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 Sustained growth in the demand with unprecedented investments in the 
transmission infrastructure resulted in narrow operational margins for power 
system operators across the globe. As a result, power networks are operating 
near to stability limits. This has demanded the electrical utilities to explore 
new avenues for control and protection of wide area systems. Present 
supervisory control and data acquisition/energy management systems 
(SCADA/EMS) can only facilitate steady state model of the network, 
whereas synchrophasor measurements with GPS time stamp from wide area 
can provide dynamic view of power grid that enables supervision, and 
protection of power network and allow the operator to take necessary 
control/remedial measures in the new regime of grid operations. Construction 
of phasor measurement unit (PMU) that provide synchrophasors for the 
assessment of system state is widely accepted as an essential component for 
the successful execution of wide area monitoring system (WAMS) 
applications. Commercial PMUs comes with many constraints such as cost, 
proprietary hardware designs and software. All these constraints have limited 
the deployment of PMUs at high voltage transmission systems alone. This 
paper addresses the issues by developing a cost-effective PMU with open-
source hardware, which can be easily modified as per the requirements of the 
applications. The proposed device is tested with IEEE standards. 
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1. INTRODUCTION 

In the early 1970s minicomputers were used for executing relay algorithms, but it was found very 
difficult to implement distance relaying algorithms due to delays in execution of instruction time. To 
overcome this problem Phadke et al. [1] proposed the use of symmetrical components of voltages and 
currents to implement distance relay algorithms. This has led to the development of first phasor measurement 
unit (PMU) in 1988 by them at Virginia Tech [2], [3]. Since then, synchrophasor technology has gained 
impetus and the technology got matured over the period and proved with large number of use cases across the 
globe. Motivation behind the momentum for the implementation of this technology was the occurrence of 
major blackouts across the globe. Blackout on 30 and 31 July 2012 that has affected most of northern and 
eastern parts of India is one such example [4]. These blackouts have forced to utilise the synchrophasor data 
from the PMUs deployed in wide area measurement systems (WAMS). 

https://creativecommons.org/licenses/by-sa/4.0/
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First commercial PMU was brought out by Macrodyne Inc. in 1991, but the applications were 
limited because of high price tag. As a result, they were installed exclusively in high voltage transmission 
systems where bulk power transfer takes place. The implementation of wide-area backup security is one of 
the first applications to consider. Following that, researchers began looking into how time-tagged 
synchrophasor data could be used to improve voltage stability, State Estimation, and system security, among 
other things as described in [5]-[11]. Though, the initial installations found in bonneville power 
administration (BPA) substations of Pacific Northwest, the New York Power Authority and the American 
Electric Power Service Corporation of United States of America, within a short period they were installed 
across the utilities worldwide. European transmission system operators (TSOs) have started installation of 
PMUs in their WAM systems for monitoring voltage stability, phase angle difference of voltages, system 
damping and line thermal monitoring in 2003 [12]. Other installations include China's WAMS started in 
2006, Japan, India, Russia, South Africa, Brazil, Mexico, and Australia. After the 2012 blackout in India, the 
biggest WAMS in the world came up with unified real time dynamic state measurement system (URTDSM) 
project. It is proposed to install one thousand nine hundred and fifty PMUs in three hundred and fifty one electric 
substations spread across India. In a hierarchical order, these PMUs located in the substations send synchrophasor 
data from 29 State Load Dispatch Centres to 5 Regional Load Dispatch Centres, and finally to National Load 
Dispatch Centre. At the national level, the project was planned to accommodate up to 3,000 PMUs in the future 
[13]. One of the major challenges identified in the deployment of PMUs is the financial constraint because of 
size of the system i.e., number of nodes present across the country [14].  

Most of these projects are utilising the commercially available PMUs manufactured by different 
vendors spread across the world, including the leading players such as Schweitzer Engineering Laboratories 
(SEL), Siemens, Macrodyne, ABB, ALSTOM, General Electric Company (GE), and Mehta Tech, Typical 
cost of PMUs varies around $40,000 to $180,000 USD including procurement and installation. Several 
second and third world countries are not able to afford for the deployment of PMUs in their respective power 
grids due to exorbitant prices. One more challenge with commercial PMUs is the proprietary approach of the 
manufacturers. Commercial manufacturers protect their hardware and software designs with copyright or 
patent laws. Even the algorithms used for estimation of synchrophasors were not disclosed. These constraints 
have forced the researchers to come up with their own hardware designs and software. Some of these designs 
discussed in [15]-[19] include commercial hardware and software like LabVIEW.  

This has led the researchers to explore the options for the development of an open hardware 
platform that can be redesigned as per the needs of the client requirements. Developing a low-cost hardware 
platform for PMUs was difficult in the earlier days. However, the advancements in technology and 
availability of low cost and high performing micro-controllers paved the path for the development of cost-
effective PMUs. As a result, a design effort is made to develop an economical PMU that can produce phasor 
magnitudes, angles, along with frequency and rate of change of frequency (ROCOF) for a three-phase system. 

The following is a breakdown of how this paper is structured. Necessity for the development of 
open-source PMU, availability of PMUs in the market and literature available to understand about PMU 
applications are discussed in section 1. In section 2, definitions of synchrophasor components and IEEE 
standards for PMU are discussed. Methodology used for evaluating synchrophasors is described in section 3. 
Then, the development of PMU using hardware and software that is open-source is explained in section 4. 
Proposed hardware was tested in the laboratory and results were discussed in section 5. Finally, concluding 
remarks from the understanding were presented in section 6. 
 
 
2. SYNCHROPHASOR MEASUREMENTS AND PMU STANDARDS  

In power systems, voltage and current signals are sinusoidal. Ever since the concept of ‘Phasor’ 
introduced by Charles Proteus Steinmetz in 1893, power system networks are analysed using phasors that 
represent sinusoidal voltages and currents using vectors in complex plane with magnitude and phase angles 
as explained below. Time varying sinusoidal voltage signals are normally written by using the (1). 

 
𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + θ) (1) 
 
To simplify the analysis, these time domain signals are transformed to frequency domain signals and 

represented in terms of magnitudes and phase angles as mentioned in the (2). 
 
𝑉𝑉 =  �𝑉𝑉𝑚𝑚

√2
� 𝑒𝑒𝑗𝑗θ (2) 

=  �𝑉𝑉𝑚𝑚
√2
� (𝑐𝑐𝑐𝑐𝑐𝑐(θ) + 𝑗𝑗𝑐𝑐𝑗𝑗𝑗𝑗(θ))  

=  (𝑉𝑉𝑟𝑟 + 𝑗𝑗𝑉𝑉𝑖𝑖)  
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Where �𝑉𝑉𝑚𝑚
√2
� is magnitude and θ is phase angle of the phasor. Time instant at the starting i.e., t=0 of the 

sinusoidal decides the value of phase angle which is arbitrary. Whereas the phase angle difference is 
completely independent of the beginning time. So, same angular frequency needs to be considered while 
evaluating the other phasors. Angular frequency ω remains same during the evaluation of the other phasors in 
the network.  

Following procedure is used in order to evaluate the synchrophasor for the voltage signal 
represented by (1). As per IEEE Std C37.118.1-2011, a reference cosine signal operating at nominal system 
frequency is used to calculate phase angle ‘θ’. The reference signal is synchronized with coordinated 
universal time (UTC).  

Sinusoidal voltage signal at nominal frequency 'f0' can be represented as; 
 
𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡 + θ) = 𝑉𝑉𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋0𝑡𝑡 + θ) (3) 

 
whereas the magnitude as well as frequency are time varying in real time, hence (3) is revised as; 

 
𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑚𝑚(𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐�2𝜋𝜋𝜋𝜋0𝑡𝑡 + (2𝜋𝜋 ∫ 𝑥𝑥𝑥𝑥𝑡𝑡 + θ)� (4) 

 
where 𝑥𝑥(𝑡𝑡) = 𝜋𝜋(𝑡𝑡) − 𝜋𝜋0, variation of real time frequency with nominal frequency. The revised voltage 
equation given in (4) can be represented as synchrophasor by the (5). 

 
𝑉𝑉(𝑡𝑡) =  �

𝑉𝑉𝑚𝑚(𝑡𝑡)

√2
� 𝑒𝑒𝑗𝑗(2𝜋𝜋 ∫𝑥𝑥𝑥𝑥𝑥𝑥+θ) (5) 

 
System operators are also interested in knowing about the values of frequency and ROCOF, to 

implement protection functionalities like identification of under frequency condition, loss of mains condition 
and others. If the augment of the cosine function of voltage signal is represented by (6). 

 
∅(𝑡𝑡) = 𝜔𝜔0(𝑡𝑡) + θ(𝑡𝑡) = 2𝜋𝜋𝜋𝜋0𝑡𝑡 + θ(𝑡𝑡)  (6) 

 
Frequency is calculated using; 
 

𝜋𝜋(𝑡𝑡) =  1
2𝜋𝜋

𝑥𝑥∅(𝑥𝑥)
𝑥𝑥𝑥𝑥

= 𝜋𝜋0 + 𝑥𝑥
𝑥𝑥�θ(𝑡𝑡)

2𝜋𝜋 �

𝑥𝑥𝑥𝑥
= 𝜋𝜋0 + ∆𝜋𝜋(𝑡𝑡)  (7) 

 
where, nominal frequency is denoted by ‘𝜋𝜋0’ and variation of real time frequency with nominal frequency is 
considered as ‘∆𝜋𝜋(𝑡𝑡)’. ROCOF can be calculated from frequency as given by (8). 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑡𝑡) = 𝑥𝑥𝑓𝑓(𝑥𝑥)

𝑥𝑥𝑥𝑥
 (8) 

 
All these parameters with GPS time tag are packed into a frame known as synchrophasors. These 

synchrophasors find numerous uses in different areas of electrical networks such as operations, security and 
control. In the beginning, because of restricted bandwidth, high latencies, and high-priced communication 
channels this synchrophasor data was used mostly for post-event analysis. Following that, researchers used 
this data to estimate parameters or validate models. Frequency monitoring across wide area become reality 
with frequency measurements and also helped in identification of possible loss of mains in the system. In 
conventional State Estimation process magnitudes and angles of voltages are estimated utilizing the line 
power flows, as well as real and reactive power injections at the buses. Previously, the state of the system 
was calculated rather than measured. Although measurements are scanned through out the system, the 
system's state is presumed to be static.Whereas power systems are operated completely dynamic in nature. 
High price tags of PMUs forced the researchers to investigate the optimal locations for the complete 
observability of the electric network [20]-[27].  

To ensure the interoperability, several standards were brought out for the power sector operators to 
utilize time-tagged data across the network. IEEE has published a standard in 2005, IEEE C37.118-2005 [28] 
that ensures interoperability of the PMUs across the networks. The standard comprises a definition for 
synchronised phasor and the procedure for computing the phasors. A quality index, total vector error (TVE) 
was also included in the same standard. Later in 2011, this standard was updated in two parts. Synchrophasor 
estimation and certification requirements under both static and dynamic conditions are presented in the first 
part i.e., IEEE Std. C37.118.1 [29] and particulars about data representation and how the synchrophasor data 
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can be communicated among the power system components are presented in second part i.e., IEEE Std. 
C37.118.2 [30].  

 
 

3. EVALUATION OF SYNCHROPHASORS 
Use of PMUs that provide synchrophasors is rising gradually. Application areas include monitoring 

of power system dynamics, post event recording in case of faults and so on. With the increased usage of these 
devices’ commercial vendors and research organizations across the world proposed various models with 
limited utilization either due to commercial viability or proprietary restrictions. These problems have become 
the blocks for the extensive placement of these devices in the field. Each of these devices is capable of sending the 
following parameters to the central PDC with a GPS time tag in a more precise and efficient manner. 
− Voltage and/or current phasors 
− Frequency  
− Rate of change of frequency (ROCOF) 

Therefore, the development of a low-cost PMU capable of producing time-synchronized phasors is 
proposed.This can augment the smart grid initiative by deploying a greater number of PMUs at the strategic 
locations in the network so that the dynamics of the system can be observed. Procedures followed for phasors 
computation, frequency and ROCOF computations are as discussed below.  

 
3.1. Computation of phasors  

Discrete fourier transform (DFT) algorithm is considered to estimate the phasors by processing the 
sampled data. Equivalent phasor for the sinusoidal voltage mentioned by (4) can be computed with DFT 
algorithm as expressed by (6). 

 

𝑉𝑉(𝑗𝑗) =  √2
𝑁𝑁
∑ 𝑣𝑣(𝑗𝑗 + 𝑚𝑚)𝑁𝑁−1
𝑚𝑚=0 𝑒𝑒−𝑗𝑗2𝜋𝜋�

𝑚𝑚
𝑁𝑁� =  𝑉𝑉𝑟𝑟(𝑗𝑗) − 𝑗𝑗𝑉𝑉𝑖𝑖(𝑗𝑗) (9) 

 
Where, 
 

𝑉𝑉𝑟𝑟(𝑗𝑗) =  √2
𝑁𝑁
∑ 𝑣𝑣(𝑗𝑗 + 𝑚𝑚)𝑁𝑁−1
𝑚𝑚=0 𝑅𝑅𝑐𝑐𝑐𝑐(2𝜋𝜋 �𝑚𝑚

𝑁𝑁
�);  𝑉𝑉𝑖𝑖(𝑗𝑗) =  √2

𝑁𝑁
∑ 𝑣𝑣(𝑗𝑗 + 𝑚𝑚)𝑆𝑆𝑗𝑗𝑗𝑗(2𝜋𝜋 �𝑚𝑚

𝑁𝑁
�)𝑁𝑁−1

𝑚𝑚=0  
 

‘N’ representing total number of samples in a cycle and  
‘j’ representing sample number within the data window.  
 
While evaluating the phasor data frame considers fixed number of samples by allowing the recent sample and 
discarding the first sample, thus making it recursive. To sample the data, device clocks were set to multiples 
of fundamental frequency. 
 
3.2. Computation of frequency (f) and ROCOF  

Frequency (f) can be computed from phasor angles. The value of Phase angle at any given time 
instant is given by; 

 
θ(𝑡𝑡) =  ∫𝜔𝜔(𝑡𝑡)𝑥𝑥𝑡𝑡 =  1

2
 𝜔𝜔′𝑡𝑡2 + ∆𝜔𝜔𝑡𝑡 + θ0 (10) 

 
where, angular frequency in radians is 𝜔𝜔(𝑡𝑡), nominal frequency is 𝜔𝜔0, variation in frequency is ∆𝜔𝜔 and the 
rate of change of frequency is 𝜔𝜔′. If all these angles are measured at a sampling time of ‘Ts’ then a set of 
anglesare obtained as expressed in terms of θ0, ∆𝜔𝜔 and 𝜔𝜔′ as given below:  
 

[θ] =  [𝐴𝐴] [𝜔𝜔] (11) 
 

where  
 

[θ] =

⎣
⎢
⎢
⎢
⎡
θ0
θ1
θ2
⋮

θ𝑁𝑁−1⎦
⎥
⎥
⎥
⎤

;   [𝐴𝐴] =

⎣
⎢
⎢
⎢
⎡

1             0           0
1             𝑇𝑇𝑠𝑠           𝑇𝑇𝑠𝑠2

1            2𝑇𝑇𝑠𝑠         2𝑇𝑇𝑠𝑠2
⋮                  ⋮                ⋮ 

1 (𝑁𝑁 − 1)𝑇𝑇𝑠𝑠 (𝑁𝑁 − 1)𝑇𝑇𝑠𝑠2⎦
⎥
⎥
⎥
⎤

;  [𝜔𝜔] =  �
θ0
∆𝜔𝜔
𝜔𝜔′
� 
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By solving (11), ∆𝜔𝜔 and 𝜔𝜔′ can be computed:  
 

[ω] =  [A AT]−1 [A][θ] (12) 
 

After obtaining the values of ∆𝜔𝜔 and 𝜔𝜔′, Frequency (f) and ROCOF can be found as; 
 
𝜋𝜋(𝑡𝑡) =  θ′(𝑡𝑡) (13) 
 

and  
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝜔𝜔
′

2𝜋𝜋
 (14) 

 
These algorithms are implemented on open-source hardware, as outlined in the following section, allowing 
researchers to expand and change them to meet their specific needs while avoiding proprietary barriers. 

 
 

4. HARDWARE EXECUTION  
Entire execution of a Phasor measurement unit is developed by utilizing off-the-shelf open-source 

hardware available in the market. Figure 1 describes the implementation of PMU using hardware setup. This 
consists of five major modules namely, Three-phase voltage sensor module, Arduino Due, GPS module, 
Frequency measurement module and Power supply module.  

 
4.1.  Three phase voltage sensor module 

At the sub-station level, voltages from the potential transformers are fed to this module after signal 
conditioning. This module consists of three ZMPT 101 B Voltage transformers that will further step down 
the voltages to 3.3 V suitable for sampling using Arduino due. Op-amp circuits present in the module helps in 
accurate sampling of sinusoidal signals. Sampling of these three phase signals will be initiated by the 
Arduino due after receiving 1 pulse per second (1PPS) signal from the GPS module. 

 
4.2.  Arduino due 

An Atmel SAM3X8E microcontroller board with ARM Cortex-M3 CPU and 32-bit ARM core is 
used as phasor calculation unit. To sample the three phase voltage signals, 84 MHz clock of this board is 
synchronized with the 1 PPS obtained from GPS module. This clock frequency is adequate to estimate the 
synchrophasors, as 64 samples/ cycle are used to calculate the voltage phasors. Another rational behind the 
selection of this board is, the in-built 12-bit ADC. This can easily convert the sampled data at the said rate. 
Sampling of 3-phase voltages start once it receives an interrupt from the GPS module. Each time a sample is 
received by the Due, it is stored in the RAM and initiates a counter that counts till the end of 64 samples. 
After receiving the 64 samples, the processor will start calculating the voltage phasor using the DFT 
algorithm detailed in section 3. Along with the phasor calculations, frequency and ROCOF are also 
calculated from the pulse train received from the frequency measurement module explained in the following 
sub-section. After evaluating all the parameters, they are forwarded to phasor data concentrator (PDC) with 
the GPS time stamp received from GPS module. 

 
4.3.  GPS module 

This module provides the 1PPS signal to the Due to synchronize the clock with UTC as well as to 
initiate the sampling process. As per the IEEE standard C37.118.1-2011 the phasor calculator (Arduino Due) 
has to generate a maximum of 50 frames per cycle for a typical 50 Hz sinusoidal signal. After receiving the 1 
PPS signal from this module, Due generates a pulse train used for sampling the signals. NEO-6M GPS 
module is chosen based on its performance, cost-effectiveness, and ease of interface with the microcontroller 
boards.  

 
4.4.  Frequency measurement module 

This module is used to determine the frequency of the 3-phase voltage signals from the PTs. The 
three-phase AC voltage signals are stepped down to 3.3 V signals and rectified using half-wave bridge 
rectifier. Rectified signals are then fed to optocouplers to convert them into a pulse train. These pulses are 
given to the interrupt pins of Due. Whenever these pins become high, Due calculates the time difference 
between the subsequent interrupt signals and evaluates the frequency. After calculating the frequency, Due 
evaluates the ROCOF using the algorithm mentioned in section 3. 
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4.5.  Power supply module  
Different components like ZMPT 101 B voltage transformers, optocouplers in frequency 

measurement module and GPS module require regulated 3.3 V DC power. Single-phase, 230 V, 50 Hz AC 
supply is stepped down to 9 V and rectified using full bridge rectifier. Smoothing capacitors are used to filter 
the rectifier output for ripples. To regulate the voltage to the desired value of 3.3 V, DC-DC buck converter 
module is connected at the output of the smoothing capacitor. This module can drive up to 3 A load with 
good voltage regulation. 

 
 

 
 

Figure 1. PMU hardware setup 
 
 

5. RESULTS AND DISCUSSION 
Proposed PMU is tested with 3-phase, 415 V, 50 Hz power supply in the laboratory. Three phase 

voltages are stepped down to 3.3 V as mandated by the phasor estimator using the voltage sensor module. 
These are sampled with a sampling frequency of 3.2 kHz after receiving 1 PPS signal from GPS module. 
Phasor calculator, Arduino Due in this case gathers 64 samples per cycle of sinusoidal signal and stores in the 
buffer, after it receives an interrupt signal from the GPS module. Then it performs the DFT algorithm to 
calculate the phasor magnitudes and angles of all the three phases. Figures 2 and 3 respectively show the calculated 
magnitudes and angles for a duration of 1 second time interval i.e., 50 frames as per IEEE standard.  

 
 

  
  

Figure 2. Variation of voltage phasor magnitude 
with time 

Figure 3. Variation of voltage phasor angles with 
time 

 
 

Along with the phasor calculations Arduino due will also perform the calculation of frequency and 
ROCOF. To calculate the frequency, three-phase voltages are stepped down and converted into pulses using 
the rectifier and optocoupler circuit described in section 4.4. Based on time period of the pulses, Due 
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calculates the frequency. As the test signals are considered from the real time power outlet the frequency 
varies continuously based on the load variations in the grid as shown in the Figure 4.  
 
 

 
 

Figure 4. Variation of frequency with time 
 
 

Another important parameter that is used as a measure of power system inertia is ROCOF. This is 
majorly used for the identification of loss of mains. PMU also calculates this parameter from the values of 
frequency using the algorithm mentioned in the section 2. All these 12 parameters measured for a 3-phase are 
put in a frame and tagged with timestamp and date along with the longitude and latitude. In accordance with 
the IEEE C37.118.1-2011 standard, the reporting rates for a 50 Hz sinusoidal signal are 10, 25 and 50 frames 
per second. So, the proposed PMU was designed to generate 50 Frames per second considering 50 Hz AC 
test signal. Test results are tabulated in Table 1. Proposed PMU which is developed by using the most sought 
after, lucrative, cost-effective and open-source hardware and software is able to estimate the synchrophasors 
for the real time three-phase voltages as per the standards. 

 
 

Table 1. Three-phase Synchrophasor voltages with magnitudes, angles, frequency, ROCOF along with GPS 
time stamp and date 

Frame 
No 

V_R Ф_R f_R ROCOF_R V_Y Ф_Y f_Y ROCOF_Y V_B Ф_B f_B ROCOF_B Time Stamp Date 

1 242.95 153.69 49.93 -3.5 251.89 29.56 49.98 -1 232.1 -75.84 49.98 -1  11:46:55:020200 10:11:20 
2 246.85 152.5 49.97 2 247.73 28.54 49.99 0.5 229.58 -80.05 49.99 0.5  11:46:55:040168 10:11:20 
3 246.76 151.83 50.02 2.5 247.48 27.84 49.91 -4 223.99 -80.5 49.91 -4  11:46:55:060136 10:11:20 
4 247.88 150.89 49.96 -3 248.28 27.42 49.99 4 225.27 -81.19 50 4.5  11:46:55:080114 10:11:20 
5 249.05 149.59 49.9 -3 248.59 26.66 49.99 0 226.7 -80.57 49.97 -1.5  11:46:55:110072 10:11:20 
6 246.39 149.38 50 5 248.91 25.01 49.92 -3.5 234.12 -81.1 49.93 -2  11:46:55:120040 10:11:20 
7 246.45 148.46 49.91 -4.5 247.43 24.61 49.98 3 226.15 -84.71 49.99 3  11:46:55:140008 10:11:20 
8 244.92 147.74 50.01 5 250.83 23.38 49.98 0 227.41 -81.75 49.96 -1.5  11:46:55:159976 10:11:20 
9 245.53 146.52 49.97 -2 250.32 22.7 49.91 -3.5 225.67 -83.95 49.93 -1.5  11:46:55:179944 10:11:20 

 
 
6. CONCLUSION 

PMUs are increasingly being used in wide-area monitoring and control of power systems in both 
static and dynamic environments. Whereas the constraints like high price tags and proprietary designs limited 
the widespread use of these devices in the field. Contemplating all these limitations, more affordable device 
using open-source hardware to measure synchrophasors is proposed and tested as per IEEE standards. This 
device can generate 50 frames per second, each frame consisting of 3-phase voltage phasor magnitudes, 
angles, frequencies and ROCOFs along with GPS time tag, date and location parameters longitude and 
latitudes. Cost as well as the number of components used in the proposed design justifies the cost-
effectiveness of the device. Use of open-source hardware and software like Arduino encourage the 
researchers to further enhance the value of the device by adding different functionalities like protection and 
measurements. Lucrative price tag will allow the utilities to deploy a greater number of devices from 
transmission to distribution level to move forward and make the existing grid as smart grid. 
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