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Abstract: A novel 1-hydroxy-2,4-diformylnaphthalene-based fluorescent probe L was synthesized
by a Knoevenagel reaction and exhibited excellent sensitivity and selectivity towards sulfite ions
(SO3

2−) and bisulfite ions (HSO3
−). The detection limits of the probe L were 0.24 µM using UV-Vis

spectroscopy and 9.93 nM using fluorescence spectroscopy, respectively. Furthermore, the fluorescent
probe L could be utilized for detection in real water samples with satisfactory recoveries in the
range 99.20%~104.30% in lake water and 100.00%~104.80% in tap water by UV-Vis absorption
spectrometry, and in the range 100.50%~108.60% in lake water and 102.70%~103.80% in tap water by
fluorescence spectrophotometry.

Keywords: fluorescent probe; sulfite/bisulfite; crystal structure; real sample detection

1. Introduction

Levels of anions including organic and inorganic anions (such as sulfurous acid root,
amino acids, etc.) are of interest to the field of food analysis, yet they widely exist in food,
and also can be used as food additives by being externally added to the food. Moreover,
during the food production process, contamination can accidentally arise during one or
even several stages, which could result in excessive amounts of anions in the food. These
anions not only affect the color, aroma, taste and other qualities of food, but can also play
an important role in the health effect of food. In order to evaluate food quality and safety
quickly and accurately, it is necessary to carry out qualitative and quantitative analysis of
anions with the help of effective analytical testing methods. This is required in order to
provide a scientific basis for food production technology, food storage management and
monitoring, as well as adherence to the corresponding rules and regulations [1].

Among the differing kinds of anions, sulfite/bisulfite anions (SO3
2−/HSO3

−) plays
a crucial role in food preservation due to their characteristics of anti-oxidation, anti-
corrosion and enzyme inhibitor, and so are often widely used as food additives in the
food industry [2,3]. One of the main atmospheric pollutants is sulfur dioxide (SO2) in the
physiological environment, and this results in sulfite in treatments with an aqueous base.
Large doses of sulfite are toxic to humans and animals and can readily cause adverse reac-
tions and diseases, allergies and severe skin irritation, as well as respiratory problems such
as asthma, coughing and gastrointestinal disorders [4–7]. Other issues include diarrhea,
headaches, hypotension, lung cancer and a variety of nervous system diseases [8]. Thus,
the amount of sulfite in many countries is strictly controlled and standards are set by the
likes of the Food and Agriculture Organization (FAO)/World Health Organization (WHO).
JECFA announced that the acceptable daily intake should be less than 0.70 mg/kg [3],
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and therefore a method for the rapid and sensitive detection of SO3
2−/HSO3

− in solution
would be highly desirable for environmental monitoring, and would also have practical
value in the detection of biomedical food safety [9,10]. At present, methods for the detection
of SO3

2−/HSO3
− mainly include ion chromatography/electrochemical methods such as

capillary electrophoresis fluorescence [2,11]. According to the Chinese “Standards for the
Use of Food Additives” GB/T5009.34-2003 “Determination of Sulfites in Food” colorimetric
method, sulfur dioxide in food after extraction should be reacted with detection reagents
to generate colored compounds, with a detector at 550 nm for the determination of its
absorbance, and a certain range of absorbance is proportional to its content. The detection
limit was 4.18 µM. When compared with the traditional method of measuring the sulfite,
the fluorescent probe detection method has great potential because of its high sensitivity,
high selectivity, non-destructive detection and in situ visualized detection [12–16]. In recent
years, the fields of medical biochemistry analysis and environmental monitoring have
received widespread attention [17], with water, food and biological systems being subject
to study with powerful visual detection tools for anions [18–21].

In this research, we develop a fluorescent probe L which exhibits a good recogni-
tion performance and anti-interference ability. It can detect SO3

2−/HSO3
− in a water

environment using UV-Vis absorption spectroscopy and fluorescence spectroscopy.

2. Materials and Methods
2.1. Equipment and Reagents

The equipment we used included: an Inova-400 MHz NMR Spectrometer (Varian Com-
pany, Palo Alto, CA, USA); a VGT-2227QTD type ultrasonic instrument (Shenzhen Gute
Hongye Machinery Equipment Co., Ltd., Shenzhen, China); a CP214 Electronic Balance
(Shanghai Aohaus Instrument Co., Ltd., Shanghai, China); a Cary Eclipse type fluorescence
spectrophotometer (Varian Company, Palo Alto, CA, USA); a UV-visible spectrophotometer
of UV-2600 (Suzhou Dao Jin Instrument Co., Ltd., Suzhou, China); a pH meter of pHS-25
(Chengdu Century Ark Technology Co., Ltd., Chengdu, China); and a Bruker Smart Apex
single crystal diffractometer (Bruker AXS Company, Karlsruhe, Germany).

1,3,3-Trimethyl-2-methyliminoline, 1-naphthol, hexamethylenetetramine, trifluoroacetic
acid, ethyl acetate, methanol, ethanol (EtOH), hexane, dimethyl sulfoxide (DMSO), hydrochlo-
ric acid (HCl), anionic metal ions and amino-containing small molecules such as cysteine (Cys)
are commercially available and were purchased from Aladdin reagent co., LTD. (Shanghai,
China). All chemicals were of analytical grade and were used without further purification.
Ultrapure water of 18.2 MΩ cm resistivity was obtained through a water purification system
(Youpu Super Pure Technology Co., Ltd. Sichuan, China) and was used in all experiments.

2.2. Synthesis of the Compound 1a

One gram (6.90 mmol) of 1-naphthol and 1.94 g (13.80 mmol) of hexamethylenete-
tramine were dissolved in 10 mL trifluoroacetic acid and stirred at 85 ◦C for 1 h. After
cooling, 10 mL of concentrated sulfuric acid diluted to 33% concentration was slowly added
into the mixture, and reflux was continued for 1 h. Then, the mixture was twice extracted
with ethyl acetate, washed with brine and then dried with anhydrous magnesium sulfate.
Filtration, followed by column chromatography separation (n-hexane/ethyl acetate = 7:3,
v/v as eluent), afforded a yellow solid (2.09 g) with a yield of 71%, and the molecular
formula of compound 1a is C12H8O3.

2.3. Synthesis of the Fluorescent Probe L

In this process, 0.20 g (1 mmol) of compound 1a and 0.17 g (1 mmol) of 1,3,3-trimethyl-
2-methylene indoline were mixed in 40 mL anhydrous ethanol and stirred at 85 ◦C for 8 h,
and then concentrated under reduced pressure, and separated using column chromatogra-
phy (n-hexane/ethyl acetate = 7:3, v/v as eluent) to obtain a bright green powder (0.18 g)
in 50% yield. The molecular formula of the fluorescent probe L is C24H23NO2. 1H NMR
(600 MHz, CD3OD): δ 10.21 (s, 1H), 10.04 (s, 1H), 9.20–9.22 (d, J = 12 Hz, 1H), 9.00–9.07
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(d, J = 42 Hz, 1H), 8.00–8.02 (d, J = 12 Hz, 1H), 6.92–7.92 (m, 4H), 6.68–6.59 (d, J = 61H),
5.81–5.83 (d, J = 12, 1H), 5.33 (s, 1H), 3.90 (s, 1H), 2.75 (s, 3H), 1.35 (s, 3H), 1.35 (s, 3H).
13C NMR (151 MHz, CDCl3) δ 191.80, 191.20, 153.40, 137.10, 131.78, 128.89, 128.71, 127.71,
126.53, 126.26, 125.42, 125.14, 125.05, 107.16, 107.11, 102.86, 28.94, 28.72, 28.48, 25.90, 20.13.
HRMS calculated: 356.1645, found 356.1650.

2.4. X-ray Crystallography

Crystallographic data for ligand L were collected on a Bruker APEX 2 CCD diffractometer
with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) in theω scan mode [21]. The
structure was solved by a charge flipping algorithm and refined by full-matrix least-squares
methods on F2 [22]. All esds were estimated using the full covariance matrix. Further details
are presented in Table S1. CCDC: 2059923, L. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
(31 January 2021).

2.5. General Methods for Optical Tests

In this process, 5.3 mg (15 µM) of probe L was dissolved in 10.00 mL of EtOH solution
to prepare a 1.50 mM stock solution. Then, the nitrates of the metal ions, the sodium
salt of anions and small amino molecules (Ag+, Al3+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Hg2+,
K+, Li+, Mg2+, Na+, Ni2+, Pb2+, Zn2+, AcO−, Br−, C2O4

2−, ClO4
−, Cl−, CN−, CO3

2−,
F−, H2PO4

−, HCO3
−, HSO3

−, HPO4
2−, I−, NO2−, PO4

3−, S2O3
2−, SO3

2−, SO4
2−, GSH,

Hcy, H2NCONH2, Cys) were accurately weighed and dissolved in 10.00 mL of PBS buffer
to form 10 mM ion stock solutions. The preparation method of the PBS buffer solution
(10 mM) was as follows: 23 g of PBS phosphate buffer powder was weighed and dissolved
in 2 L of ultrapure water, and the pH ranged from 7.20 to 7.40.

3. Results and Discussion
3.1. Synthesis

A new fluorescent probe L was obtained from 1-hydroxy-2,4-diformylnaphthalene
(compound 1a, synthesized from 1-naphthol and hexamethylenetetramine) and 1,3,3-
trimethyl-2-methyleneindoline by means of a Knoevenagel reaction, as shown in Scheme 1.
The molecular structure was characterized by 1H NMR spectroscopy, HRMS and single
crystal X-ray diffraction. The probe L exhibited excellent solubility in common organic
solvents (such as methanol, ethanol, DMSO, etc.) and possessed good acid- and alkali-
resistance over the pH range 3–11 over 24 h (Tables S2 and S3). The thickness of the dish
is 1 cm; that is, the thickness of the liquid layer. The concentration of SO3

2−/HSO3
− was

0.45 µM, and εmax = 17,608.89 L·mol−1·cm−1, λ(abs) = 550 nm. This work provides a new
strategy for the practical application of small molecule probes in the field of anion detection.
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Scheme 1. Synthetic route to probe L.

3.2. Determination of Optimum Experimental Conditions

Anion fluorescent probes are mainly used in the fields of biology, medicine and food
monitoring, and so they will have more extensive value if the recognition can be conducted
in aqueous solution. In addition, a buffer solution can be used to control the stable pH
value in an aqueous solution, making the results of identification more reliable [23,24].

www.ccdc.cam.ac.uk/data_request/cif
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Therefore, the influence of water content on probe L was explored by changing the water
content during the experiment.

As shown in Figure 1, the fluorescent probe L emitted pink emission with λmax
em = 605 nm in pure EtOH solution. As the water fraction (f w) gradually increased from
0% to 60%, the maximum absorbance and the fluorescence intensity of the probe L increased
with the increase in the water fraction (f w). When the water fraction (f w) reached 60%, the
absorbance and the fluorescence intensity of the solution attained the maximum value, and
the mixture exhibited bright pink light under 365 nm UV irradiation. Then, as the water
fraction (f w) continued to increase, the fluorescence intensity gradually decreased, and an
aggregate-induced quenching process occurred, and the fluorescence quenching efficiency
reached 79.95%. Given this, we chose the mixture of EtOH/water (VEtOH/VH2O = 2:3) as
the recognition environment.
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Figure 1. (A) The UV-Vis and (B) fluorescence spectra of the fluorescence probe L (15 µM) in
EtOH/water mixtures with different water fractions (λex/λem = 576 nm/605 nm, slit: 5/5 nm,
voltage: 800 v). (C) Photographs in EtOH/water mixtures with different water fractions taken under
365 nm UV irradiation. Inset of (B): Plots of fluorescence intensity at 605 nm.
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The pH value of the environment is a critical parameter that may affect the selectivity,
sensitivity and detection limit of the probe [25]. As shown in Figures 2 and 3, the UV-Vis
absorption and fluorescence spectra of probe L and the UV-Vis absorption and fluorescence
spectra of sulfites/bisulfites (SO3

2−/HSO3
−) identified by probe L were experimentally

studied over the pH range of 1 to 14.
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Figure 2. (A) The UV-Vis and (B) Fluorescence spectra of the fluorescence probe L (15 µM) in
EtOH/water (VEtOH/Vwater = 2/3) at different pH values (λex/λem = 576 nm/605 nm, slit: 5/5 nm,
voltage: 800 v). Inset: (A) Effect of different pH values on the absorbance of probe L at 550 nm.
(B) Influence of pH values on fluorescence probe L at 605 nm.

We added 1.80 mL of PBS buffer solution with different pH values into a 3.00 mL
colorimetric dish, and then added 0.03 mL of probe reserve solution. The solution was
brought up to a constant volume of 3.00 mL with anhydrous ethanol, shaken well and
left to react completely. The influence of different pH values on the probe was measured
by UV-Vis spectrophotometer and fluorescence photometer. As shown in Figure 2, in the
detection system comprised of EtOH/water (VEtOH/VH2O = 2/3, 10 mM PBS buffer), the
maximum absorbance of probe L is at 550 nm, and the maximum emission peak is at
605 nm over the pH range of 3 to 11. In this wide range, the absorbance and fluorescence
intensity of probe L are only slightly affected by the pH.

We added 1.80 mL of PBS buffer solution of different pH into a 3.00 mL colorimetric
dish, then added 22.50 µL of SO3

2−/HSO3
− reserve solution and 0.03 mL of probe reserve

solution, and used anhydrous ethanol to bring the volume up to 3.00 mL, shook the solution
well and left it to stand until the solution was completely reacted. The influence of different
pH on the interaction between probe L and SO3

2−/HSO3
− was determined by UV-Vis

spectrophotometer and fluorescence photometer. As shown in Figure 3, in the detection
system comprising EtOH/water (VEtOH/VH2O = 2/3, 10 mM PBS buffer), the maximum
absorption peak at 550 nm and the maximum emission peak at 605 nm were reduced by
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adding SO3
2−/HSO3

− (750 µM) to the solution of probe L, and the spectrum was almost
unaffected over the pH range of 3 to 11.
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Figure 3. (A) The UV-Vis and (B) fluorescence spectra of the fluorescence probe L (15 µM) in
EtOH/water (VEtOH/Vwater = 2/3) with the addition of SO3

2−/HSO3
− (750 µM) at different pH

values (λex/λem = 576 nm/605 nm, slit: 5/5 nm, voltage: 600 v). Inset: (A) Effect of different pH
values on the absorbance of probe L with the addition of SO3

2−/HSO3
− at 550 nm. (B) Influence of

pH values on fluorescence probe L with the addition of SO3
2−/HSO3

− at 605 nm.

Following the response experiments of water fraction and pH value to probe L and
the identification and detection of SO3

2−/HSO3
− with the probe L, we chose EtOH/water

(VEtOH/VH2O = 2/3, 10 mM PBS buffer, pH = 7.40) as the detection system conditions.
We also tested the time-dependent optical stability of probe L and the L-SO3

2−/HSO3
−

mixture, and the results revealed that L and the L-SO3
2−/HSO3

− complex responded
quickly and were stable over a certain period of time (Figure S4).

3.3. Anion Sensing Study

The high selectivity and sensitivity of the probe are key parameters for the detection
of domestic water and in vivo studies. Therefore, to test the ability to detect anions, probe
L (15 µM) was exposed to many anions (such as AcO−, Br−, C2O4

2−, ClO4
−, Cl−, CN−,

CO3
2−, F−, H2PO4

−, HCO3
−, HSO3

−, HPO4
2−, I−, NO2−, PO4

3−, S2O3
2−, SO3

2−, SO4
2−,

[A]n− = 750 µM), metal ions (such as Ag+, Al3+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Hg2+, K+,
Li+, Mg2+, Na+, Ni2+, Pb2+, Zn2+, [M]n+ = 750 µM) and small amino-containing molecules
(such as GSH, Hcy, H2NCONH2, Cys, [M]n+ = 750 µM) in mixtures of EtOH and water
(VEtOH/VH2O = 2/3, pH = 7.40).

As shown in Figure 4, on adding the anions and small amino-containing molecules
to the solvent containing L, only SO3

2−/HSO3
− caused the solution’s color to change via

naked-eye observation (Figure S3). The absorption spectra and fluorescence spectra of the
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L–anion mixture indicated that probe L exhibits good selectivity toward SO3
2−/HSO3

−,
while other cations or anions (Figure S4) had little impact on the optical behavior of probe
L. On other hand, under a 365 nm UV lamp, only the L-SO3

2−/HSO3
− mixture led to the

emission light quenching dramatically (Figure S3). Furthermore, competitive experiments
were also performed to investigate the selectivity of the probe toward SO3

2−/HSO3
−.

When SO3
2−/HSO3

− was present in the solution, the absorbance of the mixture de-
creased at 550 nm, and the emission of the mixture at λem = 605 nm was quenched, while
without SO3

2−/HSO3
−, the absorbance and emission barely changed (Figures 5 and 6),

which suggested that the coexisting cations/anions/small amino-containing molecules
had only a limited impact on the detection of SO3

2−/HSO3
−. Thus, the interference ex-

periments indicated that the probe displays high specificity and selectivity for detecting
SO3

2−/HSO3
− ions.
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Figure 4. (A) The UV-Vis and (B) fluorescence spectra of the fluorescence probe L interacting
with different anions and small amino-containing molecules (λex/λem = 576/605 nm, slit: 5/5 nm,
voltage: 600 v).

3.4. Titration and Detection Limits

Based on the above experimental conditions, the UV titration experiments were
performed with progressive addition of SO3

2−/HSO3
−, and the results are presented in

Figure 7. As the figure demonstrates, the absorbance of probe L at 550 nm gradually
decreased as the SO3

2−/HSO3
− ions were added. In addition, when the concentration of

probe L changes from 30 to 300 µM, there exists a good linear relationship between the
probe and the SO3

2−/HSO3
− (y = 0.88828 − 0.02592x, R2 = 0.99004). Herein, the detection

limit was calculated by utilizing the data of the UV titration experiments following the
IUPAC method: 10 groups of blank samples were tested in the absence of sulfite/bisulfite
under the same conditions, and then the standard deviation (SD) was calculated from the
absorption peak at 550 nm. After that, following the formula: the detection limit = 3SD/S,
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where S is the slope of the linear relationship during the UV titration, the detection limit of
probe L for SO3

2−/HSO3
− is calculated to be 0.24 µM. Compared with other SO3

2−/HSO3
−

probes (Table S4), the probe L has the advantages of a lower detection limit and quicker
response time.
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As shown in Figure 8, based on the above experimental conditions, the fluorescence
titration experiments were performed with progressive addition of SO3

2−/HSO3
−. As the

figure demonstrates, the fluorescence intensity of probe L at λmax em = 605 nm gradually
decreased as the SO3

2−/HSO3
− ions were added. In addition, when the concentration

of probe L changed from 15 to 300 µM, there exists a good linear relationship between
the probe and the SO3

2−/HSO3
− ions (y = 350.73493 − 7.35342x, R2 = 0.99601). Herein,

the detection limit was calculated by utilizing the data of the fluorescence titration ex-
periments following the IUPAC method: 10 groups of blank samples were tested in the
absence of sulfite/bisulfite under the same conditions, and then the standard deviation
(SD) was calculated from the emission peak at 605 nm. After that, following the formula:
the detection limit = 3SD/S, where S is the slope of the linear relationship during the
fluorescence titration, the detection limit of probe L for SO3

2−/HSO3
− is calculated to

be 9.93 nM. Compared with other SO3
2−/HSO3

− probes (Table S4), the probe L has the
advantages of a lower detection limit and a simpler synthetic route.
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3.5. A Possible Mechanism for Detection SO3
2−/HSO3

−

The crystal structure shows that the aldehyde group at the 2 position of the 1-hydroxy-
2,4-diformylnaphthalene reacts with 1,3,3-trimethyl-2-imethylindoline, but the aldehyde
group at the 4 position does not react. The result is the fluorescent probe L in which an
electron donor (tertiary amine) and acceptor (carbonyl) are connected by a double bond.
The indole ring and the naphthalene ring are not in the same plane, and the dihedral angle
between them is 164.95◦. The bond length of C24-O2 is only 0.1234 nm, indicating that the
phenolic hydroxyl group on the naphthalene ring has changed into the ketone structure
(as shown in Figure 9).

According to literature reports on the recognition mechanism of SO3
2−/HSO3

− with
fluorescent probes [26–28], combined with the above experimental results, it is speculated
that the reaction process of probe L to recognize SO3

2−/HSO3
− is as shown in Figure 10.

Due to the influence of two strongly electron-withdrawing carbonyl groups in the probe
structure, the electron cloud density of the C=C that connects 1-hydroxy-2,4-diformylnaph-
thalene and 1,3,3-trimethyl-2-methyleneindoline is not uniform, so it is vulnerable to attack
by SO3

2−/HSO3
− and the addition reaction of C=C occurs, which destroys the original large

conjugated structure. With the gradual addition of SO3
2−/HSO3

−, the maximum absorption
peak of the UV-Vis absorption spectrum and the strongest fluorescence emission peak of the
probe gradually decreased, and the color of the solution gradually became lighter. As shown
in Figure 11, the reaction solution of probe L and NaHSO3 was verified by high resolution
mass spectrometry. [C24H24NO5S]−: the theoretical value was 437.1302, and the measured
value was 437.1262.
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Inset: Curve of absorbance at 550 nm with different concentrations of SO3
2−/HSO3

−; photograph of
the solutions under illumination with sunlight showing the change in the solution after the titration
is complete.

3.6. Applications

In order to further evaluate the potential application of probe L for the detection of
SO3

2−/HSO3
− in real specimens, water samples from an artificial lake (at Guizhou Medical

University) and running water (at our laboratory) have been collected for testing. The
specific experimental process is as follows: 3.90 mL EtOH solution, 100 µL probe stock
solution (15 µM), 3 mL PBS buffer solution and 3 mL water sample (filtered) were added
into one volumetric flask and the mixture was shaken well. At the same time, another water
sample was processed with the same steps and an appropriate amount of the standard
substance (NaHSO3) was added. After standing for 2 min., the absorbance at 550 nm and
fluorescence intensity at 605 nm of the sample was recorded for further calculations. As
shown in Table 1, by UV-Vis absorption spectroscopy, the recoveries of the probe were
calculated in the range of 99.20–104.30% in lake water and 100.01~104.80% in tap water. As
shown in Table 2, by fluorescence spectroscopy, the recoveries of the probe were calculated
in the range of 100.50–108.61% in lake water and 102.72%~103.80% in tap water. These
results suggest that L is a sensitive and selective probe for SO3

2−/HSO3
− monitoring in

environmental water samples.
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Table 1. The detail data for SO3
2−/HSO3

− detection in real water samples.

Sample Measured Added Detected Recovery RSD
(µmol·L−1) (µmol·L−1) (µmol·L−1) (n = 3, %) (n = 3, %)

Running water 14.23 15.00 30.63 104.80 0.70
75.00 89.29 100.01 2.50
150.00 166.03 101.10 3.10

Artificial lake 11.06 15.00 27.11 104.00 0.90
75.00 85.39 99.20 1.20
150.00 168.04 104.30 2.40

Table 2. The detail data for SO3
2−/HSO3

− detection in real water samples.

Sample Measured Added Detected Recovery RSD
(µmol·L−1) (µmol·L−1) (µmol·L−1) (n = 3, %) (n = 3, %)

Running water 14.72 15.00 30.70 103.31 0.61
75.00 93.11 103.80 3.50
150.00 169.20 102.72 3.01

Artificial lake 15.92 15.00 29.64 106.20 0.52
75.00 88.40 100.50 0.91
150.00 176.93 108.61 3.50

4. Conclusions

In summary, we have developed a new fluorescent probe based on 1-hydroxy-2,4-
diformylnaphthalene. Furthermore, in the presence of SO3

2−/HSO3
− ions, the probe

solution showed an obvious color change from pink to colorless under daylight and from
bright to dark under UV lamp irradiation with a detection limit as low as 0.24 µM using UV-
Vis absorption spectroscopy and 9.93 nM using fluorescence spectroscopy, respectively. This
indicates that the probe L has the potential to be used for the detection of SO3

2−/HSO3
−

by the naked eye and via instrumentation. Based on the titration experiments, a good
linear relationship was found which allows the probe to be applied to the quantitative and
qualitative detection of SO3

2−/HSO3
− in real samples. We believe that this work not only

provides a new example of a small molecular probe for ion detection, but these results may
inform researchers in broader fields such as cell imaging, and such research is ongoing in
our laboratory.
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Supplementary Materials: The following are available online, Figure S1: HRMS spectrum of L title,
Figure S2: 1H NMR of probe L, Figure S3: 13C NMR of probe L, Figure S4: Uv-vis absorption spectra
(A) and fluorescence spectra (B) of probe L (15 µM) in EtOH/water (VEtOH/Vwater = 2/3, pH = 7.40)
after adding SO3

2−/HSO3
− (750 µM) over time (λex/λem = 576/605 nm, slit: 5/5 nm, voltage: 600 v),

Figure S5: Photographs of probe L-anion complex in EtOH/water (VEtOH/Vwater = 2/3, pH = 7.40)
solution under (A) natural light and (B) 365 nm UV lamp, Figure S6: (A) UV-vis and (B) Fluorescence
spectra of the fluorescence probe L interacting with different cations (λex/λem = 576/605 nm, slit:
5/5 nm, voltage: 600 v). Photographs of probe L-cation complex in EtOH/water (VEtOH/Vwater = 2/3,
pH = 7.40) solution under (A) natural light and (B) 365 nm UV lamp, Table S1: Summary of crystal
data of probe L, Table S2: The absorbance of probe L and L-SO3

2−/HSO3
− complex versus different

pH value within 1440 min (550 nm), Table S3: The fluorescence intensity (a.u.) of probe L and
L-SO3

2−/HSO3
− complex versus different pH value within 1440 min (605 nm, slit: 5/5 nm, voltage:

800 v), Table S4: Comparison data with reported SO3
2−/HSO3

− sensors.
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