complexity regions (only ,9% of the

human proteome is predicted as low complexity by the default SEG

method). The corresponding SCE and reference segment sets were

compared by Mann-Whitney U test for each aspect with the

corresponding p-values provided next to the boxes.

(TIF)
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Table S1 Locations and predicted structural properties
of protein regions overlapping the SCEs of the 9-codon
resolution dataset.
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resolution dataset.
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of segments randomly picked from human SCE-contain-
ing proteins with equivalent length distribution to the
15-codon resolution SCE dataset.
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of segments randomly picked from human SCE-contain-
ing proteins with equivalent length distribution to the
30-codon resolution SCE dataset.
(XLSX)

Table S7 Structural properties of SCE-encoded protein
regions compared to randomly selected segments from
the SCE-containing subset of human proteins by Mann-
Whitney U test.
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Table S8 Numbers of SCE-encoded protein segments
assigned to the investigated structural properties com-
pared to those of the randomly selected reference
segments (Yates’ chi-square test).
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Table S9 Comparison of the SCE-encoded pro-
tein segment datasets by Dunn’s multiple comparison
test.
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Table S10 Data on the filtered splicing factor binding
site dataset.
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