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We assess the predictive accuracy of perturbation theory based estimates of changes in covalent
bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding
to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of
iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of
the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding
potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii)
it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference
geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical
predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction.
If initial and final molecules differ not only in composition but also in geometry, all estimates become
substantially worse, with second order being slightly more accurate than first order. The independent
particle approximation based second order perturbation theory performs poorly when compared to
the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order
of the potential energy curve of highly symmetric systems indicate a finite radius of convergence,
as illustrated for the alchemical stretching of H+2 . Results are presented for (i) covalent bonds to
hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4,
AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F,
CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in
9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S,
GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs,
HSiN, HSiP, HSiAs, HGeN, HGeP, HGeAs); and (v) H+2 single bond with 1 electron. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4947217]

I. INTRODUCTION

Solving Schrödinger’s time independent equation for
the unperturbed electronic ground-state within the Born-
Oppenheimer approximation yields the potential energy
surface (PES) of any molecule as a function of nuclear charges
{ZI} (stoichiometry), nuclear positions {RI} (geometry), and
number of electrons N (molecular charge).1,2 The PES plays
a fundamental role in chemistry and elsewhere because many
properties can be derived from it. While one can study efficient
ways of predicting the PES of single compounds,3–5 efficient
estimates of PES of ensembles of molecules are more useful
(and challenging) in the context of virtual compound design
efforts.6–10 These efforts typically attempt to search chemical
compound space (CCS) spanned by {{ZI},{RI},N}11,12

for novel materials with desirable properties. As such,
accurate yet efficient quantum mechanics (QM) based PES
estimates hold the key for successful rational compound design
applications.6,7,13–15 While many inexpensive semi-empirical
QM methods are available, for this study we restrict ourselves
to first principles in the spirit of Refs. 12 and 16–22. More
specifically, we investigate the application of “alchemical”

a)anatole.vonlilienfeld@unibas.ch

coupling to the problem of efficiently estimating the PES of
new molecules using Taylor series expansions in CCS, rather
than empiricism.

The alchemical coupling approach can be related to grand-
canonical ensemble theory (Widom insertion)23–25 and has
been well established for empirical force-field based molecular
dynamics studies.26–30 Using QM, alchemical changes are less
common despite E. B. Wilson’s early proposal of variable Z ,
back in 1962.31 Within QM, any two iso-electronic molecules
in CCS can be coupled “alchemically” through interpolation
of their external potentials. Here, we have investigated if
alchemical predictions can be used to model the PES of
covalent bonds occurring in small closed-shell molecules
made up from main group elements. We have limited ourselves
to covalent bonds to hydrogen, as well as single, double, and
triple bonds in molecules with no more than 14 valence
electrons. We present and discuss numerical evidence for the
following set of observations: First order Taylor-expansions
of covalent bonding potentials can reach chemical accuracy
(∼1 kcal/mol) if three conditions are met. First, the alchemical
change has to be “vertical,” meaning that initial reference
molecule as well as final target molecule have to possess the
same number of atoms located at the exact same positions.
Second, all elements involved in the alchemical change, i.e., all
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{ZI} destined to vary, have to occur late in the periodic
table. Third, the off-set of the bond potential, determined
by reference distance, is optimized. Second order Taylor-
expansion based predictions are less accurate than first order
predictions if these conditions are met. If reference and target
molecules have different geometries, the predictive power
of the first order Taylor expansion substantially deteriorates,
while second order estimates based on coupled perturbed (CP)
Kohn-Sham equations offer some improvement, however,
without reaching chemical accuracy. Second order estimates
based on the independent particle approximation (IPA) result
in Taylor expansion estimates that are even worse than
first order estimates. For highly alchemical changes with
symmetric endpoints, such as the dissociation of H+2 , a finite
radius of convergence is found.

In Sec. II we briefly summarize the framework of
alchemical derivatives within Hartree-Fock and density
functional theory (DFT) as well as our notations. Numerical
estimates of covalent bond stretching energies of small
molecules are presented and discussed in Sec. III: Extending
previous work on alchemical perturbation,19,20,32 we discuss
alchemical energy derivatives with respect to vertical
transmutation, interpolating only the identity of the atoms
while keeping the geometry fixed. Estimates for single, double,
and triple bonds are included as an application. We also report
numerical results for alchemical stretching of chemical bonds
using non-vertical transmutations. Conclusions are drawn in
Sec. IV.

II. METHOD

A. Taylor expansion in CCS

A Taylor expansion of the potential energy in CCS can be
constructed with the exclusive knowledge acquired by solving
Schrödinger’s equation for some reference molecule, with
Hamiltonian HR,

E(∆λ) = ER + ∆λ∂λEλ
���λ=0
+
∆λ2

2
∂2
λEλ

���λ=0
+ · · ·. (1)

Derivatives of the total potential energy can be obtained by
coupling a reference Hamiltonian to some target Hamiltonian,
HT, such that Hλ transforms HR into HT,

Hλ = (1 − λ)HR + λHT, (2)

as the coupling parameter λ goes from 0 to 1. And
consequently, ∂m

λ Eλ = ∂m
λ ⟨Hλ⟩, with ∂λHλ = HT − HR = H ′

being the alchemical perturbing Hamiltonian. If these
derivatives can be computed, ET can be estimated according
to Eq. (1) by setting ∆λ = 1. Note that we couple reference
and target systems in a linear and global fashion. This is an
arbitrary choice; non-linear and local interpolation functions
could have been chosen just as well. In fact, in Ref. 20,
an empirical quadratic interpolation function is found to
yield superior results for first order predictions of highest
occupied molecular orbital (HOMO) eigenvalues. In this study
of alchemical changes of covalent bonding, we begin with
linear and global interpolations; future work might deal with
alternative functions.

Given a pair of iso-electronic reference/target systems,
described by {{ZR

I },{RR
I },N} and {{ZT

I },{RT
I },N}, respec-

tively, one can couple the two systems such that certain ZR
I and

ZT
I are paired. Note that ZR

I or ZT
I can be scaled down to/up

from zero if the number of atoms in one molecule is smaller.
Under iso-electronic conditions, the λ-dependent terms in the
coupling Hamiltonian (Eq. (2)) are the electron-nucleus and
nucleus-nucleus interaction operators,

vλ(r) =
NI
I

(
−
(1 − λ)ZR

I

|r − RR
I |
−

λZT
I

|r − RT
I |
)
,

Vλ =

NI
I<J

( (1 − λ)ZR
I ZR

J

|RR
I − RR

J |
+

λZT
I ZT

J

|RT
I − RT

J |
)
.

(3)

Since different pairing schemes result in different vλ(r) and
Vλ, it is obvious that the alchemical perturbation is alignment
dependent. To investigate the behaviour of higher order
corrections and the effects of varying geometry/stoichiometry,
we neglect all relaxation effects for vertical iso-valence-
electronic changes (see Sec. II G).

B. First order derivative

The first order derivative of the energy with respect
to an alchemical interpolation parameter connecting any
two iso-electronic molecules can be computed according to
the Hellmann-Feynman theorem,33 as has been shown for
molecular HOMO eigenvalues,20

∂λEλ = ⟨∂λHλ⟩λ =


dr ρλ(r)∂λvλ(r) + ∂λVλ, (4)

where ρλ(r) denotes the electron density, dependent on λ.
At λ = 0 we have ρλ(r) = ρR(r), which is independent of
the target system. As such, the first order derivative can
be calculated with a single reference density and without
additional self-consistent field (SCF) calculation for any target
system. In several circumstances, Taylor expansion estimates
using first order alchemical derivatives have shown good
accuracy for the rapid prediction of properties throughout
CCS.12,21,32,34,35 In general, however, first order derivatives
might not be sufficient. Taking higher order derivatives
into account might offer higher accuracy, assuming Eq. (1)
converges rapidly.

C. Second order derivative

Differentiation of Eq. (4), based on linear interpolated
Hamiltonian in Eq. (2), yields

∂2
λEλ =


dr

�
∂λρ(r)��∂λvλ(r)�, (5)

requiring the density response due to the alchemical
perturbation. Again, at λ = 0 this amounts to the density
response of the reference system. Evaluation of Eq. (5) implies
a differing density response for each target system. We have
considered three approximations to ∂λρ including second
order perturbation theory with IPA,36 CP approaches,37,38 as
well as finite difference (FD) approximation. Note that Eq. (5)
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can be rewritten as ∂2
λE =


drdr′(∂λv(r))(∂λv(r′)) δ2E

δv(r)δv(r′) ,
where δ2E

δv(r)δv(r′) = χ(r,r′) is the static linear response function
or susceptibility, well established within conceptual DFT.39–44

Perturbation theory provides ways to estimate ∂λρλ(r).45

Within IPA,36,46,47 the static density response for a close-shell
system is approximated by

∂λρλ(r) ≈ −4

ia

φi(r)φa(r)


dr′
φi(r′)φa(r′)
εa − εi

∂λvλ(r′), (6)

where {φi, εi} denote the ith occupied molecular orbital (MO)
and its eigenvalue, while {φa, εa} denote the ath unoccupied
counterparts. IPA neglects the influence of the alchemical
perturbation on the Hartree and exchange-correlation (xc)
potentials.38,42 Note that Eq. (6) becomes numerically exact
for 1-electron system with converged basis set within Hartree-
Fock approximation because of the absence of Coulomb and
xc interaction between electrons.

Recently, Yang, Cohen, De Proft, and Geerlings derived
an expression of the density response that also includes the
dependence of Coulomb and xc potential,37 the CP approach,44

∂λρλ(r) = −4

i j


ab

φi(r)φa(r)

× (M−1)ia, jb


dr′φ j(r′)φb(r′)∂λvλ(r′), (7)

where the matrix elements of M are




Mia, jb = (εa − εi)δi jδab + 4Jia, jb + 4Xia, jb,

Jia, jb =


drdr′

φi(r)φa(r)φ j(r′)φb(r′)
|r − r′| ,

Xia, jb =


drdr′φi(r)φa(r)φ j(r′)φb(r′)

(
δ2Exc

δρ(r)δρ(r′)
)
.

(8)

In the limit of Jia, jb → 0 and Xia, jb → 0, Eqs. (6) and (7)
are equivalent. In our implementation, the evaluation of the
CP second order derivative has a computational complexity
similar to a molecular frequency calculation. IPA incurs
negligible computational overhead.

Alternatively, one can also introduce an explicit small
perturbation and converge the new density at ∆λ ≪ 1. The
density response can then be estimated via FD, ∂λρ(r)
≈ ρ∆λ(r)−ρR(r)

∆λ
. In practice, instead of starting the SCF for

the perturbed system from atom based initial guesses, we
restart with ρR(r) resulting in convergence within few SCF
steps.

D. Higher order derivatives

Møller-Plesset (MP) perturbation theory48,49 is used to
estimate correlation energy corrections based on converged
Hartree-Fock results. The derivation of higher order
corrections in MP theory is equivalent to the mth order
alchemical derivative. Here, instead of the two-particle
operator for electron-electron interaction as perturbation in
MP theory, the alchemical perturbation operator HT − HR can
be used. Within IPA, the MP formula can be directly applied
to obtain any mth order derivative.

E. Predicting changes in covalent bonds

For the study of covalent bonds, we focus on the changes
in binding potential due to alchemical coupling. We consider
the difference in total potential energy between two covalently
bound fragments at two arbitrary interatomic distances
d and d0,

∆E(d,d0) = E(d) − E(d0). (9)

If, for example, d0 is large and d is the geometry minimum,
∆E becomes the bond dissociation energy. We are interested
in changes of ∆E(d,d0) as a function of d due to alchemical
changes for a fixed d0. More specifically, we couple a reference
to target system via the corresponding Hamiltonians yielding
expectation values as a function of λ,

∆Eλ(d,d0) = Eλ(d) − Eλ(d0)
= ⟨HR(d) + λ(HT(d) − HR(d))⟩
− ⟨HR(d0) + λ(HT(d0) − HR(d0))⟩. (10)

As λ goes from 0 to 1, the two components in Eq. (9)
change from reference (ER(d),ER(d0)) to target (ET(d),ET(d0))
compound. The truncated Taylor expansion based estimate of
the target compound’s potential is then obtained via

∆ET(d,d0) ≈ ∆E(m)
T (d,d0)

= ∆ER(d,d0) +
m
k=1

1
k!
∂k
λ∆Eλ(d,d0), (11)

where the superscript m stands for Taylor expansion with m
terms, as a function of bond-length d for vertical alchemical
changes. Since ∆ET is the property of interest, the subscript T,
λ, and the dependency of d0 will be omitted for the rest of this
work, unless otherwise noted. In this study, we investigated
orders up to m = 4 for the stretching of H+2 , and up to m = 2
for all other molecules. For a fixed d0, the first order estimate
is calculated according to

∆E(1)
T (d) = �

ER(d) + ∂λEλ(d)|λ=0
�

−
�
ER(d0) + ∂λEλ(d0)|λ=0

�

= ER(d) +


dr ρR(d,r)[vT(d,r) − vR(d,r)]
+ [VT(d) − VR(d)] − ER(d0)
−


dr ρR(d0,r)[vT(d0,r) − vR(d0,r)]
− [VT(d0) − VR(d0)], (12)

and the second order estimate correspondingly,

∆E(2)
T (d) = �

ER(d) + ∂λEλ(d)|λ=0 +
1
2
∂2
λEλ(d)|λ=0

�

−
�
ER(d0) + ∂λEλ(d0)|λ=0 +

1
2
∂2
λEλ(d0)|λ=0

�
, (13)

using above discussed expressions for the CP, IPA, and FD
definitions of the second order derivative.

Since d and d0 in Eq. (9) are arbitrary, one can obtain the
binding curve by scanning d for any fixed d0. The predictive
power, however, happens to depend on d0. For this reason,
we optimize d0 such that the integrated error in dissociation
region is minimal. As shown in Fig. 3 and discussed below, an
empirical linear relationship exists between equilibrium bond
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length of target molecule dT
eq and dopt,

dopt ≈ 0.76 dT
eq + 0.97 Å. (14)

d0 is determined according to Eq. (14) for all vertical changes.
If dT

eq is not known, it can easily be estimated with semi-
empirical quantum chemistry methods.

For non-vertical changes, we use the equilibrium distance
deq in the reference molecule as starting reference geometry,
and we also fix d0 to the same value, resulting in ∆E(m)(deq)
= 0. Eq. (12) simplifies in this case,

∆E(1)(d) =


dr ρR(deq,r)[vT(d,r) − vT(deq,r)]
+ [VT(d) − VT(deq)], (15)

and so does Eq. (13) for second order estimates.

F. Error measures

For bond lengths, we quantify the predictive power
of the Taylor expansions by evaluating the deviation of
prediction from the DFT bond length ∆deq = d(m)

eq − deq,
where d(m)

eq stands for the predicted equilibrium distance
of ∆E(m). We calculate the deviation of the predicted
energy at d(m)

eq from the DFT energy at the DFT minimum,
∆Eeq = ∆E(m)(d(m)

eq ) − ∆E(deq). The deviation in harmonic
vibration frequency, ∆ω = ω(m) − ω, of the bond stretching is
also included in order to quantify the accuracy of the stiffness
of the predicted binding potential. The vibration frequency
is computed from the curvature of cubic spline interpolated

binding potential, ω = 1
2π


keq
µ

, where keq = ∂2
d
∆E(deq) and

µ is the reduced mass. Finally, we measure the integrated
mean absolute error (MAE) for the dissociative tail, defined
as

MAE =
1

|dmax − d(m)
eq |

 dmax

d
(m)
eq

dx |∆E(m)(x) − ∆E(x)|, (16)

for vertical iso-valence-electronic changes. Note that while
in principle one would like dmax → ∞, dmax has been set to
correspond roughly to the inflection point, due to the issues of a
single determinant method, such as DFT, for describing cova-
lent bond-dissociation. This shortcoming is also evident from
comparison of DFT to coupled-cluster single doubles pertur-
bative triples (CCSD(T)) curves shown in Fig. 3. Note that
this aspect is irrelevant for alchemical predictions: If a more
reliable reference method had been used, the error integration
could have easily been expanded to include the entire dissocia-
tive tail. These four quantities provide a numerical indication
of how good a prediction is. For a perfect prediction, one
would expect (∆Eeq,∆deq,∆ω,MAE) = (0,0,0,0). Note that
we compare the predictions to DFT. This is an arbitrary choice,
any other QM method could have been applied just as well.

G. Computational details

Alchemical interpolations of molecules containing
elements from different rows in the periodic table can still be
iso-electronic if effective core or pseudopotentials (PPs) are

used, resulting in a constant number of valence electrons.12

For example, one can couple carbon to silicon using just
four valence electrons. Non-local PPs are widely used to
mimic the presence of core electrons in atoms50 and are
amenable to the tuning of a wide range of properties including
dispersion forces, band-gap, or vibrational frequencies.51–53

The non-local external potential vλ(r) in Eq. (3) then becomes

vλ(r,r′) =
NI
I

((1 − λ)vR
I (r,r′) + λvT

I (r,r′)
)
, (17)

where vR
I and vT

I are PPs for ZR
I and ZT

I , respectively.
Note that vλ(r,r′) in Eq. (17) and vλ(r) in Eq. (3) result
in different coupling Hamiltonians, and therefore different
λ-dependencies of the energy and its derivatives.

All results have been obtained within the Born-
Oppenheimer approximation, where nuclei are clamped;
nuclear repulsion Vλ is decoupled from the electronic
wavefunction and is added as a geometry- and λ-dependent
constant to the electronic energy. Nuclear-nuclear repulsion
energy is computed automatically by most QM codes.
However, it must be removed and recomputed independently
for Vλ according to Eq. (3) to avoid self-repulsion between
transmutating atoms. Throughout the present study, standard
atomic and plane-wave basis functions, linearly interpolated
PPs, as well as the PBE xc potential54 within Kohn-Sham
DFT are used. The scanning of 0.5 Å ≤ d ≤ 3.0 Å is carried
out with increments ∆d = 0.1 Å. For each prediction order
m, ∆E(m)(d) are interpolated with cubic splines, from which
the stiffness ∂2

d
∆E(m)(d(m)

eq ) = keq is computed. All density
volumetric data are printed into Gaussian CUBE files, from
which integrated density slices are calculated.

1. Details for vertical iso-valence-electronic changes

Numerical results for vertical iso-valence-electronic
alchemical changes (discussed in Secs. III A and III B)
have been obtained with CPMD,55 a plane wave basis with 100
Ry cutoff, and Goedecker PPs.56–58 The periodic supercell
size is 20 × 15 × 15 Å3, and one heavy atom is fixed at
(7.5 Å, 7.5 Å, 7.5 Å) while the stretching atom shifts along
+x-axis. For each geometry, heavy atoms are mutated to other
elements in the same column of the periodic table while
all H’s are fixed at the same location as in the reference
compound.

Since Eq. (17) is a non-local operator, Eqs. (4) and
(5) need to be converted to wavefunction expressions. The
first order derivative for the Hamiltonian HR→T is evaluated
using RESTART files in which the reference compound’s
density and wavefunctions have been stored: ∂λE = ⟨∂λH⟩R
= ET[ρR] − ER[ρR]. And the second order derivative is eval-
uated correspondingly relying on FD, ∂2

λE ≈ ⟨∂λH ⟩∆λ−⟨∂λH ⟩R
∆λ

,
with ∆λ = 0.05. Wavefunctions of reference compound are
used for ∆E(1), while ∆E(2)

FD is evaluated by FD with linearly
interpolated PP parameters.

CCSD(T) results obtained for HCl and HBr have been
computed using Gaussian0959 in aug-cc-pVTZ60 basis and
default input parameters.
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2. Details for non-vertical iso-electronic changes

Numerical results for non-vertical iso-electronic alchem-
ical changes have been obtained using atom centered basis-
sets. Restricted open-shell Hartree-Fock calculations have
been carried out using Cartesian aug-cc-pVTZ basis set60 for
H+2 (discussed in Sec. III D 1). Eq. (6) and higher order
derivatives are evaluated analytically by Gaussian expansion
of MOs. Reference geometry is first relaxed by Gaussian0959

and the converged MO coefficients are extracted to evaluate
orbital integrals. NWChem61 is used to scan ∆E as a function
of λ in Fig. 5(d) along alchemical path with discretization
∆λ = 0.01. It is done by reassigning nuclear charges in the
system.

Non-vertical alchemical changes in 10-electron molecules
(discussed in Sec. III D 2) have been calculated using the
uncontracted Cartesian Def2TZVP basis set.62 Uncontracted
neon basis is used for all second row atoms. Additional
hydrogen basis functions are placed along the stretching
pathway, from d = 0.5 Å to d = 3.0 Å in increments
∆d = 0.1 Å. All systems with integer nuclear charges
have been calculated using Gaussian0959 while systems
with fractional nuclear charges have been calculated using
NWChem61 with discretization ∆λ = 0.01. For each 0 ≤ λ ≤ 1,
the atomic density for SCF initial guess iterates through {C, N,
O, F, Ne} to ensure convergence. In all Gaussian and NWChem
calculations, we used Cartesian/real spherical harmonic basis
functions.

III. RESULTS AND DISCUSSIONS

A. Vertical iso-valence-electronic changes of X-H

1. Predicted potentials

Using Taylor expansions binding potentials have been
estimated for covalent bonds involving hydrogen (X-H)
for the following 12 molecules with 8 valence electrons:
CH4, NH3, H2O, HF (second period); SiH4, PH3, H2S,
HCl (third period); and GeH4, AsH3, H2Se, HBr (fourth
period). Numerical results for vertical first (red) and second
(blue) order truncated Taylor series estimates, calculated with
Eqs. (12) and (13), feature in Fig. 1. They measure the change
in X-H binding energy as one goes from reference to target
compound.

We first note that the entire potential is reproduced
in semi-quantitative fashion for all combinations of refer-
ence/target molecules. The precise predictive power strongly
depends on the choice of reference/target molecule pair, on
the choice of d0, and on the expansion going up to first or
second order. First order estimates among molecules with
elements from the third or fourth row are very accurate (see
Fig. 1, bottom and mid-row in mid- and bottom panels,
respectively). By contrast, predicting, or starting with, second
row elements consistently yields worse results. Inclusion
of second order corrections does not necessarily lead to
improved performance. Second order truncated Taylor series
estimates only yield more accurate predictions than first order
when the reference molecule contains heavier elements than
the target molecule. For example, if we predict HF using

FIG. 1. ∆E is shown as a function of d in Eq. (11). White background
panels: true (black circles), first (red squares), and second (blue triangles)
order predictions of changes in the covalent bond potential of hydrogen
due to vertical alchemical interpolations. Gray background panels: the true
potentials of the reference compounds employed for first and second order
predictions.

HBr as a reference, the second order prediction is more
accurate than first order. For the inverse prediction (i.e., HBr
from HF), however, first order is more accurate than second
order.

The performance of truncated Taylor series dramatically
varies depending on the choice of the d0 value. The top panel
in Fig. 2 illustrates this for ∆E(2 Å,d0) for HF → HBr as a
function of λ, once with d0 = 0.94 Å = deq the equilibrium
bond length of HF—and once with d0 = 1.57 Å = dopt, a value
for d0 which happens to linearize ∆E in λ. While the coupling
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FIG. 2. Alchemical coupling of HF (λ = 0) to HBr (λ = 1). TOP panel: E (LEFT) and ∆E (RIGHT) where deq= 0.94 Å (red) denotes the equilibrium bond
length of reference molecule HF, and dopt= 1.57 Å (blue) linearizes ∆E . BOTTOM panel: integrated valence electron density difference slices between H-X
at d = 2 Å and at dopt (RIGHT) and deq (LEFT), respectively, ∆Pλ(x)=


dydz[ρλ(r,d)−ρλ(r,d0)]. Dependence on λ is shown for the same vertical

interpolations, left and right corresponding to the non-linear (red) and linearized (blue) ∆E curves in right-hand TOP panel. Density changes at heavy atom and
hydrogen positions are highlighted as red dashed and dotted/dashed-dotted lines, respectively.

path of total energies is hardly distinguishable for E(2 Å),
E(1.57 Å), and E(0.94 Å), ∆E is strongly dependent on the
choice of d0. By choosing d0 = 1.57 Å, ∆E(2 Å,1.57 Å) in
Eq. (10) becomes nearly linear, while plotting∆E(2 Å,0.94 Å)
reveals substantial curving. This is why, when choosing the
right d0, first order predictions of ∆E can be very predictive.

The top panel in Fig. 2 also explains why second order
estimates can be worse than first order, and why this changes
for the reverse coupling: On the side of the lighter element

(λ → 0), a weak convexity is noticeable in ∆E (blue line),
despite the overall concavity of the path. The presence
of inflection points will always lead to a deterioration of
second order predictions, implying a more accurate first order
estimate. On the other side (λ → 1), no such inflection point
exists and the second order term results in the expected
improvement of the prediction. For the other compound pairs
shown in Fig. 1, similar observations can be made for the
attractive part of the bonding potential (see also ∆E(2 Å,d0)

FIG. 3. LEFT: Scatter plot of optimized reference bond length dopt versus equilibrium bond length of target molecule, denoted by dT
eq. Linear regression gives

dopt= 0.76deq+0.97 Å with MAE= 0.11 Å and RMSE= 0.15 Å. First order (red empty squares) and second order (blue empty triangles) dopt of covalent X-H
bond stretching, as well as first order (red filled squares) and second order (blue filled triangles) dopt of X-Y, X=Y, X#Y stretching are shown, where -, =, #
stand for single, double, and triple bonds. Some of the alchemical paths are highlighted by black arrows. All numbers are given in Tables SI and SII.72 RIGHT:
Alchemical predictions can be more accurate than approximated density functionals. Covalent binding potentials obtained from alchemical PBE0 estimate (red
squares) and ordinary PBE (green diamonds) for HBr (full symbols) and HCl (empty symbols). The alchemical estimate corresponds to Eq. (12) using PBE0
density of HBr (HCl) in order to predict HCl (HBr). For comparison, corresponding CCSD(T) results are shown as well (dashed).
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curves in supplementary material72). We have found that the
inflection point near λ = 0 occurs only when the reference
molecule has the lighter element. Conversely, no inflection
point has been observed for atoms transmutating upward the
column. We believe that this behaviour is due to the specifics
of the employed PPs. Future studies will show why this is the
case, and if similar trends hold for other PPs.

2. Integrated error

Prediction errors for energy minima, equilibrium bond
lengths, force constants, and integrated error in dissociation
region (calculated as described in Sec. II F) have been obtained
for all predictions in Fig. 1 and are reported in Table SI.72

The results lend quantitative support for the observations
articulated above. In particular, these results suggest that
chemical accuracy can be obtained when using first order
Taylor series based estimates among compounds containing
third and fourth row elements. Second order based predictions
are always worse except when a molecule with heavier element
is used as a reference to predict a molecule with lighter one,
for example, HBr → HF.

The best prediction performance is found for first order
based estimates using reference molecules containing third
row elements (nR = 3) in order to predict target molecules
made up of fourth row elements (nT = 4). The overall average
deviation from reference bonding potential energies and
integrated error is ∼2.5 kcal/mol. Corresponding predictions
of equilibrium distances deviate at most by 0.03 Å, and the
vibration frequencies deviate not more than 32 cm−1. Second
order estimates for the same third and fourth row combinations
give slightly worse results. The worst predictions are found
if the coupled molecules skip a row, i.e., involve elements
from second and fourth row—for first as well as second
order truncated Taylor expansions. This is not surprising as
the central atom’s electron density must accommodate the
most severe contractions/expansions for such interpolations.
Moreover, second order overcorrections can also be found
(Table SI)72 whenever molecules containing fourth row
elements are used to predict molecules containing third row
elements: both, predicted energy minimum and equilibrium
bond length, show negative deviations.

3. Alchemical predictions do not commute

We note the asymmetry in the predictive power of
first order based predictions which is due to the lack
of commutation: In general ∂λE |λ=0 , −∂λE |λ=1, except if
reference and target Hamiltonian happen to differ only by
translation, rotation, or parity (enantiomers, i.e., without
accounting for parity violation). Within our restricted
case of linear interpolations of iso-electronic systems, the
perturbing potential does differ only by sign. The integral
over its product with the electron density, however, differs
in general, i.e., ⟨HA − HB⟩B =


dr ρB(vA − vB) ,


dr ρA(vA

− vB) = −⟨HB − HA⟩A. As such, the error in estimating
A based on B will not be the same as the error in
estimating B based on A. Results in Table SI72 suggest
that predictions downward the columns in the periodic table

are more accurate than upward. For example, predicting
HBr using HF as a reference, a better estimate is obtained
(error = +25.7 kcal/mol) than for predicting HF using HBr
as a reference (error = +61.1 kcal/mol). Correspondingly,
predicting HCl using HBr has an error = +5.4 kcal/mol,
while the prediction of HBr using HCl has only an error of
+3.6 kcal/mol. Similar observations hold for bond lengths and
force constants. The asymmetry is also illustrated in Fig. 2.
∆E(d,d0) is not necessarily symmetric with respect to λ = 0.5
for a given choice of (d,d0). Consequently, truncated Taylor
series based predictions from either ends will not be equally
accurate.

4. Chemical accuracy

We have seen that very accurate, yet inexpensive, first
order alchemical estimates can be made for vertical alchemical
changes between third and fourth row elements according to
Eq. (4)—once the density is converged for a given reference
molecule. Then, an interesting question is if the alchemical
accuracy is on the same order of magnitude as common
approximations made when solving Schrödinger’s equation.
We have investigated this point for alchemical coupling of HBr
and HCl using hybrid and generalized gradient approximated
DFT. When using PBE063 as the method for the reference
compound, we find the first order based alchemical predictions
according to Eq. (12) to be in better agreement with the PBE0
results for the target compound than true generalized gradient
based approximation PBE.64 Fig. 3 illustrates this point for the
covalent binding potentials of HCl and HBr calculated using
PBE0, PBE0 based vertical first order alchemical predictions,
and PBE. For all interatomic distances in the dissociative tail,
the alchemical prediction (squares) is closer to PBE0 (circles)
than PBE (diamonds). For the repulsive part of the potential,
the alchemical prediction is substantially better than PBE for
HBr and slightly worse than PBE for HCl. For comparison,
we also included CCSD(T) results. These results amount
to numerical evidence that the predictive power of vertical
alchemical predictions can exceed the accuracy of common
DFT approximations for third or fourth row elements—if
a sufficiently accurate electron density is provided for the
reference compound.

B. Vertical iso-valence-electronic changes involving
single, double, and triple bonds

1. Predicted potentials

Having discussed covalent bonds involving hydrogen,
we now turn to single (XH3-Y), double (XH2=Y), and
triple (HX#Y) bonds among p-block elements. Since third
row elements can either be alchemically compressed to
the corresponding second row (n = 2) element in the same
column, or expanded to the fourth row (n = 4) element, we
chose third row (n = 3) based reference systems for single,
double, and triple bonds, namely, SiH3Cl, SiH2S, and HSiP.
The resulting eight alchemical paths are combinations of
changing the Si atom (Si → C, Si → Ge) or its binding
partner (Cl → F, Cl → Br, S → O, S → Se, P → N, P → As).
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In Fig. 4 first and second order alchemical predictions, again
calculated with Eqs. (12) and (13), are shown for the bonding
potential using vertical transmutations from the three reference
molecules.

More specifically, single bond predictions have been
investigated for making predictions using SiH3Cl as a

FIG. 4. Alchemical predictions of single (top), double (middle), and triple
(bottom) bond potentials. Curves are shown for eight target systems (specified
as insets), iso-electronic with reference (gray background) molecule SiH3Cl
(upper panel), SiH2S (middle panel), and HSiP (bottom panel). Potentials cor-
respond to true (black circles), first (red squares), and second (blue triangles)
order vertical alchemical predictions of heavy atom bond dissociation curves.

reference compound for the eight following molecules with
14 valence electrons: CH3F, CH3Cl, CH3Br (nX = 2); SiH3F,
SiH3Br (nX = 3); and GeH3F, GeH3Cl, and GeH3Br (nX = 4).
For double bonds, we have considered predictions for the
following eight unsaturated molecules 12 valence electrons
and using SiH2S as a reference compound: CH2O, CH2S,
CH2Se (nX = 2); SiH2O, SiH2Se (nX = 3); and GeH2O,
GeH2S, and GeH2Se (nX = 4). And finally for triple bonds, we
have studied the following eight molecules with 10 valence
electrons and using HSiP as a reference compound: HCN,
HCP, HCAs (nX = 2); HSiN, HSiAs (nX = 3); and HGeN,
HGeP, and HGeAs (nX = 4).

Numerical results in Fig. 4 indicate qualitatively
correct behavior for all predictions. Regarding quantitative
performance, the accuracy of the alchemical prediction of
∆E(d,d0) exhibits similar trends as the one discussed above in
the case of vertical changes in the hydrogen containing single
bond: First order predictions (red) systematically achieve
strong predictive power whenever the change involves the
coupling of the third row element to a fourth row element.
Corresponding second order predictions (blue) deteriorate
the accuracy due to inflection points near λ = 0. If the
coupling involves one lighter element from the second row,
the prediction is no longer quantitative. However, in these
cases, second order predictions provide a slightly superior
prediction. If both atoms are simultaneously transmutated to
lighter atoms from the second row, e.g., SiH3Cl → CH3F,
second order estimates over-correct (change of sign) the first
order prediction. In the case of one element transmutating
upward the column, the other downward, the second order
estimate is hardly distinguishable from the first order estimate.
We believe that the reason for this is that the coupling to
the lighter element on the one site in the molecule yields the
concave behavior leading to an improvement in the prediction,
while the coupling to the heavier element on the other site in
the molecule yields the convex behavior with the inflection
point, leading to a deterioration of the prediction. Effectively,
these two effects cancel each other and result in the same
predictive accuracy as the one obtained for the first order
estimate. This rationalization rests on the assumption that the
discussion of Fig. 2 can also be applied to a linear combination
of effects at different transmutating sites.

2. Integrated errors

Above observations are consistent with the quantitative
integrated prediction error measures (definitions in Sec. II F)
summarized in Table SII.72 All first order based predictions
of target molecules implying a transmutation downward the
periodic table (columns 4/3, 3/4, 4/4) exhibit chemical accu-
racy with at most 1.83 kcal/mol deviation in minimal energy
(GeH2S), at most 0.04 Å deviation in bond length (GeH2Se),
at most −12.8 cm−1 deviation in wavenumber (SiH2Se),
and at most 1.56 kcal/mol in integrated energy (GeHAs).
The best performance is achieved in the case of changing
SiH3Cl → GeH3Br with energy error ∆E = 0.6 kcal/mol and
integrated MAE = 0.9 kcal/mol. Corresponding predictions
of equilibrium distance deviate 0.03 Å with vibration
frequency deviate −1.1 cm−1. First order predictions do not
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yield quantitative predictive power for changes involving
lighter elements (columns 2/3, 3/2, 2/4, 2/2, 4/2). The worst
predictions are found for the simultaneous coupling to two
lighter elements (column 2/2) with 76.29 kcal/mol, 0.35 Å,
−568.8 cm−1, and 41.45 kcal/mol deviation in minimum
energy, bond length, harmonic frequency, and integrated
energy (HCN).

While for all first order predictions all mutual deviations
exhibit the same sign, second order corrections introduce
the sign changes in minimum energy and bond length
alluded to before, namely, both third row elements couple
to lighter elements from the second row (column 2/2).
Second order predictions for this column are even worse
than the corresponding first order predictions. Second order
predictions only improve first order predictions in the case
of columns 2/3 and 3/2, alas, not to a degree considered
satisfying.

In summary, for changes corresponding to columns 4/3,
3/4, 4/4, first order based estimates yield chemical accuracy.
For changes corresponding to columns 2/2, first order based
estimates are inaccurate but still better than second order
estimates. For changes corresponding to columns 2/4 and
4/2, first order based estimates are similar to second order
estimates, yet both are inaccurate. For changes corresponding
to columns 2/3 and 3/2, second order based estimates are
inaccurate but still better than first order estimates.

C. Empirical dopt

The above observations have been made for optimized d0.
It should be noted that the choice of d0 in Eq. (10) is crucial
for linearizing the property of interest in alchemical coupling
parameter λ and hence essential for the performance of the
perturbation based predictions. We have found that the error
minimizing dopt has an approximately linear dependence on
the target molecule’s equilibrium bond length deq, no matter
if the reference is the hydrogen containing single bond, or
a single, double, or triple bond involving p-block elements
from second, third, or fourth row. Furthermore, the linear
relationship is preserved, independent of the fact if predictions
are made with first or second order estimates. This relationship
is shown in Fig. 3. The parameters of a linear regression are
specified as well. The outlier in Fig. 3 at target deq ≈ 1.35Å
and dopt ≈ 1.0Å is due to the second order prediction of
SiH3Cl → CH3F, i.e., for the above discussed worst case
scenario (column 2/2) where a strong overcorrection has been
found.

D. Non-vertical iso-electronic changes

We are not aware of any mathematical limitation on how
to construct alchemical coupling paths under iso-electronic
condition. In addition to the investigation of predicted PES
of iso-electronic compounds with the same geometry, as
discussed in Secs. III A and III B, we have also investigated
if one can use only one reference calculation in order to
estimate the entire PES through “non-vertical” interpolations.
In other words, we have also assessed the applicability of
the Taylor expansion of Eq. (9) to non-vertical changes for

varying geometry and/or atom types and numbers between
reference and target molecules.

1. Alchemical stretching of H+2
We now turn to the case of alchemical stretching of

H+2 in order to understand the effect of varying geometry
on alchemical predictions. Since Hartree-Fock is formally
exact for one-electron systems, we have employed an atomic
basis set in an “all-electron” (no PPs) calculation within
the following alignment scheme: One proton is centered at
R1 = (0,0,0), and the other is aligned along the +x-axis. The
reference system corresponds to H+2 at its equilibrium bond
length. Stretching is accomplished not by pulling the atoms
apart but rather by simultaneous annihilation and creation
of nuclear charges at RR

2 = (deq,0,0) and RT
2 = (d,0,0),

respectively. Once the SCF is done for deq, the entire binding
potential can be estimated up to m = 4 order, using Eq. (11),
by scanning through various d’s, i.e., setting d0 = deq.

Results are shown in Fig. 5(a). Due to the variational
principle for linearly coupled alchemical Hamiltonians,12

∆E(1) > ∆E for all interatomic distances. Inclusion of second
order term improves upon the first order prediction, yielding a
reasonable binding potential. However, when including third
and fourth order, the performance deteriorates again with
oscillating behaviour for varying order (Fig. 5(a) and inset of
Fig. 5(b)), as ∆E(3) overshoot and ∆E(4) over-corrects. Overall
∆E(2) gives the best prediction.

To explain the oscillating behaviour in Taylor expansion
order, we investigate in more detail how the system responds
to alchemical perturbation. When λ increases gradually from
0 to 1, the nuclear charge decreases from 1 to 0 at RR

2 ,
while increasing from 0 to 1 at RT

2 . Using the alchemical
derivatives at λ = 0, truncated Taylor series based estimates
are plotted along with the true energy in Fig. 5(b) as a
function of λ at d = 3 Å. ∆E(1), ∆E(2), ∆E(3), and ∆E(4) are
linear, quadratic, third order, and fourth order polynomials,
respectively. Clearly, the truncated Taylor series will fail to
converge to ∆E at λ = 1 due to a sharp change of ∆E at
λ ≈ 0.9. This implies a strong nonlinear electronic response
occurring late in the alchemical coupling regime, resulting in
the oscillating behaviour of the predicted PES in Figs. 5(a)
and 5(b). Note that while the sign of error alternates, the
magnitude of error also increases as one increases the order.
Similar behaviour can be observed for other values of d.

The energy gain starting at λ ≈ 0.9 is due to a rapid
rearrangement of electron density for λ > 0.9. This is
illustrated in Fig. 5(c) where the integrated electron density
Pλ(x) is plotted as a function of both λ and x at d = 3 Å.
Cohen and Mori-Sánchez already pointed out for H+2 the
dramatic changes in electronic structure for infinitesimally
small changes in nuclear charges at infinite distance.65 One
would expect this effect to intensify as more basis functions are
taken into account. This behaviour can be seen in Fig. 5(c).
The locations of the proton at origin R1, the annihilated
proton at RR

2 , and the created proton at RT
2 , are indicated by

red lines.
Further analysis shows that for λ > 0.5, both ground and

first excited state orbitals are localized: The electronic ground
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FIG. 5. mth order truncated Taylor series of H+2 are denoted by ∆E (m) in (a) as a function of d at λ = 1 and in (b) as a function of λ at d = 3 Å. Inset shows
the error of ∆E (m) at λ = 1. (c) Integrated density Pλ(x)=


dydzρλ(r), where r= (x, y, z), is presented as a function of both λ and x at d = 3 Å, where the

integrated density values at nuclear locations are highlighted by red lines at x = 0 Å, x = 1.1 Å, and x = 3 Å, while contour lines are drawn at the bottom. (d)
HOMO/LUMO levels, denoted by εH and εL, respectively, are plotted as a function of λ at d = 3 Å.

state is localized at R1 while the first excited state is localized
at RT

2 . At λ ≈ 0.9, the two eigenvalues become degenerate,
resulting in a rapid change of the ground state density in
order to meet the non-polar symmetry requirement of H+2 ,
by fluctuating between both ground and first excited states.
Note that there is no orbital node at midpoint, indicating
a true ground state for a dissociated H+2 molecule. The
degeneracy occurs for the system with fractional nuclear
charges at λ ≈ 0.9. The dramatic change in density stabilizes
the system in λ, giving rise to the sharp decrease in energy
in Fig. 5(b), as λ increases from 0.8 to 1. Perturbation theory
for degenerate cases might be necessary to properly account
for this case. The degeneracy of the ground state and first
excited state is shown for the eigenvalue crossing in Fig. 5(d):
The eigenvalues of the (highest) occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO)
are plotted as a function of λ. The degeneracy breaks when
ground state and first excited state switch order, which results
in a delocalized ground state. By contrast, note that the
eigenvalues will not cross each other if the stretching is
carried out by moving RR

2 in real space.
Crossing of eigenvalue surfaces limits the radius of

convergence of alchemical Taylor expansion series within
electronic ground-state theories. As a result, the Taylor
expansion for this system is not convergent at λ = 1,
similar to well-known cases in Møller-Plesset theory.66–68

For asymmetric alchemical interpolations, as exemplified for
the following examples in this study, as well as in previous
studies,11,17,20,32 the energy is typically smooth in all λ values,
and derivative based expansions are expected to converge.

2. Non-vertical iso-electronic changes in ten
electron systems

Now we consider alchemical non-vertical changes of
molecules with ten electrons. More specifically, we present
numerical results of non-vertical iso-electronic changes
involving bond stretching in second row systems {CH4, NH3,
H2O, HF}, using all electron DFT. First order estimates have
been obtained according to Eq. (15). The H+2 example has
indicated that non-vertical changes can profit from second
order estimates. Since exact analytical expressions are not
available for systems with so many electrons, and since
these changes do not require changing pseudopotentials,
we have relied for this section on the IPA and CP second
order expressions, rather than on finite difference expressions
(see Sec. II).

3. Predicted potentials

Fig. 6 illustrates the prediction of R-H covalent bond
potentials for CH4 and NH3, predicted from alchemical
derivatives using the electronic structure obtained by a single
SCF. As a reference system we used once the relaxed CH4
system (panels (a) and (c)), and once the relaxed NH3 (panels
(b) and (d)) geometry. For the chemical composition of HR
being the same as HT and only the bond being stretched
(Figs. 6(a) and 6(d)), the first order estimate constitutes an
upper bound, i.e., it always overshoots due to the concave
behaviour of ∆E as a function of λ, also on display in
Fig. 5(b). When also changing the chemical compositions
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FIG. 6. N-H and C-H covalent bond potentials in methane and ammonia. Energy difference ∆E , first order truncated Taylor series ∆E (1), second order truncated
Taylor series calculated by coupled perturbed ∆E (2)

CP, and second order truncated Taylor series calculated by independent particle approximation ∆E (2)
IPA are

plotted as black circles, red squares, blue open triangles, and blue filled triangles, respectively. Coupling Hamiltonians are arranged as follows: (a) CH4→ CH4,
(b) NH3→ CH4, (c) CH4→ NH3, and (d) NH3→ NH3. Insets of (b) and (c) show the zoom-out energy scale for overall landscape.

from CH4 to NH3 or vice versa, the first order estimate does
not even capture the changes in equilibrium bond length
(Figs. 6(b) and 6(c)).
∆E(2)

IPA yields a saddle point in Figs. 6(a) and 6(d), instead
of a minimum at optimized geometry. When the chemical
compositions of HR and HT are different, ∆E(2)

IPA results in
dramatic errors (worse than first order estimates), as shown in
the energy zoom out in the insets of Figs. 6(b) and 6(c). The
poor predictively power of IPA has also recently been pointed
out by Pulay and co-workers.69 By contrast, ∆E(2)

CP yields a
very reasonable binding potential, albeit still far from being
chemically accurate. The superior performance of ∆E(2)

CP, with
respect to ∆E(2)

IPA, indicates that the contributions of Coulomb
and xc energy due to density response are crucial. In other
words, matrix elements Jia, jb and Xia, jb in Eq. (8) should not
be neglected for non-vertical alchemical perturbations.

Different predictive accuracy is found for compressing
bonds d < deq versus stretching bonds d > deq.∆E(2)

CP performs
better in the region 0.5 Å ≤ d ≤ 1.5 Å. Similar behaviour is
also observed for other alchemical paths of compressing
vs stretching bond. Also in this case, the aforementioned
non-commutative asymmetric behavior of the predictions is
observed. Namely, the ∆E(2)

CP based prediction for CH4 → NH3
in Fig. 6(c) is more accurate than for NH3 → CH4 in Fig. 6(b).
Note that abrupt changes in electronic structure, as observed
for H+2 in Sec. III D 1, are not present when coupling
these systems.70,71 Since the accuracy of the second order
estimate is determined by how linearly the electron density
rearranges as a function of λ, one expects a near-constant ∂λρ
for negligible higher order contributions. This is confirmed

through inspection of the integrated density response of the
alchemical path HF → H2O in Fig. 7. ∂λPλ(x) varies less
when λ changes from zero to one for d = 0.5 Å in Fig. 7(a),
when compared with d = 1.5 Å in Fig. 7(b). A near constant
∂λPλ(x) at d = 0.5 Å results in improved predictive accuracy.

4. Integrated errors

Table SIII72 summarizes the results for all 4 × 4
combinations of HR → HT, where mutual predictions of
covalent bond potentials in HT: {CH4, NH3, H2O, HF}
are obtained based on only the single point wavefunctions
obtained for the relaxed geometry of HR: {CH4, NH3,
H2O, HF}, respectively. This coupling matrix in chemical
space is not symmetric due to the non-commutative
properties discussed above. Off-diagonal elements correspond
to coupling paths involving changes in chemical composition
and geometry. Diagonal elements correspond to coupling
paths that involve only changes in geometry, i.e., for the
same stoichiometry. Note that all error measures have been
obtained via cubic spline fits. Therefore, also the predicted
∆E and the location of the energy minimum can be slightly
non-zero even for the diagonal elements. These values should
be considered as noise: for the diagonal elements only the
harmonic frequencies are meaningful.

Results in Table SIII72 confirm the trends observed above
for first and second order. In general, best predictive power is
found when the chemical composition of HR is the same as
HT (diagonal elements). When the chemical composition of
HT differs from HR, the predictive accuracy deteriorates. This
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FIG. 7. Response of integrated slices of electron density (see Fig. 5). ∂λPλ(x) is calculated by finite difference ∂λPλ(x)≈ P∆λ(x)−Pλ=0(x)
∆λ . ∂λPλ(x) of

HF→ H2O at (a) d = 0.5 Å for compression and at (b) d = 1.5 Å for extension are plotted as a function of x and λ. Nuclear positions are highlighted by red
dashed lines, with F→ O at x = 0 Å, H→ void at x = 0.93 Å, two void→ H at x =−0.22 Å and x = d, where void denotes the nuclei with zero charge.

is not surprising and due to the perturbing Coulomb potential
being placed on the heavy atom in order to mutate it, e.g., from
carbon to fluorine. Because of the strong accumulation of
electron density (cusps) at the heavy atom’s site (6 to 9
electrons for carbon to fluorine, respectively), this perturbation
is quite severe. In the case of the diagonal element, by contrast,
only the hydrogen atom is being annihilated and created,
implying that the perturbing potential acts on the hydrogen
atom’s electronic density which is built up by only 1 electron.
This implies a less severe perturbation, and therefore, worse
predictive power can be expected for off-diagonal elements.

The crucial importance of Coulomb and xc energy
contribution to density response for second order alchemical
perturbation is also confirmed for the other cases in
Table SIII.72 These results clearly underscore the observation
that IPA is a (very) poor approximation when it comes to
estimate alchemical changes, yielding even worse predictions
than the first order estimates. Interestingly enough, the first
order estimate is even competitive in comparison to the second
order CP predictions. For example, using CH4 as a reference
compound, the first order prediction deviates on average
by −8.54 kcal/mol in the energy, while ∆E(2)

CP deviates by
−15.99 kcal/mol. However, as the reference compound moves
to the right hand side of the periodic table, the second order
CP based estimate becomes more accurate than the first order
based estimate.

An additional aspect can be confirmed from inspection
of Table SIII:72 the larger the perturbing potential, the worse
the predictive accuracy of derivative based estimates. More
specifically, the larger the integrated norm of the difference
between reference and target potentials in the electronic
Hamiltonian, the worse the predictive power. For example,
using CH4 as a reference compound, the prediction will be
increasingly worse in the order of the respective predictions
for NH3, H2O, and HF. Conversely, using HF as a reference
compound, the prediction will be increasingly worse in the
order of the respective predictions for H2O, NH3, and CH4.
Note that this is true for all first as well as second order
estimates.

IV. CONCLUSIONS

The performance of truncated Taylor series for predicting
alchemical vertical changes in covalent bonding has been

investigated in iso-electronic chemical spaces spanned by the
external potentials of small molecules. For vertical linear
transmutations (same geometry, same number of atoms,
differing nuclear charges), our results suggest that chemical
accuracy is possible when interpolating molecules containing
p-block atoms from the third and fourth row using first order
(Hellmann-Feynman theory) based predictions. Since first
order estimates are analytical, this finding implies that one
can scan potential energy surfaces of very many molecules
with unprecedented accuracy and speed as long as their
stoichiometries are restricted to third and fourth row main
group chemistries. First order based predictions of chemistries
involving second row elements are only correct to a degree
considered qualitative.

Overall, we have found second order estimates to provide
insufficient improvement with respect to first order predictions
(often even worse) to warrant the investment in the additional
overhead incurred. First order estimates are more accurate not
because higher order terms are negligible, but rather due to
the fact that (a) changes in relative energies (bonding) are
already near-linear (by optimizing the reference geometry)
with respect to alchemical coupling (effectively canceling
higher order terms), and (b) inflection points can occur which
lead to worse predictions for second order estimates. For
the interpolation of the pseudopotentials used in this study,
inflection points near λ = 0 are always observed when a
lighter main group element is coupled to a heavier one.
The absence of inflection points near λ = 1 improves the
predictive power of the second order correction when coupling
a heavier element to a lighter one. As such, the asymmetry
of ∆E(d,d0) with respect to λ = 0.5 results in asymmetric
predictive performance.

The choice of reference geometry has a dramatic impact
on the predictive power of the alchemical estimates. For
covalent bond potentials, a linear relationship has been
identified (dopt ≈ 0.76dT

eq + 0.97 Å) that can be used to predict
optimal d0 requiring only rough estimates of the equilibrium
bond-length in the target molecule (which can be obtained with
small computational overhead, using universal force-fields or
semi-empirical quantum chemistry methods).

We have found oscillating behaviour in the predictions of
truncated Taylor series with increasing order when considering
non-vertical alchemical stretching of H+2 . The crossing of
eigenvalue surfaces is due to the electron density’s necessity
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to be symmetric at λ = 0 and λ = 1. This leads to a diverging
Taylor series, but the second order correction can still provide
fair predictions. The behavior of first and second order
truncated alchemical Taylor series expansions in non-vertical
transmutations in chemical space has also been analyzed
for molecules with ten electrons. Numerical evidence of the
superior performance of ∆E(2)

CP over ∆E(2)
IPA suggests that the

response of Coulomb and xc energy is crucial to alchemical
perturbation.

In summary, our findings indicate that a careful choice of
alchemical interpolation paths enables alchemical derivatives
to achieve predictive power with chemical accuracy for
covalent bond potentials. Future work will deal with angles
and torsions in larger molecules, as well as with solid metals
and ionic crystals.
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