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Abstract: We investigate the model of gene expression in the form of Iterated Function System
(IFS), where the probability of choice of any iterated map depends on the state of the phase space.
Random jump times of the process mark activation periods of the gene when pre-mRNA molecules
are produced before mRNA and protein processing phases occur. The main idea is inspired by the
continuous-time piecewise deterministic Markov process describing stochastic gene expression. We
show that for our system there exists a unique invariant limit measure. We provide full probabilistic
description of the process with a comparison of our results to those obtained for the model with
continuous time.

Keywords: stochastic gene expression; pre-mRNA; iterated function system; limit measure; gene
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1. Introduction

An interesting problem in the field of modeling of biological processes [1] has been
to understand the interactions in gene regulatory networks. Information on various
approaches to describe relations between genes can be found in the paper [2]. Numerous
methods based on chemical networks [3], logical networks [4] or dynamical systems [5]
are used. As [6] suggests, piecewise deterministic stochastic processes can be used to
may model genetic patterns. Our paper belongs to this methodology, but it investigates a
discrete-time analogue of the ordinary differential equation case. A more common approach
would be to use Markov jump processes, which lead to chemical master equations (CME)
considered in discrete state spaces [7]. There are several methods to solve CME’s, including
finding exact solution (i.e., by means of Poisson representation) or approximation methods.
Unfortunately, all these methods can only approximate the solution of the CME or they
can be applied in particular cases. Moreover, most of related studies generally focus
on the translation phase, without putting any importance to the transcription phase or
the intermediate mRNA processing. The main advantage of the analysis derived from
piecewise deterministic stochastic processes is the potential to extend a model simply by
adding new types of particles to the stochastic reaction network. Our approach, dependent
on piecewise deterministic stochastic process combines deterministic approach represented
by dynamical systems with stochastic effects represented by Markov processes. In many
cases, discrete time or continuous-time dynamical systems became two alternative ways
to describe the dynamics of a network. The formalism of discrete-time systems does
not concentrate on instantaneous changes in the level of gene expression but rather on
the overall change in a given time interval. This may be the right approach to model
processes where some reactions must be integrated over a short timeline for the purpose of
revealing more important interactions affecting expression levels with respect to a larger
time perspective. Another aspect is that the experimental data obtained from living cells
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are undoubtedly discrete in time and because of the costs we are limited only to relatively
small sets of samples [8]. In recent years, difference equation models appeared (see [9–11]).
In this work we concentrate on the gene expression process with four stages: activation of
the gene, being followed then by pre-mRNA and mRNA and protein processing [12].

Basically, after a gene is activated at a random time moment, mature mRNA is pro-
duced in the nucleus, then it is transported to the cytoplasm, where the protein translation
follows. However, it is known that translated mRNA molecules must get through further
processing first, before a new protein particle is formed. Besides that, many sources [13]
claim that at least one additional phase, primary transcript (pre-mRNA) processing also
takes place. Actually, in the world of eukaryotic genes, after activation at a random time
point, the DNA is transformed into some certain pre-mRNA form of transcript. Then,
the non-coding sequences (introns) of transcript are removed and the coding (exons) re-
gions are combined. This process is called mRNA splicing. In addition to the splicing
step, pre-mRNA processing also includes at least three other processes: addition of the
m7G cap at the 5′ end to increase the stability, polyadenylation at the 3′-UTR which af-
fects the miRNA regulation and RNA degradation, and post-transcriptional modifications
(methylation). In some genes, there is an extra step of RNA editing. Multiple other genetic
modifications take place under the general term called RNA processing. In such a situation
we finally get a functional form of mRNA, which is transferred into the cytoplasm, where in
the translation phase, mRNA is decoded into a protein. Of course, both mRNA and protein
undergo biological degradation. The presence of a random component in our model,
responsible for switching between active and inactive states of the gene in the random
time moments has been identified in the continuous case as a piecewise deterministic
Markov process (PDMP) [14]. This class of stochastic processes can be considered to be
randomly switching dynamical systems with the intensities of the consecutive jumps de-
pendent on the current state of the phase. However, if we consider discrete-time scale, then
we must investigate iterated function systems (IFS’s) with place-dependent probabilities,
see [15] or [16]. We are going to unify a common approach for both time continuous and
time discrete dynamical systems with random jumps. We will investigate the existence of
stationary distributions for time discrete dynamical systems with random jumps and com-
pare its form with the continuous-time case. Here we introduce jump intensity functions,
which play crucial role in the distribution of waiting time for the jump [17] and for this
purpose we provide an appropriate cumulative distribution function. Specifically, instead
of exp{−

∫ t
0 q(π(s, x0)) ds} in the continuous case (see [17]), we justify the formula for

the life-span function exp{−
btc−1

∑
s=0

q(π(s, x0))} in the discrete case. In this way we obtain

certain IFS corresponding to a discrete-time Markov process with jumps characterized by
jump intensity functions.

A consequence of the stochastic expression is the diversity of the population in terms
of the composition of individual proteins and gene expression profiles [13]. Stochastic gene
expression causes expression variability within the same organism or tissue, which has
effect on biological function.

This work is organized as follows. In Section 3 we present the model, and we give
the definition of our process. In Sections 4 and 5 we investigate its properties and we
describe it as an IFS with place-dependent probabilities. In Section 6, we use the classical
result of Barnsley [18], to show that our process converges in distribution to a unique
invariant measure when the number of iterations converges to infinity and we describe
the properties of this measure in Section 7. A complete step-by-step description of the
whole process, summing up all the information from the earlier sections, is provided in
Section 8. A computer simulation of trajectories of the process, is the content of Section 9,
with the source code available in GitHub [19]. In Section 10 presents the derivation of
formulas for the support of the invariant measure. Summary is the last section of this paper.
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2. Methods

In this paper, we investigate a model which is based on IFS with place-dependent
probabilities. Compared to the model presented in [17], we replace ordinary differential
equations (ODEs) by the system of difference equations, which leads to the investigation of
discrete-time model, but can be generalized into continuous case. The question therefore
arises how we justify the usage of difference equations in our model. Our justification
is that our results remain consistent with the work from [17] which can be considered
as an alternative way of description of such systems. Discrete approach is an attempt
to mathematical formulation of the problem using different tools. This paper provides
discussion between different approaches (sometimes different than standard accepted
principles).

3. Stochastic Gene Expression—Discrete Case

Gene expression is a very complex biological process including multiple essential
subprocesses. In the continuous case, Lipniacki et al. [6] introduced a model based
mathematically on piecewise deterministic Markov process which includes three crucial
phases: gene activation, mRNA and protein processing.

Let ξ1(t) denote the number of pre-mRNA molecules at time t, ξ2(t) denote the num-
ber of mRNA molecules at time t, ξ3(t) denote the number of protein molecules at time
t, where in general t ∈ [0, ∞). Analogically to the solution of continuous model, we can
introduce the symbol πi

∆t(ξ(t)), where ξ(t) = (ξ1(t), ξ2(t), ξ3(t)). A discrete-time model
would evaluate πi

∆t(ξ(t)) after ∆t starting from ξ(t).
The difference equation then could be given by equation of the following kind:

∆ξ(t) = πi
∆t(ξ(t))− ξ(t) = ξ(t + ∆t)− ξ(t).

Thus, our approach is based on particular translation ∆t. In the paper we fix the
value of ∆t. For the sake of simplicity, we denote ∆t = δ. Let f : R→ R3, typically in the
theory of linear difference equations, we define ∆ f (t) = f (t + 1)− f (t). In our model, we
take ∆ f (t) = f (t + δ)− f (t), hence δ is a time step, instead of unity. Please note that one
could use the basic techniques of scaling variables to get unity, instead of δ. We consider
the following model being represented by the system of difference equations in the form.

∆ξ1(t) = ξ1(t + δ)− ξ1(t) = Rγ(t)− (C + µPR)ξ1(t)
∆ξ2(t) = ξ2(t + δ)− ξ2(t) = Cξ1(t)− µRξ2(t)
∆ξ3(t) = ξ3(t + δ)− ξ3(t) = Pξ2(t)− µPξ3(t),

(1)

where t ≥ 0, t ∈ δZ; R > 0 is the speed of synthesis of pre-mRNA molecules if the gene is
active; C > 0 is the rate of converting pre-mRNA into active mRNA molecules; µPR > 0 is
the pre-mRNA degradation rate; µR > 0 is the mRNA degradation rate; P > 0 is the rate
of converting mRNA into protein molecules and µP > 0 is the protein degradation rate
(see Figure 1). Provided the time step δ is small enough, µPR, µR, µP, R, C, and P will be
independent of δ, see [10]. Here γ(t) : [0, ∞)→ {0, 1} such that

γ(t) =
{

i if t ∈ [0, t1)
1− i if t = t1

, (2)

where t1 denotes the moment of first jump of this process, where the distribution of t1 is
described by life-span function in Section 3.1.
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Figure 1. The diagram of auto-regulated gene expression with pre-mRNA, mRNA and protein
contribution. Description of the parameters: q0 and q1 are switching intensity functions; R is
the speed of synthesis of pre-mRNA molecules if the gene is active; C is the rate of converting pre-
mRNA into active mRNA molecules; P is the rate of converting mRNA into protein molecules; µPR

is the pre-mRNA degradation rate; µR is the mRNA degradation rate; µP is the protein degradation
rate. The sum C + µPR should be treated as a total degradation rate of the pre-mRNA particles.

The values of the coefficients are scaled simultaneously to the interval [0, 1] so that their
relative importance in the model can be more easily seen. Basically, there is no biological
reason behind imposing any restrictions on the values of the parameters. However, we
need this step to perform mathematical analysis of the asymptotic behavior of this system.
We can transform almost any system in such way. An exception is the case when the
system (1) reduces to less than three equations. It can happen, when some coefficients are
equal to zero or they are equal one to another. We do not analyze such cases here. An open
question then remains, what happens, for example, when C + µPR = µR or µR + P = 1
and other similar situations, described below. To avoid degenerate cases, we will assume
in the model (1) that:

0 < C + µPR < 1, 0 < µR + P < 1, 0 < µP < 1, (3)

since the number of degraded molecules cannot exceed the current number of correspond-
ing molecules.

If we assume that γ(t) ≡ i ∈ {0, 1} = I, we obtain the following system of linear
difference equations: 

∆ξ1(t) = Ri− (C + µPR)ξ1(t)
∆ξ2(t) = Cξ1(t)− µRξ2(t)
∆ξ3(t) = Pξ2(t)− µPξ3(t),

(4)

with initial condition ξ̄ = (ξ1(0), ξ2(0), ξ3(0)), where t ∈ δZ, t ≥ 0.
Please note that ∆ξk(t) = ξk(t + δ)− ξk(t), k ∈ {1, 2, 3}.

Example 1. Let us consider the system (4) with the values of parameters R = 1, µPR = 1
4 ,

C = µR = 1
4 , P = µP = 1

3 . In this case, the solutions of (4) are:

ξ1(t) = ( 1
2 )

t
δ
(ξ1(0)− 2i) + 2i

ξ2(t) = ( 3
4 )

t
δ
(ξ2(0) + ξ1(0)− 4i)− ( 1

2 )
t
δ
(ξ1(0)− 2i) + 2i

ξ3(t) = ( 2
3 )

t
δ
(ξ3(0)− 4ξ2(0)− 6ξ1(0) + 18i)+

+( 3
4 )

t
δ
(4ξ2(0) + 4ξ1(0)− 16i) + ( 1

2 )
t
δ
(2ξ1(0)− 4i) + 2i.

(5)

Please note that this formula is valid for any t ∈ R, hence we could also extend the solutions (5)
to the continuous-time case.

In the Figure 2, we show these trajectories for i = 0 (left panel) and i = 1 (right panel).
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Figure 2. A solution of Equation (4) for δ = 1, R = 1, µPR = 1
4 , C = µR = 1

4 , P = µP = 1
3 with i = 0

on the left and i = 1 on the right.

If we assume that i ∈ I is constant, then the system (1) takes the form (4) which can be
rewritten in the following form:

ξ1(t + δ) = Ri− (C + µPR − 1)ξ1(t)
ξ2(t + δ) = Cξ1(t)− (µR − 1)ξ2(t)
ξ3(t + δ) = Pξ2(t)− (µP − 1)ξ3(t),

(6)

with the initial condition ξ̄ = (ξ1(0), ξ2(0), ξ3(0)).

Remark 1. We assumed that i is constant, but important is to explain the way our process behaves
after the next switch.

For the purpose of calculation of (ξ1(t + δ), ξ2(t + δ), ξ3(t + δ)) we need to use the value of
i(t), not i(t + δ), in consistency with the formula (1).

If (3) hold and C + µPR 6= µR, µR 6= µP, µP 6= C + µPR, then the solutions of the sys-
tem (4) are:

ξ1(t) = (1− C− µPR)
t
δ
(

ξ1(0)− R
C+µPR

i
)
+ R

C+µPR
i,

ξ2(t) = (1− µR)
t
δ
(

ξ2(0) + C
C+µPR−µR

ξ1(0)− RC
(C+µPR−µR)µR

i
)
+

+ (1− C− µPR)
t
δ
(
− C

C+µPR−µR
ξ1(0) + RC

(C+µPR−µR)(C+µPR)
i
)
+ RC

(C+µPR)µR
i,

ξ3(t) = (1− µP)
t
δ ·

·
(

ξ3(0) + P
µR−µP

ξ2(0) + PC
(µR−µP)(C+µPR−µP)

ξ1(0)− PCR
(µR−µP)(C+µPR−µP)µP

i
)
+

+ (1− µR)
t
δ ·

·
(
− P

µR−µP
ξ2(0)− PC

(µR−µP)(C+µPR−µR)
ξ1(0) + PCR

(C+µPR−µR)(µR−µP)µR
i
)
+

+ (1− C− µPR)
t
δ ·

·
(

PC
(C+µPR−µR)(C+µPR−µP)

ξ1(0)− PCR
(C+µPR−µR)(C+µPR−µP)(C+µPR)

i
)
+

+ PCR
(C+µPR)µRµP

i.

(7)

We can extend this formula from t ∈ δZ, t ≥ 0 to t ∈ [0, ∞), since the formula (7) is
valid not only for t ∈ δZ, t ≥ 0 but also for t ∈ [0, ∞).

Using the formula (7) we denote by

πi(t, ξ̄) = (ξ1(t), ξ2(t), ξ3(t)) (8)
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the solutions of the system (6), where we assume that t ∈ [0, ∞). Also note that:

π0(t, w− ξ̄) = w− π1(t, ξ̄), (9)

where w =
(

R
C+µPR

, RC
(C+µPR)µR

, PCR
(C+µPR)µRµP

)
. One can rewrite (9) in the following form:

π1(t, ξ̄) = w− π0(t, w) + π0(t, ξ̄), (10)

see also [17]. For the rest of the paper we assume C + µPR 6= µR, µR 6= µP and µP 6=
C + µPR (to avoid “degenerative” cases).

After substituting a = 1− C− µPR, b = 1− µR, c = 1− µP, where a, b, c ∈ (0, 1), a 6=
b, b 6= c and c 6= a in the system (6) and taking:

ξ1(t) = R(a− c)(a− b)ξ∗1(t)
ξ2(t) = CR(a− c)ξ∗1(t) + CR(b− c)ξ∗2(t)
ξ3(t) = PCR(ξ∗1(t) + ξ∗2(t) + ξ∗3(t)),

(11)

we obtain equivalent system of difference equations:
ξ∗1(t + δ) = aξ∗1(t) +

1
(a−c)(a−b) i

ξ∗2(t + δ) = bξ∗2(t) +
1

(b−a)(b−c) i
ξ∗3(t + δ) = cξ∗3(t) +

1
(c−a)(c−b) i,

(12)

with initial condition ξ̄ = (ξ1(0), ξ2(0), ξ3(0)) ∈ R3. We will return to system (12) in
Sections 4 and 10.

3.1. Life-Span Function

Let f be a function defined on the set of non-negative integers Z≥0 with values in
Rd, d ∈ N. We define ∆ f (k) = f (k + 1)− f (k). Analogically to description from [20] we
investigate the following system of equations:

∆x(t) = g(x(t)), where x : Z≥0 → Rd and g : Rd → Rd. (13)

Let t0 = 0 and tn be a time when the process changes its state n−th time, tn ∈ Z≥0,
tn+1 > tn. Let x(t), t ∈ [tn−1, tn)∩Z≥0 = {tn−1, tn−1 + 1, . . . , tn− 1} be a discrete trajectory
of the process from time tn−1 to tn. Let π(t, x0) be a solution of the Equation (13) with
the initial condition x(0) = x0. Now we define q(x) as the intensity function with parameter
x which means that after small fixed natural time ∆t our process changes its state with
probability q(x)∆t. Let B be a Borel subset of R3 and

P(x, B) = Prob(x(tn) ∈ B|x(tn − 1) = x). (14)

For any n > 0 the distribution function of the difference tn − tn−1 is given by F(t) =
1−Φx0(t), where Φx0(t) = Prob(tn − tn−1 > t) is a survival function, i.e., the probability
of duration between consecutive changes of states by the process.

Please note that Φx0(0) = 1, F(0) = 0. If n = 1, then Φx0(t) is a probability that
the process will change its state for the first time after time t. Then we have

Prob(t ≤ t1 ≤ t + ∆t|t1 > t) =
Φx0(t)−Φx0(t + ∆t)

Φx0(t)
= q(π(t, x0))∆t. (15)

Hence, by taking ∆t = 1 we obtain the following formulas:

Φx0(t + 1)
Φx0(t)

= 1− q(π(t, x0)), and Φx0(t) =
t−1

∏
s=0

(1− q(π(s, x0))). (16)
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Therefore,

Φx0(t) = exp{
t−1

∑
s=0

log(1− q(π(s, x0)))} ≈ exp{−
t−1

∑
s=0

q(π(s, x0))}, (17)

assuming q(π(s, x0)) lies in the sufficiently small neighborhood of zero, since lim
h→0

1
h (log(1+

h)) = 1. Similar formula has been derived in the continuous case (see 1.7 [20]), but in
the Formula (17) we use sum instead of integral operator. Above considerations are justified
by using the following definition.

Definition 1. We define life-span function by the following formula:

Φx0(t) = exp{−
t−1

∑
s=0

q(π(s, x0))}, (18)

where q : Rd → R≥0 is a bounded switching intensity function and t is a non-negative integer
number. In our case, if t ∈ R we can take

Φx0(t) = exp{−
btc−1

∑
s=0

q(π(s, x0))}. (19)

Hence, instead of exp{−
∫ t

0 q(π(s, x0)) ds} in the continuous case (the formula used

in the paper [17]), we justify the formula for the life-span function exp{−
btc−1

∑
s=0

q(π(s, x0))}

in the discrete case.

3.2. Piecewise Deterministic Markov Process

In this subsection we introduce basic characteristics of the Markov process represented
by the system (4) that will be needed for further considerations. Here, we assume that
t ∈ [0, ∞). Let q0(ξ1, ξ2, ξ3) and q1(ξ1, ξ2, ξ3) be positive and continuous functions on
the set R3. Let ξ = (ξ1, ξ2, ξ3) ∈ R3. Using our Definition 1 of the life-span function, we
can define the distribution function of the difference tn − tn−1, namely

Fξ,i(t) = 1− exp{−
btc−1

∑
s=0

qi(π
i(s, ξ))}, (20)

where as before, tn is a time when the process changes its state n−th time. Please note that
Fξ,i(0) = 0.

The explicit expressions for the solutions πi(t, ξ), t ∈ [0, ∞) of the system (4) were
found in (7). Hence,

lim
t→∞

(πi(t, ξ)) =
(

R
C+µPR

i, RC
(C+µPR)µR

i, PCR
(C+µPR)µRµP

i
)
= wi, (21)

for the arbitrary choice of ξ. It is known [20] that such description gives us piecewise
deterministic Markov process

Xt = (ξ1(t), ξ2(t), ξ3(t), i(t)) (22)

on the state space
[
0, R

C+µPR

]
×
[
0, RC

(C+µPR)µR

]
×
[
0, PCR

(C+µPR)µRµP

]
× {0, 1} with two switch-

ing intensity functions q0, q1 and the transition measure given by Dirac Delta Function
concentrated at the point (x1, x2, x3, 1− i). Please note that by the definition of the system
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(1), the set
[
0, R

C+µPR

]
×
[
0, RC

(C+µPR)µR

]
×
[
0, PCR

(C+µPR)µRµP

]
×{0, 1}, is invariant with respect

to the process Xt, i.e., if

X0 ∈
[
0, R

C+µPR

]
×
[
0, RC

(C+µPR)µR

]
×
[
0, PCR

(C+µPR)µRµP

]
× {0, 1},

then
Xt ∈

[
0, R

C+µPR

]
×
[
0, RC

(C+µPR)µR

]
×
[
0, PCR

(C+µPR)µRµP

]
× {0, 1}

for all t ∈ [0, ∞).
The technical proof of this fact, which is based on the usage of formulas (7), is omitted.

In the fourth chapter, we introduce Iterated Function Systems to investigate the existence
of invariant measure and its support.

4. Iterated Function System

For i ∈ I we define the mappings Si : R3 → R3 given by the formulas

Si(x, y, z) =
(

ax + 1
(a−c)(a−b) i, by + 1

(b−a)(b−c) i, cz + 1
(c−a)(c−b) i

)
. (23)

We can reformulate then the system (12) in the form

(ξ∗1(t + δ), ξ∗2(t + δ), ξ∗3(t + δ)) = Si(ξ
∗
1(t), ξ∗2(t), ξ∗3(t)), (24)

where a, b, c ∈ (0, 1), a 6= b, b 6= c, c 6= a.
The family {S0, S1 : R3 → R3} is an iterated function system if for every i ∈ I

the mapping Si is a contraction on the complete Euclidean metric space (R3, | · |).
We can see that

|S0(x, y, z)− S0(x′, y′, z′)| = |S1(x, y, z)− S1(x′, y′, z′)| =√
a2(x− x′)2 + b2(y− y′)2 + c2(z− z′)2 ≤

max{a, b, c}
√
(x− x′)2 + (y− y′)2 + (z− z′)2 =

max{a, b, c}|(x, y, z)− (x′, y′, z′)|.

(25)

Hence the mapping Si : R3 → R3 is a contraction with the constant equal to
max{a, b, c} < 1.

Definition 2. Let {Si : R3 → R3 : i ∈ I} be an iterated function system. We define the operator
S on the set A ⊂ R3 by the formula S(A) := S0(A) ∪ S1(A).

The transformation S introduced above corresponds to the function (30) in the model
from [17]. We will describe an invariant compact set K such that K = S(K).

Remark 2. In the paper [21] it was shown that for the metric space Rn an iterated function system
has a unique non-empty compact fixed set K such that K = S(K) = S0(K) ∪ S1(K). One way of
generating such set K is to start with a compact set A0 ⊂ R3 (which can contain a single point,
called a seed) and iterate the mapping S using the formula An+1 = S(An) = S0(An) ∪ S1(An).
This iteration converges to the attractor K = lim

n→∞
An, i.e., the distance between K and An converges

to 0 in the Hausdorff metric, see [21].

Another way to generate some fractal objects was presented by Barnsley in [22]. The
set of such points is called an IFS-attractor. In our case, an example of the attractor is shown
in Figure 3, see also Section 10. The source code has been added to GitHub [19].
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Figure 3. Figure presents the results obtained for the system (12) with a = 1
2 , b = 3

4 , c = 2
3 , δ = 1, the

initial conditions (ξ1(0), ξ2(0), ξ3(0)) = (0, 0, 0) and constant probabilities p0(x) ≡ 0.5, p1(x) ≡ 0.5
after 100, 000 iterations.

5. Iterated Function Systems with Place-Dependent Probabilities

In this section, similarly to the paper [23], we provide a description of IFS generated
by the family of mappings S0, S1 with pi(x), x ∈ R3, i ∈ {0, 1} being a probability
of a choice of a mapping Si. We assume that t ∈ Z≥0. Let S0, S1 : R3 → R3 be two
Borel measurable non-singular functions, while let p0(x), p1(x) be two non-negative Borel
measurable functions such that ∀x∈R3 p0(x) + p1(x) = 1.

If x ∈ R3 and B ⊂ R3 is a Borel subset, then the transition probability from x to B is
defined by

P(x, B) = p0(x)1lB(S0(x)) + p1(x)1lB(S1(x)), (26)

where 1lB is the indicator function of the set B. We can define the mapping

(Tg)(x) =
∫
R3

g(y)P(x, dy) = p0(x)g(S0(x)) + p1(x)g(S1(x)),

where T is a Markov operator on space of the bounded Borel measurable real-valued
functions (which forms the Banach space with the supremum norm). Then T1lB = P(x, B).
Let M(R3) = {ν| ν : B(R3) → R, ν(∅) = 0, ν is σ − additive} be the space of finite
signed Borel measures on R3. By P(R3) ⊂ M(R3) we denote the set of all probability
measures from M(R3).

We define the operator F : M(R3) 3 ν→ Fν ∈ M(R3) by the formula

Fν(B) =
∫
R3

P(x, B)dν(x) =
∫

S−1
0 (B)

p0(x)dν(x) +
∫

S−1
1 (B)

p1(x)dν(x) =∫
B

PS0 p0(x)dν(x) +
∫

B
PS1 p1(x)dν(x),

(27)

showing how a probability distribution ν on X of the process is transformed in one step.
Here, the operators PS0 , PS1 are classical Frobenius–Perron operators for the transformation
S0, S1, respectively (see [20], Section 2.1.5). Let C(R3) be the set of bounded real-valued
continuous functions on R3. A Borel invariant probability measure µ (i.e., Fµ = µ) is called
attractive iff for all ν ∈ P(R3) and for all f ∈ C(R3) we have lim

n→∞

∫
f d(Fnν) =

∫
f dµ. In

other words, that means Fnν converges to µ in distribution. For the rest of the section,
we will use the theory of Markov processes (see p. 369 in [18]) to describe this IFS. Let
(X

µ

t ) be the Markov process with initial distribution equal to µ ∈ P(R3) and transition
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probability P(x, B) from point x to Borel subset B ⊂ R3. If µ is a Dirac measure concentrated
at x0, then we denote the process (X

x0
t ). A transition probability P provides the following

interpretation. We have P(x, B) = P(X
x0
1 ∈ B|Xx0

0 = x). If X
µ

0 has a distribution µ ∈ P(R3),
then Fµ is the distribution of X

µ

1 which means that P(X
µ

1 ∈ B) = Fµ(B). It is known that

T f (x0) =
∫
R3

f (y)P(x0, dy) = E( f (X
x0
1 )|Xx0

0 = x0) = E f (X
x0
1 ),

where f is a bounded Borel measurable real-valued function.
Hence, E f (X

x0
1 ) = p0(x) f (S0(x)) + p1(x) f (S1(x)). In the next section we investigate

long-term behavior of the process (Xµ
t ).

6. Convergence of the System to Invariant Measure

In this Section we assume that t ∈ Z≥0. In classical work [18], Barnsley considered
a discrete-time Markov process (X

µ

t ) on a locally compact metric space X obtained by
a family of randomly iterating Lipschitz maps S0, . . . , Sn, n ∈ N. For any i the probability
of choosing map Si at each step is given by pi(x). Assume that:

1. Sets of finite diameter in X have compact closure.

2. For any i the mappings Si are average-contractive, i.e.,
N
∑

i=1
pi(x) log d(Si(x),Si(y))

d(x,y) < 0,

uniformly in x and y, (for details see paper [18]).
3. ∃δ0>0 ∀x∈X pi(x) ≥ δ0.
4. For every i the mappings pi(x) are Hölder continuous.

Under these assumptions, the Markov process (Xt) converges in distribution to
a unique invariant measure. In our regime, we can formulate a weaker version of the theo-
rem above (see also [18], p. 372).

Theorem 1. Let (X
µ

t ) be a Markov process on the space R3 × {0, 1}. We assume that the initial
distribution of this process is given by µ ∈ P(R3) and its transition probability is given by (26).
Let the probability pi(x) of choosing contractive map Si at each step be Hölder continuous function
and moreover

∃δ0>0 ∀x∈R3 pi(x) ≥ δ0. (28)

Then the Markov process (Xt) converges in distribution to a unique invariant measure when
t→ ∞.

To illustrate this theorem, we will investigate transition probability in the case of
the stochastic process (Xt), see (22). We assume that the state space of our process is
R3×{0, 1}. For j ∈ {0, 1}we define the jump transformation Rj : R3×{0, 1} → R3×{0, 1}
by the formula Rj(x, i) = (x, j).

Each jump transformation R0, R1, defined on the state space R3×{0, 1} is non-singular
with respect to the product measure µ of the Lebesgue measure on R3 and the counting
measure on the set {0, 1}. We define the positive and continuous jump intensity rate
functions by the formulas q0 = q0(ξ1, ξ2, ξ3) and q1 = q1(ξ1, ξ2, ξ3) on R3. Here, qi is
the jump intensity rate from the state i to the state 1− i, where i ∈ {0, 1} see Figure 1. Let
pj(x, i) = pj(x). The following equation holds:

P((x, i), {(x, j)}) = P(X1 = (x, j)|X0 = (x, i)) = pj(x). (29)

Please note that P((x, 0), {(x, j)}) = P((x, 1), {(x, j)}) = pj(x).
Let S0, S1 : R3 → R3 be two Borel measurable non-singular functions. If x ∈ R3 and

B ⊂ R3 is a Borel subset, then the transition probability is defined by:

P((x, i), B× {0, 1}) = P(X1 ∈ B× {0, 1}|X0 = (x, i)) =

p0(x)1lB(S0(x)) + p1(x)1lB(S1(x)) > δ0.
(30)
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Please note that X1 ∈ {(S0(x), 0), (S1(x), 1)}.
Assume now that the initial distribution of the process (Xt) is given by µ ∈ P(R3) and

its transition probability is given by (30). The process (Xt) is both Markov and IFS such
that the probability of random choice of one of two functions S0, S1 depends on the space
part of a state. By Theorem 1 the Markov process (Xt) converges in distribution to a unique
invariant measure when t→ ∞.

7. Properties of an Invariant Measure

In this Section we assume that t ∈ Z≥0 (for the sake of simplicity, we assume here that
δ = 1). By Theorem 1, we know that the process (Xt) converges in distribution to a unique
invariant measure. A classical result of Hutchinson [21] states that there exists a unique
non-empty compact set K such that K = S(K) = S0(K) ∪ S1(K).

Theorem 2. Consider the stochastic process (X
µ

t ) such that X
µ

0 = x ∈ R3 with µ ∈ P(R3) and
transition probability given by (30). Then

inf{d(X
µ

t , y) : y ∈ K} → 0, (31)

where d is the Euclidean distance in R3.

Proof. For any set A ⊂ R3 we denote S0(A) = A,S1(A) = S(A) and S p(A) = S(S p−1(A))
for p ≥ 2. Consider A = {x}. From the Theorem 3.1 (Ch. 3, p. viii) of [21] it follows then
S p(A) converges to K in the Hausdorff metric uniformly when p→ ∞. Using our notion,
inf{d(Si0 ◦ Si1 ◦ . . . Sit(x), y) : y ∈ K} converges to 0 uniformly when t → ∞. Please note
that Si0 ◦ Si1 ◦ . . . Sit(x) is a trajectory of our process which depends on the probabilities
p0, p1, see (30). Hence, we get inf{d(X

µ

t , y) : y ∈ K} → 0, since the choice of x ∈ R3 was
arbitrary.

Moreover, if X
µ

t ∈ K, then X
µ

t+1 ∈ {S0(X
µ

t ), S1(X
µ

t )} ⊂ S0(K) ∪ S1(K) = K. Hence, K
is an invariant set for this process.

8. Jump Distribution

Remark 3. Let t ∈ [0, ∞). With an analogy to the description of PDMP in the book [14], we will
define the function Fξ,i as a cumulative distribution function of the first jump t1 of the process (Xt)
which starts at t = 0 at some point (ξ, i) ∈ R3 × {0, 1}. Let Fξ,i(t) := Prob{t1 ≤ t} and we
define then the process on the random interval [0, t1] as follows:

Xt =

{
(πi(t, ξ), i), t < t1;
(πi(t, ξ), 1− i) t = t1.

(32)

After time t1 the process (Xt) starts again, but with new initial condition equal to X(t1).
This process evolves with respect to the points obtained by the solution (12) with given value

of i until time of the next jump t2. Then, this step repeats infinitely many times. Please note that

Prob(t1 > t) = 1− Fξ,i(t) = exp{−
btc−1

∑
s=0

qi(π
i(s, ξ))}.

Hence, Prob(t1 > t) > 0 for all t ≥ 0, because qi is a bounded function.
Also, Prob(t1 > t) < 1 for all t ≥ 1, because qi is positive function.
Hence, t1 > 0. Analogically, ∆tk−1 = tk − tk−1 > 0 for all k ≥ 1, where t0 = 0. All these

considerations are true with the probability being equal to 1.
Let µ = max

y∈[0,2]3,i∈{0,1}
qi(y). Next, by (20) we get Fξ,i(t) ≤ 1− exp{−µt} for all y ∈ [0, 2]3.

Please note that Prob(∆tk−1) ≤ 1 − exp{−µt}, independently from the values of ∆i, where
0 ≤ i ≤ k− 2. Hence, Prob(Tk ≤ t) ≤ (1− exp(−µt))k.
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Therefore, lim
k→∞

Tk = ∞. We also get that

E(max{k ≥ 0, Tk < t}) =
∞

∑
k=0

Prob(Nt ≥ k) =

∞

∑
k=0

Prob(Tk < t) ≤
∞

∑
k=0

(1− exp (−µt))k = exp (µt) < ∞,
(33)

where t > 0. Please note that E(max{k ≥ 0, Tk < t}) is the expected value of the number of jumps
of our process up to the time t.

Now we will gather all the facts about the process (Xt) considered in this paper.
Definition of the process

1. Denote the state space R3 × {0, 1}.
2. According to the reaction scheme Figure 1, the reactions which occur in our process

are as follows:

Inactive
q0(ξ1,ξ2,ξ3)−−−−−−→ Active, Inactive

q1(ξ1,ξ2,ξ3)←−−−−−− Active,

Outcome (A)

Active R−−−−−−−−−−−−−−−→
with probability p0(ξ1,ξ2,ξ3)

pre−mRNA
C+µPR−−−−→

C+µPR−−−−→ Degeneration or pre−mRNA conversion to mRNA,

Outcome (B)

Inactive 0−−−−−−−−−−−−−−−→
with probability p1(ξ1,ξ2,ξ3)

pre−mRNA
C+µPR−−−−→

C+µPR−−−−→ Degeneration or pre−mRNA conversion to mRNA,

Outcome (A) and (B)

pre−mRNA C−→ mRNA
µR−→ Degeneration,

mRNA P−→ Protein
µP−→ Degeneration,

where (ξ1(t), ξ2(t), ξ3(t)) is the concentration level of all the substances at time t.
Consider the simplified version of this system (12) with S0, S1 : R3 → R3 being two
Borel measurable non-singular functions defined by (23).

3. Let p0(x), p1(x) be two non-negative Borel measurable functions such that

∀x∈R3 p0(x) + p1(x) = 1.

4. In addition, let µ ∈ P(R3) and q0 and q1 be two non-negative functions defined on
R3.

5. From now, by πi(t, ξ̄) we denote the solutions of the system (12), i.e.,

πi(t, ξ̄) = (ξ∗1(t), ξ∗2(t), ξ∗3(t)). (34)

Despite the fact that we consider discrete-time Markov process, we can assume that
t ∈ [0, ∞) (see comment above Equation (8)). We consider two cases, where i = 0 or
i = 1, which corresponds to the functions S0 and S1, respectively.

6. Let (X
µ

n)
∞
n=0 be a Markov process on the space R3 × {0, 1} with initial distribution of

the process given by µ ∈ P(R3) and its transition probability is given by (30).



Genes 2021, 12, 648 13 of 19

7. Here, X1 ∈ {(S0(x), 0), (S1(x), 1)}.
8. (X

µ

n)
∞
n=0 is both Markov process and IFS such that the probability of random choice

of one of two functions S0, S1 depends on the space part of a state.
9. With an analogy to the description in the book [14], we define the function Fξ,i as

a cumulative distribution function of the first jump t1 of our process (Xt) which starts
at t = 0 at some point (ξ, i) ∈ R3 × {0, 1}.

10. We say that Prob(t1 ≤ t) = Fξ,i(t) and we define then the process on the random
interval [0, t1] as follows:

Xt =

{
(πi(t, ξ), i), t < t1;
(πi(t, ξ), 1− i) t = t1.

(35)

11. After time t1 we start the process X again, but with new initial conditions being equal
to X(t1). This process evolves with respect to the points obtained by the solution (12)
with given value of i till time of the next jump t2. Then, we repeat this step infinitely

many times. Since Prob(t1 > t) = 1− Fξ,i(t) = exp{−
btc−1

∑
s=0

qi(π
i(s, ξ))}.

12. From the definition of the process (Xt) both of the intensity functions q0 and q1
depend on two non-negative Borel measurable functions p0(x), p1(x).

Summary of the properties of the process (Xt) is both Markov process and IFS such
that the probability of random choice of one of two functions S0, S1 depends on the space
part of a state. By Theorem 1 the Markov process (Xt) converges in distribution to a unique
invariant measure when n→ ∞. This theorem means that the trajectories of this process
after sufficiently long time are arbitrarily close to K independent from the probability
distribution. In addition, if X

µ

n ∈ K, then X
µ

n+1 ∈ {S0(X
µ

n), S1(X
µ

n)} ⊂ S0(K) ∪ S1(K) = K.
Hence, K is invariant. It is worth noting that the life-span function of the process is equal

to exp{−
btc−1

∑
s=0

q(π(s, x0))}, unlike the continuous case studied in [17].

9. Stochastic Simulations

To visualize the behavior of the stochastic process (4), we performed stochastic simu-
lation of the process (Figure 4). The code was developed in Python (3.7.4). The parameter
values are δ = 1, R = 1, µPR = 1

4 , C = µR = 1
4 , P = µP = 1

3 with Borel measurable proba-

bility functions p0(x) = 1
2(1+|x|2) and p1(x) = 1− p0(x) = 1+2|x|2

2(1+|x|2) and initial conditions

x(0) = y(0) = z(0) = 1
2 .

Figure 4. Visualization of the stochastic process (4), depending on two non-negative Borel measurable

functions p0(x) = 1
2(1+|x|2) and p1(x) = 1− p0(x) = 1+2|x|2

2(1+|x|2) .
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10. The Derivation of the Formula for the Attractor

We consider the system which simplifies both systems (1) and (6), namely (12):

ξ∗1(t + δ) = aξ∗1(t) +
1

(a−c)(a−b) i

ξ∗2(t + δ) = bξ∗2(t) +
1

(b−a)(b−c) i

ξ∗3(t + δ) = cξ∗3(t) +
1

(c−a)(c−b) i,
(36)

with the initial condition ξ̄ = (ξ1(0), ξ2(0), ξ3(0)) ∈ R3. We also assume that the values of
the parameters a, b, c ∈ (0, 1) are pairwise distinct.

In the case of δ = 1, we will find a set for the process described by the system (36), i.e.,
the smallest invariant set for the process, for which almost all trajectories of the process
enter in a finite time.

Remark 4. Let us observe that if we consider only integer values of t then the attractor generated
by the composition of the systems (36) is a discrete set (see Figure 3 for a = 1

2 , b = 3
4 , c = 2

3 ) and
it is contained inside the attractor obtained for real values t. Hence, now we only proceed with real
values of t.

Let x = (x1, x2, x3). Let πi
t(x) = (ξ∗1(t), ξ∗2(t), ξ∗3(t)) denote the solutions of (36) at

time t with the initial condition x. Namely

πi
t(x) =

(
at(x1 − v1i) + v1i, bt(x2 − v2i) + v2i, ct(x3 − v3i) + v3i

)
,

where by v we denote the vector

(v1, v2, v3) =
(

1
(a−c)(a−b)(1−a) , 1

(b−a)(b−c)(1−b) , 1
(c−a)(c−b)(1−c)

)
. (37)

We obtain

π0
t (x) = (atx1, btx2, ctx3), (38)

π1
t (x) = v + π0

t (x)− π0
t (v).

This gives us the following formulas:

π1
t2

π0
t1
(x) = v + π0

t1+t2
(x)− π0

t2
(v),

π0
t2

π1
t1
(x) = π0

t2
(v) + π0

t1+t2
(x)− π0

t1+t2
(v)

for all times t1, t2 ≥ 0. Hence

π0
t3

π1
t2

π0
t1
(x) = π0

t3
(v) + π0

t1+t2+t3
(x)− π0

t2+t3
(v),

π1
t3

π0
t2

π1
t1
(x) = v + π0

t2+t3
(v) + π0

t1+t2+t3
(x)− π0

t1+t2+t3
(v)− π0

t3
(v).

Using the formulas (38) we get

π0
t2

π1
t1
(x) =

(at2 v1 + at1+t2(x1 − v1), bt2 v2 + bt1+t2(x2 − v2), ct2 v3 + ct1+t2(x3 − v3)),
(39)

π1
t2

π0
t1
(x) =

(v1 − at2 v1 + at1+t2 x1, v2 − bt2 v2 + bt1+t2 x2, v3 − ct2 v3 + ct1+t2 x3).
(40)

If t1, t2 ∈ [0, ∞), we can assume α := at2 , β := at1+t2 . Hence,

π0
t2

π1
t1
(x) =

(αv1 + β(x1 − v1), αloga bv2 + βloga b(x2 − v2), αloga cv3 + βloga c(x3 − v3)),
(41)
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π1
t2

π0
t1
(x) =

(v1 − αv1 + βx1, v2 − αloga bv2 + βloga bx2, v3 − αloga cv3 + βloga cx3),
(42)

where 1 ≥ α ≥ β > 0. These equations are similar to the ones obtained in the continuous
case [17], therefore the attractor will adopt analogous form as in that case.

Taking as the initial points x = (0, 0, 0) in the Formula (41) and x = (v1, v2, v3) in
the Formula (42), we get a parametric equations for the surfaces A0 and A1 which we will
found out as the boundaries of attractor A:

A0 = {(α− β)v1, (αloga b − βloga b)v2, (αloga c − βloga c)v3)},
A1 = {(v1(1− α + β), v2(1− αloga b + βloga b), v3(1− αloga c + βloga c))}.

Please note that both sets are symmetric to each other with respect to the point
( v1

2 , v2
2 , v3

2 ), since (v1, v2, v3) − A0 = A1. This means that the boundary of A (and so is
the attractor A) is symmetric to itself with respect to the point ( v1

2 , v2
2 , v3

2 ). Moreover, it can
be shown that

(v1, v2, v3)−A = A. (43)

Now we are going to describe the attractor A. It appears that two changes of i are
sufficient to get to any arbitrary point in A. The composition of three flows π1

t3
π0

t2
π1

t1
and

π0
t3

π1
t2

π0
t1

is given by the following formulas:

π1
t3

π0
t2

π1
t1
(x) = (v1(1− at3 + at2+t3 − at1+t2+t3) + at1+t2+t3 x1,

v2(1− bt3 + bt2+t3 − bt1+t2+t3) + bt1+t2+t3 x2, (44)

v3(1− ct3 + ct2+t3 − ct1+t2+t3) + ct1+t2+t3 x3),

π0
t3

π1
t2

π0
t1
(x) = (v1(at3 − at2+t3) + at1+t2+t3 x1,

v2(bt3 − bt2+t3) + bt1+t2+t3 x2, (45)

v3(ct3 − ct2+t3) + ct1+t2+t3 x3).

Figure 5 presents trajectories of the processes (44) and (45) , where t1, t2, t3 are drawn
from uniform distribution on the interval (0, 100). Both show the contour of the attractor
A. For parameters chosen to create Figure 5, the density of colors intensity (i.e., red
intensity, blue intensity) and Equations (39) and (40) may suggest bistability (in the sense of
bimodality of the stationary distribution, see [17]). We are convinced that there is a need for
further research about bistability in a discrete case. Please note that for deterministic linear
systems, bistability cannot hold, hence such phenomenon in a stochastic linear system
would be interesting.
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Figure 5. This figure presents all states of the stochastic process (36) with a = 1
2 , b = 3

4 , c = 2
3 after

two switches. The red color represents the states given by the Formula (45) representing trajectories
of the process starting with i = 0 while the blue color represents the states given by the Formula (44)
representing trajectories of the process starting with i = 1.

We will start with description of the set, which we can reach in two changes of i. In
analogy to the above, in the case of double superposition, we define α, β, γ in a new way.
If t1, t2, t3 ∈ [0, ∞), we can assume α := at3 , β := at2+t3 , γ := at1+t2+t3 and hence we get
equations:

π1
t3

π0
t2

π1
t1
(x) = (v1(1− α + β− γ) + γx1,

v2(1− αloga b + βloga b − γloga b) + γloga bx2, (46)

v3(1− αloga c + βloga c − γloga b) + γloga cx3),

π0
t3

π1
t2

π0
t1
(x) = (v1(α− β) + γx1,

v2(α
loga b − βloga b) + γloga bx2, (47)

v3(α
loga c − βloga c) + γloga cx3),

where 1 ≥ α ≥ β ≥ γ > 0 and

(v1, v2, v3) =
(

1
(a−c)(a−b)(1−a) , 1

(b−a)(b−c)(1−b) , 1
(c−a)(c−b)(1−c)

)
.

We can assume that 1 ≥ α ≥ β ≥ γ ≥ 0 because if γ = 0 in Equations (46) and (47)
then we get:

π1
t3

π0
t2

π1
t1
(x) = (v1(1− α + β), v2(1− αloga b + βloga b), v3(1− αloga c + βloga c)),

π0
t3

π1
t2

π0
t1
(x) = (v1(α− β), v2(α

loga b − βloga b), v3(α
loga c − βloga c)),

(the values of above states can be also obtained taking γ > 0 and after appropriate
substitution to α, β, (x1, x2, x3)). Please note that these states belong correspondingly to
the boundaries A1 and A0. Hence γ = 0 is a case when the trajectory is on the boundary of
the attractor A.

Let

A = {(ϕa,b,c(x, y, z), χa,b,c(x, y, z), ψa,b,c(x, y, z)) : 1 ≥ x ≥ y ≥ z ≥ 0}, (48)
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where

ϕa,b,c(x, y, z) := 1
(a−c)(a−b)(1−a) (x− y + z),

χa,b,c(x, y, z) := 1
(b−a)(b−c)(1−b) (xloga b − yloga b + zloga b), (49)

ψa,b,c(x, y, z) := 1
(c−a)(c−b)(1−c) (xloga c − yloga c + zloga c).

The set A consist of all points from (47), where we take (x1, x2, x3) = (v1, v2, v3).
Equivalently using the Equation (46) we get an alternative formula for the set A.

A = {(ϕ′a,b,c(x, y, z), χ′a,b,c(x, y, z), ψ′a,b,c(x, y, z)) : 1 ≥ x ≥ y ≥ z ≥ 0}, (50)

where

ϕ′a,b,c(x, y, z) := 1
(a−c)(a−b)(1−a) (1− x + y− z),

χ′a,b,c(x, y, z) := 1
(b−a)(b−c)(1−b) (1− xloga b + yloga b − zloga b), (51)

ψ′a,b,c(x, y, z) := 1
(c−a)(c−b)(1−c) (1− xloga c + yloga c − zloga c).

In the light of Equation (43), descriptions (48) and (51) are equivalent. Analogically to
the description of (48), we provide a plot of an attractor in the case of description (50).

For the geometric reasons two Formulas (48) and (50) describe the same set A, see
Figures 6 and 7, compare also with Figure 5.

Figure 6. Figure presents the set described by formula (48) with the values of parameters: a = 1
2 ,

b = 3
4 , c = 2

3 . Compare with Figures 3 and 5.

Figure 7. Figure presents the set described by Formula (50) with the values of parameters: a = 1
2 ,

b = 3
4 , c = 2

3 .
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Now, let V = {(x, y, z) : 1 > x > y > z > 0} and f : V → R3 be given as follows:

f (x, y, z) = (ϕa,b,c(x, y, z), χa,b,c(x, y, z), ψa,b,c(x, y, z)),

where we use the notion taken from (49). As with the considerations in Appendix A in
the paper [17] we prove that the function f is a local diffeomorphism. Hence f (V) = {x =
π0

t3
π1

t2
π0

t1
(v) : t1, t2, t3 > 0} (see Equations (46) and (47)) is an open set. Moreover, f (V) is

the interior of A. Please note that

A0 = {(ϕa,b,c(x, y, z), χa,b,c(x, y, z), ψa,b,c(x, y, z)) : 1 > x > y > z = 0},
A1 = {(ϕa,b,c(x, y, z), χa,b,c(x, y, z), ψa,b,c(x, y, z)) : 1 = x > y > z > 0},

A0 ∩ A1 = {ϕa,b,c(x, y, z), χa,b,c(x, y, z), ψa,b,c(x, y, z)) : 1 > x > y = z > 0} =
= {ϕa,b,c(x, y, z), χa,b,c(x, y, z), ψa,b,c(x, y, z)) : 1 = x = y > z > 0}.

Hence set A is bounded by the surfaces A0, A1, which are built from the trajectories
of the system (36), where i was switched only once. The set A is indeed the support of
stationary distribution when time goes to infinity. For this purpose, it is sufficient to
show that:

(1) after more than two switches the trajectories of the process do not leave A,
(2) we cannot find any invariant subset B of A not equal to A. To satisfy the second

condition it is sufficient to show that all the states in A communicate with each other, i.e.,
we can join any two arbitrary states by some trajectory of the process. The proof follows
the same lines as in [17], (pp. 31–33).

11. Conclusions

We developed a model of gene expression using IFS with place-dependent proba-
bilities. As a novelty, in this paper, we introduced new formulas for life-span functions,
suitable for discrete case. Moreover, we have shown that asymptotic behavior of the
model is in line with the results presented in the paper [17]. We have been able to perform
extensive numerical simulations and describe a support of the invariant measure of this
process. Both continuous-time and discrete-time system are asymptotically stable. We
believe further research could find a relationship between supports of respective invariant
measures. Fitting suitable values of parameters can allow use of this model along with
experimental data obtained in the laboratory conditions, realistically for selected values in
some time interval.
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