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 Doubly fed induction generators (DFIG) based wind farms are capable of 

providing reactive power compensation. Compensation capability 

enhancement using reactors such as distributed static synchronous 

compensator (D-STATCOM) while connecting distribution generation (DG) 

systems to grid is imperative. This paper presents an optimal placement and 

sizing of offshore wind farms in a coastal distribution system that is emulated 

on an IEEE 33 bus system. A multi-objective formulation for optimal 

placement and sizing of the offshore wind farms with both the location and 

size constraints is developed. Teaching learning algorithm is used to optimize 

the multi-objective function constraining on the capacity and location of the 

offshore wind farms. The proposed formulation is a multi-objective problem 

for placement of the wind generator in the power system with dynamic wind 

supply to the power system. The random wind speed is generated as the input 

and the wind farm output generated to perform the optimal sizing and 

placement in the distributed system. MATLAB based simulation developed 

is found to be efficient and robust. 
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1. INTRODUCTION  

With 7200 kilometers of the coastal region, India has the capability of installing offshore wind farms 

ranging to around 70 GW and above. Optimal placement and sizing of DGs for minimized loss and higher 

reliability using discrete particle swarm optimization (DPSO) is developed on a semi-urban 37 bus 

distribution system [1]. Multi distributed generation (DG) placement and sizing adopting particle swarm 

optimization (PSO) based multi-objective optimization considering loading in the line, active and reactive 

power loss, voltage profile, and MVA intake by the grid as the parameters [2]. Distributed network operators 

(DNO) and the distributed generation owners (DGO) invest in the equipment in a different way. Optimal 

sizing and placement of DG that acts as the tradeoff between both their investments for a planning period are 

developed [3]. A two-stage heuristic method is applied to obtain the benefit-sharing between both DNO and 

DGO. Voltage stability margin improvement by introducing renewable energy to voltage sensitive buses is 

formulated using mixed-integer nonlinear programming [4]. Improved multi-objective harmonized system 

(IMOHS) and non-dominated sorting genetic algorithm II (NSGA-II) algorithms are compared for the 

optimal placement and sizing of DG. Power loss and voltage profile are considered as the multiobjective 

function for convergence [5]. Kalman filter-based algorithm that chooses the optimal size of the DG in steps 

https://creativecommons.org/licenses/by-sa/4.0/
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of 10 KW is applied on a 60 mega volt ampere (MVA) scale distribution network. Optimal locator index is 

introduced to determine the power loss sensitivities and to adopt the best location of the DG [6]. A 

multiobjective formulation that includes minimizing the number of DGs and maximizing voltage stability is 

applied for DG placement and sizing problem. Nonlinear programming is applied to the multiobjective 

problem and shown better efficiency [7]. A multiobjective approach for DG sizing and placement is 

developed for an IEEE 33 bus system that benefits both the DG owners and distribution companies. It uses 

PSO algorithm to optimize both operational and generation-based parameters [8]. A non-iterative method for 

DG sizing and placing that gives the output directly is developed [9]. According to the sensitivity factors, a 

priority list is developed and executed to give a quick solution for the sizing and placement problem. An 

improved nondominated sorting genetic algorithm-II (INSGA-II) is developed for the sizing and placement 

of DGs [10]. Recently the popularity of the offshore wind farm is evident with the research findings on 

uniform wind speed and large sea area in the offshore environment. Both medium voltage alternating current 

(MVAC) and medium voltage direct current (MVDC) distribution system’s performance is evaluated for the 

offshore wind farms [11]. Direct load flow solution with the kirchoff voltage law (KVL) and kirchoff current 

law (KCL) is implemented with offshore wind farms in the distribution system and the performance 

evaluation is carried out. Anticipating the inherent voltage instability due to the squirrel cage induction 

generator (SCIG) a DG configuration that combines both the SCIG and DFIG is used to solve the voltage 

instability issue. The IEEE 1547 standard that standardizes the connection of distributed energy resources 

(DERs) to the main grid describes that the unity power factor needs to be maintained. This literature has a 

setup that would allow the DFIG to absorb the reactive power that is fed by the SCIG to the grid thus paving 

the way to follow IEEE 1547 standards [12]. Optimal sizing and placement of flexible air conditioning 

transmission system (FACTS) devices and renewable distributed generators with varying and stable 

renewable energy input is discussed in literatures [13]-[18]. New contribution from the conventional 

approaches is proposed in [19], which is the scenario reduction algorithm unlike the cost reduction algorithm 

due to voltage unstability. Instead of the cost reduction algorithm that reduces the cost of power production 

due to voltage unstability, this implementation concentrates on voltage unstability reduction which is called 

the scenario reduction algorithm. The constraints of availability of the wind generation in the bus need to be 

constrained for an in situ scenario. Previous publications dealing with the placement of the wind generation 

system has allowed the constant wind generation system as the DG in the placement problem. Dynamics of 

the wind speed variation need to be adopted in the placement of the wind generator. 

This paper provides the placement of the wind generation system by formulating the wind 

placement system by calculating the probabilistically variable wind generation in only a few selected buses. 

A multiobjective sizing and placement of DG and D-STATCOM are combined in the solution that is 

implemented on an IEEE 33 bus distributed system. This paper proposes the multiobjective objective 

function with benefit to cost ratio obtained from 𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 , and 𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 . The 

multiobjective formulation also includes network security index and the voltage safety factor. The paper is 

organized in the following manner. Section 2 discusses the multiobjective formulation that includes the 

voltage stability as well as the cost-based constraint. Section 3 discusses the results and discussion of the 

optimization framework, followed by a conclusion and references. 

 

 

2. PROBLEM FORMULATION 

The primary contriution of this paper is obtaining the placement of the wind generation system with 

multiobjective function that include, cost security, and safety of the network. Dynamic wind veariation is 

considered as the DG in this formulation. The problem is formulated to minimize the total cost of wind 

power generation and maintenance. In the total cost, there are three parts. Investment cost (IC), operation, 

and maintenance cost (OMC) of DG including the interest rate and inflation rate are considered. The benefits 

of cost due to the placement of DG are considered along with the benefit to cost ratio (BCR). This has to be 

maximum so that the benefits are more while maintaining the voltage stability factor (VSF) and network 

security index within the limit. Formulation of the multiobjective problem is is being as, the size of the wind 

turbine generator is calculated by using (1) with wind velocity as the input. For determining the output power 

of the wind turbines, the annual average speed is considered as 6.02 m/s. 

 

 𝑃𝑟𝑎𝑡𝑒𝑑 = 0.5𝜌𝐴𝑣𝑤
3 𝐶𝑝  (1) 

 

𝑃𝐷𝐺 𝑟𝑒𝑛 =  {

0 𝑉 < 𝑉𝑐𝑖𝑛 𝑜𝑟 𝑉𝑤 > 𝑉𝑜𝑢𝑡

𝑃𝑟𝑎𝑡𝑒𝑑  (𝑉𝑤 − 𝑉𝑐𝑖𝑛)/ (𝑉𝑁 − 𝑉𝑐𝑖𝑛) 𝑉_𝑐𝑖𝑛 ≤ 𝑉_𝑤 ≤ 𝑉_𝑁 
 𝑃𝑟𝑎𝑡𝑒𝑑  𝑉𝑁 ≤ 𝑉𝑤 ≤ 𝑉𝑐𝑜𝑢𝑡  

 (2) 
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Here, 𝑃𝑟𝑎𝑡𝑒𝑑 − 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝐷𝐺 𝑝𝑜𝑤𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑉𝑤 − 𝑤𝑖𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛
𝑚

𝑠
 , 𝑉𝑐𝑖𝑛 − 𝑐𝑢𝑡𝑖𝑛 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛

𝑚

𝑠
 , 

𝑉𝑐𝑜𝑢𝑡 − 𝑐𝑢𝑡𝑜𝑢𝑡 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛
𝑚

𝑠
 , 𝑉𝑁 − 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛

𝑚

𝑠
, cp Performance coefficient of the turbine, ρ Air 

density (kg/m3), A - Turbine swept area (m2). 

 

 The total cost of renewable DGs due to installation, operation and maintenance is given in (3) with the 

maintenance, interest, and BCR components. 

 

𝐶𝑜𝑠𝑡𝐷𝐺 𝑟𝑒𝑛 =  ∑ ∑ 𝐼𝐶𝑖𝑗 ∗  𝑛𝑖𝑗∈𝑡𝑦𝑝𝑒 ∗ 𝑙𝑖 + ( ∑ ∑ 𝑂𝑀𝐶𝑖𝑗 ∗ 𝑃𝐷𝐺 𝑟𝑒𝑛 𝑖𝑗 ∗ 𝑛𝑖 ∗ 𝑙𝑖) ∗ 𝐶𝑃𝑉𝑗∈𝑡𝑦𝑝𝑒
𝑁
𝑖=2

𝑁
𝑖=2  (3)  

 

Where  

 

𝐼𝐶𝑖𝑗 − 𝐼𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 𝑡𝑦𝑝𝑒 ′𝑗′ 𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝐷𝐺𝑎𝑡 𝑏𝑢𝑠 ′𝑖′  

 

𝑂𝑀𝐶𝑖𝑗 − 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑦𝑝𝑒′𝑗′𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝐷𝐺𝑎𝑡 𝑏𝑢𝑠 ′𝑖′  

 

𝑛𝑖 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝐺 𝑢𝑛𝑖𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑢𝑠 ′𝑖′  
 

𝑙𝑖 − 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑎𝑡 𝑏𝑢𝑠 𝑖′ ′(0 𝑜𝑟 1)  
 

𝑃𝐷𝐺 𝑟𝑒𝑛 𝑖𝑗 − 𝑃𝑜𝑤𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡𝑦𝑝𝑒 𝑗′ ′𝐷𝐺 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑢𝑠 ′𝑖′  

 

𝑁 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘  
 

𝐶𝑃𝑉 − 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒  
 

𝐶𝑃𝑉 =  
(1−𝑃𝑉𝑁𝑦)

(1−𝑃𝑉)
 (4) 

 

Here, The present value of cost 

 

𝑃𝑉 =  
1+

𝐼𝐹

100

1+
𝐼𝑅

100

 (5) 

 

Where, −𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒, 𝐼𝑅 − 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 and  𝑁𝑦 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑎𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛  

 

 In (6) defines the overall benefits that is obtained by introducing the renewable DGs in the distribution 

network. 

 

〖𝐵𝑒𝑛𝑒𝑓𝑖𝑡〗_(𝐷𝐺_𝑆𝑡𝑎𝑡𝑐𝑜𝑚 𝑟𝑒𝑛) = {(∑_(𝑖 = 2)^𝑁▒〖∑_(𝑗 ∈ 𝑡𝑦𝑝𝑒)▒〖(𝑃_(𝐷𝐺 𝑟𝑒𝑛 𝑖𝑗) +
𝑄_(𝑆𝑡𝑎𝑡𝑐𝑜𝑚 𝑟𝑒𝑛 𝑖𝑗) ) ∗  𝑛_𝑖 〗 ∗ 𝑙_𝑖) +〗 𝛥〖𝑃𝑙𝑜𝑠𝑠〗_(𝐷𝐺 𝑟𝑒𝑛 )  } ∗ 𝐶_ℎ𝑟 ∗ 8760 ∗ 𝐶𝑃𝑉 (6) 

 

Where, ∆𝑃𝑙𝑜𝑠𝑠𝐷𝐺 𝑟𝑒𝑛 −Power loss due to allocation of renewable DGs, 

 

 𝐶ℎ𝑟 − 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦  
 

Here C2 is statcom cost. Qst is the reactive power placed in at the bus in MVAR. The benefit to cost ratio 

BCR is given in (8). 

 

𝐶2(𝑄𝑆𝑇) =
1000𝑋𝑄𝑆𝑇

8760𝑋15
(0.0002466𝑄𝑆𝑇

2 − 0.2243𝑄𝑆𝑇+150.527) (7) 

 

 𝐵𝐶𝑅𝐷𝐺 𝑟𝑒𝑛 =  
𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐷𝐺_𝑆𝑇𝐴𝑇𝐶𝑂𝑀 𝑟𝑒𝑛

𝐶𝑜𝑠𝑡𝐷𝐺 𝑟𝑒𝑛 
 (8) 

 

 Voltage stability factor 

Voltage stability factor (VSF) in any bus due to the introduction of DG placement in any line of the 

distribution network is defined in equation (9), for i+1th bus. 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 6, December 2021 :  4641 - 4648 

4644 

 𝑉𝑆𝐹𝑖+1 = (2𝑉𝑖+1 − 𝑉𝑖) (9) 

 

Where, 𝑉𝑖 −voltage magnitude at bus 𝑖 , 𝑉𝑖+1 −voltage magnitude at bus 𝑖+1 and VSF for the entire network 

is given by. 

 

𝑉𝑆𝐹 =  
∑ 𝑉𝑆𝐹𝑖+1

𝑁−1
𝑖=1

(𝑁−1)
 (10) 

 

 Network security index 

Security of the network also should be considered on the placement of DG. 

 

 𝐿𝐿𝑖 =
𝐿𝑀𝑉𝐴,𝑖

𝐿𝑀𝑉𝐴𝑚𝑎𝑥,𝑖

  (11) 

 

Network security index can be formulated as given in (12). 

 

𝑁𝑆𝐼 =
∑ 𝐿𝐿𝑖

𝑁−1
𝑖=1

(𝑁−1)
  (12) 

 

Certain buses can’t use wind energy as it has the complexity in connecting the wind turbine in that 

location neglecting few buses using the following equation. 

 

𝐵𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑒,𝑖 ≤  𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 < 𝐵𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒,𝑖 

 

ℎ𝑒𝑟𝑒 𝑖 − 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝐵𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒  & 𝐵𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒  

 

Similarly, 

 

𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑀𝑉𝐴 =  ∑  √(𝑃𝐷𝑖
2 + 𝑄𝐷𝑖

2 )𝑛
𝑖=1  (13) 

 

0 ≤  𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑖𝑧𝑒 < 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑀𝑉𝐴 

 

A low value is better. So, the objective function is represented as. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑃𝐷𝐺 𝑟𝑒𝑛 𝑖𝑗 , 𝑛𝑖 , 𝑙𝑖) = (1 + (
1

𝐵𝐶𝑅
)) + (1 +

1

𝑉𝑆𝐹
) + 𝑁𝑆𝐼 +

𝑃𝑙𝑜𝑠𝑠𝑤𝑖𝑡ℎ𝑜𝑢𝑡

𝑃𝑙𝑜𝑠𝑠𝑤𝑖𝑡ℎ

 (14) 

  

In the formulation, the wind generation cost is taken from [20]. The (14) defines the objective 

function that needs to be minimized using the metaheuristic methods. The convergence of both the PSO and 

teaching-learning-based optimization (TLBO) algorithm will follow this objective function which includes 

both the voltage stability and cost parameters in it. The IEEE 33 bus distributed system is used to validate the 

problem formulation and the results and discussion obtained are as explained in the next section. 

 

 

3. TEACHER AND LEARNER ALGORITHM 

This algorithm is made of the teacher-learning ability of the teacher and student in a classroom. The 

TLBO algorithm is divided into two parts. Teacher phase and Learner phase. The population (control 

variable/the parameters need to be identified) X is randomly initialized. The search space is of 𝑁 × 𝐷. The N 

is the number of learners and D is the course offered. This is the problem dimension. The iteration count 

(𝐼𝑇max) is the total number of iteration carried out and this is the stopping criteria. By defining the size of the 

DG (in Wattage), STATCOM location (line number) and number of DG as the independent variables and 

considering the equation (14) as the objective function TLBO algorithm is applied to obtain the best of the 

DG size, STATCOM location and number of DGs. Optimization algorithm that runs for few number of 

iterations is executed and results are obtained using the algorithm similar with modified objective function 

and condition of wind energy resources availability. The multiple objectives like the benefit to cost ratio 

(BCR), voltage stability factor (VSF), network security index, and loss minimization are considered. The 

BCR and VSF are maximized with minimization of losses and network service integration (NSI) is carried 

out. 
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4. RESULTS AND DISCUSSION 

Wind DGs are placed in the IEEE 33-bus radial distribution system with 33 buses in the 

implementation using MATLAB. Total load size of 3.715 MW and 2.3 MVar with 12.66 kV. As the grid 

standards the lower and upper limit 0.95 p.u and 1.05 p.u respectively. Here the DG is considered as the wind 

turbine connected with the DFIG generatorThe multi-objective function is tested with PSO and TLBO 

algorithm. The wind data used in the solution is as given in Table 1. The wind data is selected with a random 

generation of wind as the nature of wind daily cannot be predicted exactly. According to [20], [21] average of 

6.06 is assumed for calculations. The algorithm is run many times and tested for robustness. 

 

 

Table 1. Wind data considered [21], [22] 
Parameters Values 

Wind available buses 2 to 16 
wind not available buses 17 to 33 

Cut-in speed in m/s 6 

Cutout speed in m/s 13 
Wind velocity considered in m/s 6.06 [21], [22] 

Air density in kg/m2 1.225 

CF 0.59 
Length of the wing (m) 52 m 

 

 

The problem thus formulated in the previous section stipulates the placement of the wind buses in 

the buses mentioned as “wind available buses” in the above table. The constraint also extends to the amount 

of power generated in each bus in the wind buses. The formulation is optimized using both the PSO and 

TLBO algorithms [23]-[25]. The (14) is defined as the objective function and is minimized for better 

placement and sizing of the DG. 

The curve of convergence for both the PSO and the TLBO based optimal sizing and placement is as 

shown in Figure 1. The convergence of the TLBO exhibits earlier convergence and with lesser cost than the 

PSO algorithm. Since the STATCOM placement also is combined for the DG placement in the 

implementation the voltage stability is assured in the buses. TLBO algorithm is giving better fitness by 

minimizing the cost objective function. Observing the convergence graph in Figure 2 indicates that the TLBO 

converged at the 13th iteration and PSO at the 50th iteration. A slightly better voltage profile is observed in the 

TLBO algorithm compared to the PSO algorithm as is shown in Figure 1. 

Table 2 exhibits voltage stability in all the buses with DG and the STATCOM placement is 

optimized using both PSO and the TLBO algorithm. It is also evident from Table 2 that the voltage stability 

improvement is better with TLBO algorithm when compared to the PSO algorithm. The cost of the wind 

generation for calculation is obtained from [22]. Although the PSO and TLBO algorithms are applied for the 

placement and sizing in different peaces of literature literatures [23]-[25]. 

 

 

 
 

Figure 1. Convergence waveform of TLBO and PSO 
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Figure 2. Voltage profile of the base case, PSO and TLBO 

 

 

Table 2. Voltage values in per unit (pu) 
Voltage in pu 

Bus no. Without TLBO PSO 

 DG and DSTATCOM with DG & STATCOM with DG & STATCOM 

1 1 1 1 

2 0.9970 0.9988 0.9986 
3 0.9829 0.9942 0.9934 

4 0.9754 0.9937 0.9924 

5 0.9680 0.9936 0.9918 

6 0.9497 0.9933 0.9900 

7 0.9462 0.9927 0.9892 

8 0.9414 0.9881 0.9846 
9 0.9351 0.9821 0.9786 

10 0.9293 0.9766 0.9731 

11 0.9284 0.9758 0.9722 
12 0.9269 0.9743 0.9708 

13 0.9208 0.9685 0.9650 

14 0.9185 0.9664 0.9628 
15 0.9171 0.9650 0.9615 

16 0.9157 0.9637 0.9601 
17 0.9137 0.9618 0.9582 

18 0.9131 0.9612 0.9576 

19 0.996 0.9982 0.9981 
20 0.9929 0.9947 0.9945 

21 0.9922 0.9940 0.9938 

22 0.9915 0.9933 0.9932 

23 0.9793 0.9906 0.9898 

24 0.9726 0.9840 0.9832 

25 0.9693 0.9807 0.9799 
26 0.9477 0.9923 0.9889 

27 0.9451 0.9911 0.9874 

28 0.9337 0.9877 0.9828 
29 0.9255 0.9855 0.9750 

30 0.9219 0.98427 0.9716 

31 0.9178 0.9803 0.9677 
32 0.9169 0.9795 0.9668 

33 0.9166 0.9792 0.9665 

 

 

Table 3 depicts the location and sizing of the DG and also the indexes defined in the formulation, 

The TLBO exhibits better index values either it is the voltage-based index or the cost-based indexes. The 

placement and sizing of the DG and D-STATCOM placement are better with the TLBO algorithm in all the 

indexes and the loss and cost values. The size of DG placed using the TLBO algorithm is 2.2577MW and the 

D-STATCOM is of 1.2502 mega volt ampere reactive (MVAR). The size of DG placed using the PSO 

algorithm is 2.1421 MW and the D-STATCOM is of 1.058 MVAR. The fitness function that is proportional 

to the cost is 0.3664 units with the TLBO algorithm as compared to 0.3761 units with the PSO algorithm. 

Using TLBO the fitness minimizes 2.57%.  
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The cost objective is lesser with the TLBO algorithm compared to the PSO algorithm. This 

improves the VSF by 0.44%, NSI by 0.43%, and the total loss minimized by 13.35 %. These all happen when 

the BCR of the nearly the same value. So, without compromizing the cost of the STATCOM the 

improvements are done in the test system considered. The proposed multi-objective formulation with 

dynamic wind speed input clearly improves the fitness while the TLBO algorithm is implemented. From 

table it is evident that the TLBO algorithm dominates in every aspect of the multi-objective formulation 

proposed. Thus, the multi-objective formulation with dynamic wind generation input is found to be working 

effectively with good voltage stability and network security. 

 

 

Table 3. Convergence results of TLBO and PSO 

Parameters 
TLBO PSO 

with DG & STATCOM with DG & STATCOM 

Fit 0.3664 0.3761 

BCR 2.7700 2.7846 

VSF 0.9826 0.9783 

NSI 0.4345 0.4330 
Loss in KW 52.8162 60.9530 

Location 7,30 7,28 

Size in MW 2.2577,1.2502 2.1421,1.058 

 

 

5. CONCLUSION  

Multi-objective placement and sizing of DG and D-STATCOM problem formulated based on the 

availability of the wind resources is solved using both PSO and TLBO algorithm. The stable voltage stability 

and cost reduction are evident in the implementation of both the metaheuristics methods. Although voltage 

stability is evident in both the algorithms the TLBO algorithm exhibited better convergence both in terms of 

improved performance indexes and also the cost minimization. Thus, the proposed multi-objective 

formulation has shown good performance while introducing the dynamic wind generation input. Cost, 

network security and the voltage safety is found optimized to obtain the optimized placement of the wind 

generator.  
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