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ABSTRACT

This article introduces some new straightforward and yet powerful formulas in the
form of series solutions together with their residual errors for approximating the
Riemann-Liouville fractional derivative operator. These formulas are derived by uti-
lizing some of forthright computations, and by utilizing the so-called weighted mean
value theorem (WMVT). Undoubtedly, such formulas will be extremely useful in es-
tablishing new approaches for several solutions of both linear and nonlinear fractional-
order differential equations. This assertion is confirmed by addressing several linear
and nonlinear problems that illustrate the effectiveness and the practicability of the
gained findings.
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1. INTRODUCTION
The principle of fractional calculus has been endorsed as distinguished mathematical tools to charac-

terize many real-world phenomena in the recent decades [1]-[5]. It has been increasingly considered by many
researchers in numerous areas of engineering and science, some of these areas are and not limited to con-
trol engineering [6], electrochemistry [7], electromagnetism [8], bioscience [9], and diffusion processes [10].
Several different fractional derivatives and integrals definitions have been formulated and accepted, and they
are divided into different categories. It’s worth mentioning that there are two fractional derivative definitions;
the first definition is the derivative of a function’s convolution with a power law kernel, as suggested by Rie-
mann and Liouville, the second is caputo’s proposal of convolution of the local derivative of a given function
with a power law function [11]. In view of different suggestions of many applied mathematicians, the caputo
fractional derivative operator is acceptable for many real-world problems because it allows for the use of spec-
ified initial conditions when taking fractional derivatives, for instance, the Laplace transform [1], [12], [13].
Atangana et al. in [1] asserted that when a fractional integral operates, the initial function does not recover well,
according to the mathematical definition of the caputo operator. As a result, although the caputo derivative is ex-
tremely useful and practical, it may not be appropriate for mathematical purposes [1]. The Riemann-Liouville
operator, on the other hand, satisfies the mathematical principle in the fractional calculus sense. Furthermore,
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when using the Laplace transform, the initial condition with fractional exponent is taken into account, which is
both practical and mathematically realistic [1].

In the same context, Taylor’s series including fractional ones is suggested by many authors as one of
the most efficient power series [14]. In 1847, the idea of the fractional generalized Taylor series was revealed,
when Riemann used a series structure to formulate an analytic function [15]. The proof of the validity of such
expansion for some classes of functions was given by Hardy [16]. Recently, the related mean value theorem
problem was discussed by Trujillo et al. [17], and the result from the Riemann-Liouville case to the Caputo case
was extended by Odibat et al. [18]. Another view to show fractional calculus, including Grünwald-Letnikov
and Riemann-Liouville definitions has been suggested by Oldham and Spanier [19], also a power series in-
volving integer derivatives of the analytic function was constructed [20]. Afterwards, to describe fractional
derivative, a new series was proposed by Samko et al. [21]. In reference [22], the Taylor-Riemann series
using Osler’s theorem was investigated to obtain certain double infinite series expansions of some elementary
functions. Some classical power series theorems have been generalized for fractional power series, and a new
construction of the generalized Taylor’s power series has been introduced in [14]. In reference [1], a numer-
ical approximation of the Riemann-Liouville fractional derivative operator was presented. Analogues of the
Taylor’s theorem and the mean value theorem for fractional differential operators were established in reference
[23]. More recently, Wei et al. have developed a general structure for Taylor series in fractional case by ex-
panding an analytic function at the current time or at the initial instant [20]. This structure takes into account
the Caputo definition, the Riemann-Liouville definition, the variable order and the constant order [20].

In this paper, a new straightforward formula in a series form for approximating the fractional derivative
operator in the sense of Riemann-Liouville , Dαy(t), 0 < α ≤ 1, is introduced. Based on the weighted mean
value theorem (WMVT) and some direct computations; this formula is derived. Because the solutions of some
linear and nonlinear fractional differential equations are extremely difficult to obtain; such formula will be very
useful to establish new approaches for them. These solutions will be in series forms that could be used in order
to determine the analytic solutions in many cases. However the rest of this article is organized as follows:
The Riemann-Liouville differential and integral operators are presented in section 2 with basic definitions
and theorems. The theoretical framework is presented in section 3. Section 4 provides some examples to
demonstrate the method. The final part of the paper is the conclusion.

2. RIEMANN−LIOUVILLE DIFFERENTIAL AND INTEGRAL OPERATORS
Calculus of integrals and derivatives of any arbitrary real or complex order is the topic of fractional

calculus [24], [25]. As one of the most important fractional derivatives operators, the Riemann-Liouville
operator satisfies all mathematical principles within the framework of fractional calculus [1], [26], [27]. To help
researchers better understand how this operator generalizes ordinary differential operators, some definitions and
properties related to this operator will be exhibited. Let us, firstly, assume that [a, b] is a finite interval, where
a, b ∈ R and −∞ < a < b < ∞. The left-sided Riemann-Liouville fractional integral of order α ∈ R+ is
defined as [21], [28]:

Jαa+f(x) =
1

Γ(α)

∫ x

a

f(τ)

(x− τ)1−α dτ, x > a, (1)

and the right-sided Riemann−Liouville fractional integral of order α ∈ R+ is [28]:

Jαb−f(x) =
1

Γ(α)

∫ b

x

f(τ)

(τ − x)1−α dτ, x < b. (2)

Observe that we have limited the values of the fractional order α to the real positive numbers [28],
which is necessary for some practical applications, but one may find that α belongs to complex numbers
in references [21], [28]. On the other hand, the left-sided Riemann-Liouville fractional derivative of order
α ∈ R+ is defined by [28]:

Dα
a+f(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

f(τ)

(x− τ)α−n+1
dτ, x > a, (3)

and the right-sided Riemann-Liouville fractional derivative of order α ∈ R+ is [28]:
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Dα
b−f(x) = (−1)nDnJn−αb− f(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ b

x

f(τ)

(τ − x)α−n+1
dτ, x < b, (4)

where n = dαe, and where d·e denotes to the ceiling function. The popular forms of the Riemann-Liouville
fractional integral and derivative of order α ∈ R+ coincide with the left-sided Riemann-Liouville definitions.
Actually, these forms can be defined as [29], [30], [31]:

Jαa f(x) =
1

Γ(α)

∫ x

a

f(τ)

(x− τ)1−α dτ, x > a, (5)

and

Dα
a f(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

f(τ)

(x− τ)α−n+1
dτ, x > a. (6)

It should be mentioned that the integral operators Jαa+ , J
α
b− and Jαa in (1), (2) and (5), respectively, are

defined on Lp(a, b) ≡ The space of integrable functions, where p ∈ [1,∞). At the same time, the differential
operators Dα

a+ , D
α
b− and Dα

a in (3), (4) and (6), respectively, are defined on C[a, b] ≡ The space of continuous
functions [28]. Next, some important properties of the integral operator are stated for completeness.
Theorem 1: [32] Let α, β ≥ 0 and φ ∈ L1[a, b]. Then, Jαa J

β
a φ = Jα+β

a φ holds almost everywhere on [a, b]. If
additionally φ ∈ C[a, b] or α+ β ≥ 1, then the identity holds everywhere on [a, b].
Corollary 2: [32] Let α, β ≥ 0 and φ ∈ L1[a, b]. Then, Jαa J

β
a φ = Jβa J

α
a φ.

Theorem 3: [30] The Riemann-Liouville fractional integral Jαa of the power function satisfies:

Jαa (x− a)µ =
Γ(µ+ 1)

Γ(µ+ α+ 1)
(x− a)µ+α, α > 0, µ > −1.

Having stated some fundamental properties of the Riemann-Liouville integral operator, we are now
ready to state some properties of the corresponding differential operator.
Theorem 4: [32] Let α ≥ 0. Then for every f ∈ L1[a, b], we have Dα

aJ
α
a f(x) = f(x) almost everywhere.

Theorem 5: [32] Let α > 0, If there exists some φ ∈ L1[a, b] such that f = Jαa φ, then, JαaD
α
a f(x) = f(x)

almost everywhere.
Theorem 6: [32] Let α > 0 and n − 1 ≤ α < n, n ∈ N . Assume that f is such that J (n−α)

a f ∈ An[a, b] ≡
The set of all functions with an absolutely continuous (n− 1)th derivative. Then,

JαaD
α
a f(x) = f(x)−

n−1∑
k=0

(x− a)α−k−1

Γ(α− k)
lim
z→a+

D(n−k−1)J (n−α)
a f(z). (7)

In particular, for 0 < α < 1, we have:

JαaD
α
a f(x) = f(x)− (x− a)α−1

Γ(α)
lim
z→a+

J (1−α)
a f(z). (8)

Theorem 7: [32] The Riemann-Liouville fractional derivative Dα
a of the power function satisfies:

Dα
a (x− a)µ =

Γ(µ+ 1)

Γ(µ+ 1− α)
(x− a)(µ−α), if α− µ /∈ N.

3. THE THEORETICAL FRAMEWORK
This section illustrates the theoretical framework of the present study. Actually, it introduces two

novel theorems that offer two powerful expressions formulated in the form of power series to approximate the
Riemann-Liouville fractional derivative operator. In summary, here are the main results of this work.
Theorem 8: Let y ∈ Cn+1[a, b], 0 < α ≤ 1, and a ≥ 0. Then for every t ∈ (a, b], there exist ξ ∈ (a, b) such
that the Riemann-Liouville fractional derivative operator Dα

a y(t) can be written, in terms of fractional series
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and its reminder term, in the following form:

Dα
a y(t)

=
1

Γ(1− α)

(
y(a)(t− a)−α +

n∑
k=1

y(k)(a)(t− a)k−α∏k
j=1 (j − α)

+
y(n+1)(ξ)(t− a)n+1−α∏n+1

j=1 (j − α)

)
.

(9)

The Riemann-Liouville fractional derivative operator for 0 < α ≤ 1 is known as:

Dα
a y(t) =

1

Γ(1− α)

d

dt

∫ t

a

y(x)(t− x)−αdx. (10)

Using integration by part to (10) yields:

Dα
a y(t) =

1

Γ(1− α)

(
y(a)(t− a)−α +

∫ t

a

y′(x)(t− x)−αdx

)
. (11)

Again, applying integration by part inductively n-times to (11) leads to the following assertion:

Dα
a y(t) =

1

Γ(1− α)

(
y(a)(t− a)−α +

y′(a)(t− a)1−α

1− α
+
y′′(a)(t− a)2−α

(1− α)(2− α)

)
+

· · ·+ 1

Γ(1− α)

(
y(n)(a)(t− a)n−α∏n

k=1 (k − α)
+

1∏n
k=1 (k − α)

∫ t

a

y(n+1)(x)(t− x)1−α

1− α
dx

)
.

(12)

Observe that y ∈ Cn+1[a, b] and (t − x)n−α does not change its sign in [a, t]. Therefore, one can conclude
using the WMVT that there exist ξ ∈ (a, b) such that:∫ t

a

y(n+1)(x)(t− x)n−α∏n
k=1 (k − α)

dx =
y(n+1)(ξ)∏n
k=1 (k − α)

∫ t

a

(t− x)n−αdx

=
y(n+1)(ξ)(t− a)n+1−α

(n+ 1− α)
∏n
k=1 (k − α)

=
y(n+1)(ξ)(t− a)n+1−α∏n+1

k=1 (k − α)
,

(13)

which consequently implies the desired result.
Theorem 9: Let y ∈ Cn+m[a, b], a ≥ 0, and m − 1 < α < m, where m is positive integer. Then for every
t ∈ (a, b], there exist ξ ∈ (a, b) such that the Riemann-Liouville fractional derivative operator Dα

a y(t) can be
written, in terms of fractional series and its reminder term, in the following form:

Dα
a y(t)

=
1

Γ(1− α)

(
y(a)(t− a)−α +

n∑
k=1

y(k)(a)(t− a)k−α∏k
j=1 (j − α)

+
y(n+1)(ξ)(t− a)n+1−α∏n+1

j=1 (j − α)

)
.

(14)

The Riemann-Liouville operator given in (6) can be rewritten in the following form:

Dα
a y(t) =

1

(m− α)Γ(m− α)

(
y(a)(m− α)(m− α− 1)...(1− α)(t− a)−α

+
dm

dtm

(∫ t

a

y′(x)(t− x)m−αdx

))
.

(15)

But, based on the following assertion:

dm

dtm

(∫ t

a

y′(x)(t− x)m−αdx

)
=

∫ t

a

y′(x)(m− α)(m− α− 1)...(1− α)(t− x)1−αdx,
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in (15) will be as (16):

Dα
a y(t) =

1

Γ(1− α)

(
y(a)(t− a)−α +

∫ t

a

y′(x)(t− x)−αdx

)
. (16)

Finally, using the same proof of Theorem 8 yields also the desired result.

4. ILLUSTRATIVE NUMERICAL EXAMPLES
In this part, the effectiveness and efficiency of our findings are numerically verified through solving

some linear and nonlinear fractional differential equations.
Example 10: Consider the function y(t) = − exp(−t) + t8 + cos

(
πt2

3

)
− 6t. The two formulas (9) and

(10) given, respectively, in theorem 8 and theorem 9 are employed via mathematica package in order to gain
the approximate values of the Riemann-Liouville fractional derivative operator Dα

a y(t) versus the time t for
different values of α and n. However, Tables 1, 2, 3, and 4 show the error terms between the approximate and
the exact values. One can observe that these errors can be reduced by sufficiently increasing the value of n or
by reducing the round of error that could be occurred when applying mathematica package.

Table 1. Error terms for example 10
t α=0.5,n=20 α=0.7,n=20 α=0.9,n=20 α=0.99,n=20

0.1 0.00 8.88 × 10−16 0.00 8.88 × 10−16

0.2 0.00 1.78 × 10−15 1.78 × 10−15 8.88 × 10−16

0.3 8.88 × 10−16 1.78 × 10−15 8.88 × 10−16 1.78 × 10−15

0.4 8.88 × 10−16 1.78 × 10−15 0.00 8.88 × 10−16

0.5 1.78 × 10−15 2.66 × 10−15 4.44 × 10−15 1.07 × 10−14

0.6 1.09 × 10−13 2.26 × 10−13 4.75 × 10−13 6.62 × 10−13

0.7 4.09 × 10−12 8.28 × 10−12 1.68 × 10−11 2.30 × 10−11

0.8 9.42 × 10−11 1.86 × 10−10 3.66 × 10−10 4.96 × 10−10

0.9 1.50 × 10−9 2.88 × 10−9 5.55 × 10−9 7.44 × 10−9

1.0 1.78 × 10−8 3.35 × 10−8 6.31 × 10−8 8.38 × 10−8

Table 2. Error terms for example 10
t α=0.5,n=50 α=0.7,n=50 α=0.9,n=50 α=0.99,n=50

0.1 0.00 1.33 × 10−15 0.00 0.00
0.2 0.00 2.22 × 10−15 1.78 × 10−15 0.00
0.3 0.00 1.78 × 10−15 0.00 1.78 × 10−15

0.4 8.88 × 10−16 1.78 × 10−15 0.00 1.78 × 10−15

0.5 0.00 0.00 1.78 × 10−15 8.88 × 10−16

0.6 0.00 3.55 × 10−15 1.78 × 10−15 8.88 × 10−16

0.7 0.00 3.55 × 10−15 8.88 × 10−16 1.78 × 10−15

0.8 8.88 × 10−16 3.55 × 10−15 1.78 × 10−15 0.00
0.9 1.78 × 10−15 6.22 × 10−15 8.88 × 10−16 1.33 × 10−15

1.0 8.88 × 10−16 1.02 × 10−14 1.89 × 10−15 4.44 × 10−16

Example 11: Consider the following nonlinear fractional IVP:

Dα
0 y(t) = t1−α(1− y)2, y(0) = 0. (17)

The exact solution of this problem is y(t) = t
1+t , for α = 1. However, in order to employ our

proposed scheme to solve such problem, one can firstly take the Taylor’s series around t = 0 for the left-hand
side of (17), and then use the result reported in theorem 8 In other words, Dα

0 y(t) can be replaced by the
following assertion:

Dα
0 y(t) =

1

Γ(1− α)

(
y(0)t−α +

∞∑
k=1

y(k)(0)tk−α∏k
j=1 (j − α)

)
. (18)

Numerical approach of riemann-liouville fractional derivative operator (Ramzi B. Albadarneh)
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Using the initial condition y(0) = 0 implies:

t1−αy′(0)

Γ(2− α)
+
t2−αy′′(0)

Γ(3− α)
+
y(3)(0)t3−α

Γ(4− α)
+ . . .

= t1−α − 2t2−αy′(0) + t3−α
(
y′(0)2 − y′′(0)

)
+ . . .

(19)

Equating the coefficients of tj of (19) yields:

y′(0) = Γ(2− α),

y′′(0) = −2Γ(2− α)Γ(3− α),

y′′′(0) =
(
Γ(2− α)2 + 2Γ(3− α)Γ(2− α)

)
Γ(4− α),

...

consequently, substituting each of y(0), y′(0), y′′(0), · · · into the power series of y(t) around t = 0 leads us to
establish the general solution of (17), which would be in the following form:

y(t) = tΓ(2− α)− t2Γ(2− α)Γ(3− α) +
1

6
t3
[
Γ(2− α)2 + 2Γ(3− α)Γ(2− α)

]
× Γ(4− α) +

1

72
t4
[
− 6Γ(3− α)Γ(2− α)2 −

[
Γ(2− α)2 + 2Γ(3− α)Γ(2− α)

]
× Γ(4− α)

]
Γ(5− α) + . . . .

One can easily verify that, when α = 1, this solution would be the same exact solution given above, i.e;

y(t) = t− t2 + t3 − t4 + t5 − t6 + t7 − t8 + t9 − t10 + ... =
t

1 + t
.

In particular, the power series solution of the IVP given in (17), for 0 < α ≤ 1, can be written as:

y(t) =

∞∑
m=0

c(m)tm

m!
,

where
c(0) = 0, c(1) = Γ(2− α),

and

c(m) = Γ(m− α+ 1)

(
m−1∑
k=0

c(k)c(−k +m− 1)

k!(−k +m− 1)!
− 2c(m− 1)

(m− 1)!

)
.

Table 3. Error terms for example 10
t α=1.5,n=20 α=1.7,n=20 α=1.9,n=20 α=1.99,n=20

0.1 0.00 2.84 × 10−14 9.95 × 10−14 2.66 × 10−14

0.2 0.00 7.11 × 10−15 2.13 × 10−14 7.99 × 10−15

0.3 3.55 × 10−15 3.55 × 10−15 1.42 × 10−14 5.33 × 10−15

0.4 0.00 0.00 1.07 × 10−14 1.33 × 10−15

0.5 6.93 × 10−14 1.51 × 10−13 3.33 × 10−13 4.57 × 10−13

0.6 4.28 × 10−12 8.87 × 10−12 1.83 × 10−11 2.54 × 10−11

0.7 1.37 × 10−10 2.76 × 10−10 5.53 × 10−10 7.55 × 10−10

0.8 2.76 × 10−9 5.41 × 10−9 1.06 × 10−8 1.43 × 10−8

0.9 3.91 × 10−8 7.46 × 10−8 1.42 × 10−7 1.90 × 10−7

1.0 4.17 × 10−7 7.80 × 10−7 1.46 × 10−6 1.93 × 10−6
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Table 4. Error terms for example 10
t α=1.5,n=50 α=1.7,n=50 α=1.9,n=50 α=1.99,n=50

0.1 0.00 0.00 9.95 × 10−14 2.66 × 10−14

0.2 1.42 × 10−14 7.11 × 10−15 2.13 × 10−14 7.99 × 10−15

0.3 3.55 × 10−15 3.55 × 10−15 1.42 × 10−14 4.88 × 10−15

0.4 0.00 0.00 8.88 × 10−15 4.88 × 10−15

0.5 3.55 × 10−15 1.78 × 10−15 7.11 × 10−15 3.55 × 10−15

0.6 0.00 0.00 4.88 × 10−15 2.22 × 10−16

0.7 1.78 × 10−15 6.22 × 10−15 3.16 × 10−15 7.11 × 10−15

0.8 8.88 × 10−16 1.62 × 10−14 8.88 × 10−16 2.66 × 10−14

0.9 4.22 × 10−15 2.13 × 10−14 3.55 × 10−15 7.46 × 10−14

1.0 1.78 × 10−15 6.04 × 10−14 7.11 × 10−15 1.21 × 10−13

Example 12: Consider the following nonlinear fractional IVP that describes the cooling of a semi-infinite body
by radiation:

Dα
a y(t) = t1−α(1− y(t))4, y(0) = 0. (20)

The exact solution of (20) for α = 1 is of the form:

y(t) = 1− (1 + 6t+ 9t2)
1
3

(1 + 3t)
. (21)

Following the same technique applied to example 11 leads us to deduce the general solution of (20). This
solution can be written in the following form:

y(t) = tΓ(2− α)− 2t2Γ(2− α)Γ(3− α) +
1

3
t3
[
3Γ(2− α)2 + 4Γ(3− α)Γ(2− α)

]
× Γ(4− α) +

1

24
t4
[
− 4Γ(2− α)3 − 24Γ(3− α)Γ(2− α)2 − 4

3

[
3Γ(2− α)2

+ 4Γ(3− α)Γ(2− α)
]
Γ(4− α)

]
Γ(5− α) + . . . .

For α = 1, the power series solution will be as follows:

y(t) = t− 2t2 +
14t3

3
− 35t4

3
+

91t5

3
+ . . . ,

which coincides exactly with the power series of (21). However, Table 5 shows the approximate solutions
together with their residual errors of (21) for different values of n and α. Besides, Figure 1 shows the exact and
the approximate solution of (21) for different values of α at n = 20. In view of these numerical results, it can
be asserted that the residual error is decreased when n becomes large.

Figure 1. An approximate solution for example 12 for different values of α

Numerical approach of riemann-liouville fractional derivative operator (Ramzi B. Albadarneh)
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Table 5. Numerical solutions of example 12 together with their residual errors for different values of t
α=0.5, n = 10 α= 0.5, n = 20 α= 0.7, n = 10 α=0.7, n = 20

(r)2-3(r)4-5(r)6-7(r)4-5(r)8-9 t app. Res. app. Res. app. Res. app. Res.
0.1 0.1693669 1.74× 0.1787661 4.44× 0.1326126 5.31× 0.1398065 2.76×

10−6 10−11 10−7 10−11

0.2 0.2144900 1.17× 0.2180800 1.44× 0.1888217 4.05× 0.1923520 8.08×
10−5 10−9 10−6 10−12

0.3 0.2391206 4.15 0.2416223 1.36× 0.2236491 1.56× 0.2261308 3.01×
10−5 10−8 10−5 10−9

0.4 0.2567284 9.36× 0.2585229 5.23× 0.2492026 3.71× 0.2510679 1.38×
10−5 10−8 10−5 10−8

0.5 0.2702355 1.44× 0.2717184 9.45× 0.2692866 5.97× 0.2708023 2.72×
10−4 10−8 10−5 10−8

0.6 0.2813543 1.55× 0.2825414 8.41× 0.2858447 6.68× 0.2871004 2.64×
10−4 10−8 10−5 10−8

0.7 0.2906744 1.18× 0.2917126 3.32× 0.2998796 5.25× 0.3009584 9.88×
10−4 10−8 10−5 10−9

0.8 0.2987601 6.25× 0.2996669 8.93× 0.3120482 2.85× 0.3129942 2.50×
10−5 10−9 10−5 10−9

0.9 0.3059084 2.19× 0.3066869 2.87× 0.3227899 1.02× 0.3236183 2.80×
10−5 10−8 10−5 10−9

1.0 0.3121975 4.58× 0.3129633 3.13× 0.3323502 2.19× 0.3331162 4.32×
10−6 10−8 10−6 10−9

Example 13: Consider the following nonlinear fractional IVP; Riccati differential equation:

Dα
a y(t) = t1−α + 2t1−αy(t)− t1−αy(t)2, y(0) = 0. (22)

The exact solution for α = 1 is of the form:

y(t) =
e2
√

2t − 1√
2e2
√

2t − e2
√

2t +
√

2 + 1
. (23)

Likewise example 11, we found the general solution of (22) as:

y(t) =
[
t+ t2Γ(3− α)

]
Γ(2− α)− t3Γ(4− α)

6

[
Γ(2− α)2 − 2Γ(2− α)Γ(3− α)

]
− 1

72
t4
[
6Γ(3− α)Γ(2− α)2 +

[
Γ(2− α)2 − 2Γ(2− α)Γ(3− α)

]
Γ(4− α)

]
Γ(5− α)

+ · · · .

For α = 1, the power series solution is of the form:

y(t) = t+ t2 +
t3

3
− t4

3
− 7t5

15
+ · · · ,

which coincides exactly with the power series of (23). However, Table 6 shows the approximate solution
together with its residual error of (23) for different values of n and α. Besides, Figure 2 shows the exact and
the approximate solution of (22) for different values of α at n = 20.
Example 14: Consider the following nonlinear fractional IVP:

Dα
a y(t) = t2−α(3− y′(t))2/3, y(0) = 0, y′(0) = 0. (24)

The exact solution of (24) for α = 2 is of the form:

y(t) =
1

108
t2
(
t2 − 12

3
√

3t+ 54 32/3
)
. (25)
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The same technique applied to example 11 can be also applied here to find the general solution of (24) for
1 < α < 2. This solution is, however, of the form:

y(t) =
1

2
32/3t2Γ(3− α)− t3Γ(3− α)Γ(4− α)

3 32/3
+

1

24
t4
[2

9
Γ(3− α)Γ(4− α)

− Γ(3− α)2

9

]
Γ(5− α) +

1

120
t5

[
− 4Γ(3− α)3

81 3
√

3
+

2Γ(4− α)3

27 3
√

3

−
Γ(5− α)

[
2
9Γ(3− α)Γ(4− α)− Γ(3−α)2

9

]
9 3
√

3

]
Γ(6− α) + · · · .

Observe that the power series solution, for α = 2, is of the form:

y(t) =
1

2
32/3t2 − t3

3 32/3

t4

108
+ · · · .

This solution is exactly equals the power series of (25). For more insight, Table 7 shows the approx-
imate solution together with its residual error of (25) for different values of n and α. From these numerical
results, we can obviously observe that such error decreases when n sufficiently increases.

Table 6. Numerical solution of example 13 together with it’s residual error for different values of α and n
(r)2-3(r)4-5(r)6-7(r)4-5(r)8-9 α=0.5, n = 10 α= 0.5, n = 20 α= 0.7, n = 10 α=0.7, n = 20

0.1 0.540394230 9.72× 0.569770720 2.73× 0.269035900 1.07× 0.281235570 3.98×
10−7 10−10 10−7 10−12

0.2 0.897926500 6.89× 0.917109000 2.44× 0.525631260 9.39× 0.537244240 1.39×
10−12 10−6 10−9 10−10

0.3 1.149028300 2.34× 1.162603400 6.82× 0.776353670 3.87× 0.787393800 1.65×
10−5 10−9 10−6 10−9

0.4 1.328655900 4.96× 1.338402600 2.72× 1.008963800 9.42× 1.018869100 7.33×
10−5 10−8 10−6 10−9

0.5 1.460432400 7.19× 1.467716300 5.41× 1.213574200 1.50× 1.222075500 1.43×
10−5 10−8 10−5 10−8

0.6 1.560239000 7.37× 1.565813600 4.22× 1.386626200 1.63× 1.393695300 1.28×
10−5 10−8 10−5 10−8

0.7 1.638015900 5.36× 1.642429100 1.82× 1.529416700 1.24× 1.535196300 4.97×
10−5 10−8 10−5 10−9

0.8 1.700248500 2.72× 1.703821800 7.41× 1.645777700 6.48× 1.650470400 3.65×
10−5 10−9 10−6 10−9

0.9 1.751172100 9.19× 1.754111700 7.00× 1.740261300 2.24× 1.744068700 1.23×
10−6 10−8 10−6 10−9

1.0 1.793582400 1.86× 1.796084600 1.25× 1.817146700 4.63× 1.820257000 4.75×
10−6 10−7 10−7 10−9

Figure 2. An approximate solution of example 13 for different values of α
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Table 7. Numerical solution of example 14 together with it’s residual error for different values of α and n
(r)2-3(r)4-5(r)6-7(r)4-5(r)8-9 α=1.5, n = 10 α= 1.5, n = 20 α= 1.7, n = 10 α=1.7, n = 20

0.1 0.009030744 1.11× 0.009030744 2.22× 0.009167872 3.33× 0.009167872 1.44×
10−16 10−16 10−16 10−15

0.2 0.035396410 7.44× 0.035396410 2.22× 0.036019388 4.44× 0.036019388 1.55×
10−15 10−16 10−16 10−15

0.3 0.078049074 3.51× 0.078049074 4.44× 0.079604717 1.89× 0.079604717 1.33×
10−13 10−16 10−14 10−15

0.4 0.135995280 5.15× 0.135995280 0 0.139011330 3.69× 0.139011330 1.78×
10−12 10−13 10−15

0.5 0.208294260 4.07× 0.208294260 0 0.213363390 3.73× 0.213363390 2.00×
10−11 10−12 10−15

0.6 0.294056080 2.17× 0.294056080 6.66× 0.301821170 2.48× 0.301821170 1.11×
10−10 10−16 10−11 10−15

0.7 0.392439810 8.79× 0.392439810 0 0.403580350 1.24× 0.403580350 1.33×
10−10 10−10 10−15

0.8 0.502651700 2.90× 0.502651700 2.22× 0.517871410 5.03× 0.517871410 1.11×
10−9 10−16 10−10 10−15

0.9 0.623943290 8.15× 0.623943290 8.88× 0.643958930 1.74× 0.643958930 4.44×
10−9 10−16 10−9 10−16

1.0 0.755609580 2.01× 0.755609580 8.88× 0.781140820 5.27× 0.781140820 1.33×
10−8 10−16 10−9 10−15

5. CONCLUSION
In this paper, two efficient power series formulas together with their error terms have been simply

derived for the purpose of approximating the Riemann-Liouville fractional derivative operator. It has been
shown through addressing several numerical examples that these formulas, which successfully have generated
effective series solutions, can be employed to solve many linear and nonlinear problems in the field of fractional
calculus.

REFERENCES
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