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We present a rigorous description of chemical space within a molecular grand-canonical ensemble
multi-component density functional theory framework. A total energy density functional for
chemical compounds in contact with an electron and a proton bath is introduced using Lagrange
multipliers which correspond to the energetic response to changes of the elementary particle
densities. From a generalized Gibbs-Duhem equation analog, reactivity indices such as the nuclear
hardness and a molecular Fukui function, which couples the grand-canonical electronic and nuclear
degrees of freedom, are obtained. Maxwell relations between composition particles, ionic
displacements, and the external potential are discussed. Numerical results for the molecular Fukui
function are presented as well as finite temperature estimates for the oxidation of ammonia. © 2006
American Institute of Physics. �DOI: 10.1063/1.2338537�

I. INTRODUCTION

Designing molecules with optimized properties, an as-
pect of “reverse engineering” also known as rational com-
pound design,1–5 is best understood via the concept of chemi-
cal space, a notion that is receiving increased attention.6,7 In
this paper, we aim to establish the underpinnings for linking
the idea of chemical space to a molecular grand-canonical
ensemble �GCE� theory within the electronic density func-
tional theory �DFT� framework. The potential utility and
power of a molecular GCE theory can be exemplified when
considering the problem of maximizing the relative binding
free energy of a drug to a target receptor as the chemical
composition of a functional group is varied.

While chemical space can be defined in various ways,
the working definition that will be employed here is the dis-
crete molecular space spanned by all stable chemical com-
pounds. This seemingly simple definition contains numerous
subtleties, however, that require further elaboration. We thus
begin with a fundamental description of matter and build up
the concept of chemical space upon which the present theory
and applications will be based. This discussion will rely on
the concept of a � path, wherein a switching parameter, �,
allows a system to be smoothly transformed from one dis-
crete thermodynamic chemical state into another via an arbi-
trary, i.e., not necessarily realistic, path.

This paper is organized as follows: First, in Sec. II, an
overview is given which outlines the most important under-
lying concepts, assumptions, results, and conclusions of this
study. Then, in Sec. III, we present the theoretical framework

for a molecular grand-canonical ensemble electronic DFT. In
Sec. IV, two numerical applications are discussed. Finally,
conclusions are given in Sec. V.

II. OVERVIEW

A. Chemical space

Ignoring the substructure of nucleons, the most funda-
mental description of matter in terms of elementary particles
requires specification of the number of electrons �Ne�, pro-
tons �Np�, and neutrons �Nn� in the system and, therefore, a
“point” in the chemical space at this level is simply any
stable ordered triple �Ne ,Np ,Nn�. A full quantum field-
theoretical treatment of all of the electromagnetic and
nuclear interactions would, at least in principle, describe the
processes by which one stable compound formed from this
combination of particles transforms into another stable com-
pound. For example, the choice Ne=Np=Nn=10 could form
Ne or D2O. However, a process by which two protons and
two neutrons escape from the Ne nucleus and capture two
electrons to form the deuterium and the oxygen atoms never
occurs under normal conditions and, in any case, is irrelevant
for practical chemical applications. Nevertheless, this type of
treatment would render essentially moot the notion of its
associated molecular chemical space since all compounds for
a given �Ne ,Np ,Nn� could be described through an ergodic
sampling of the real pathways provided within such a funda-
mental description. Crudely speaking, a maximal number of
“physical” �canonical� degrees of freedom renders the num-
ber of “chemical” �grand-canonical� degrees of freedom
minimal.

For quantum-chemical applications, however, a more
a�Electronic mail: ovt203@nyu.edu. URL: http://homepages.nyu.edu/
˜ovt203/
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useful description entails “bundling” the protons and neu-
trons together into the nuclei of the known chemical ele-
ments, neglecting the underlying nuclear physics, and using
a standard nonrelativistic electronic Hamiltonian. At this
level, the only role played by the neutrons is to allow differ-
ent isotopes to be included in the treatment. Although poten-
tially important in some applications, for simplicity we shall
restrict ourselves to the “standard” �nonisotopic� chemical
elements, thereby allowing us to ignore the Nn degree of
freedom in chemical space and treat only Np, which is related
to the sum over all nuclear core charges, and Ne the corre-
sponding number of electrons. While a full sampling of such
a chemical space requires full variation in Np and Ne, usually
chemical stability implies that Ne�Np. At this quantum-
chemical level of treatment, an additional degree of freedom
is needed to specify the bundling, i.e., the number of stable
nuclei that can be formed for each choice of Np protons. In a
system with Ne=Np=10, for example, the systems �He�5,
CH4, NH3, H2O, HF, and Ne all represent distinct points in
this chemical space. The only way to sample these different
compounds is through an unrealistic path through the chemi-
cal space, e.g., using a �-switching scheme. Since our inter-
est will exclusively be in the calculation of thermodynamic
state functions such as the free energy, arbitrary � paths are
perfectly valid and highly useful. From this description, it
becomes clear that restricting the number of physical degrees
of freedom, i.e., by restricting the protons to be bundled into
the known chemical elements, the number of degrees of free-
dom in the chemical space necessarily increases. Notice,
however, that the description at this level still assumes that
for each choice of the atomic identities, different chemical
bonding arrangements and different conformers can be
sampled on a physical potential energy surface rather than
through � paths, thereby implying that the explicit specifica-
tion of Ne and Np requires an electronic structure method
treatment of the system, wherein such an assumption is valid.

However, as the preceding discussion makes clear, fur-
ther physical degrees of freedom can be “interchanged” with
chemical-space degrees of freedom. Thus, for example, when
an empirical force field is employed, the chemical bonding
pattern is usually assumed a priori and is held static, which
means that the Ne degree of freedom is rendered moot and
that the chemical space acquires a new degree of freedom,
namely, the number of chemical bonding patterns possible
for a given set of atoms. As already noted, these arrange-
ments can then be sampled via � paths in the chemical space.
Interestingly, even at an ab initio level, it can prove compu-
tationally advantageous to include the choice to visit differ-
ent chemical bonding arrangements either via enhanced sam-
pling of a set of realistic reaction coordinates or via a
�-switching path in the chemical space—both involving the
corresponding electronic and ionic rearrangements.

Finally, one can consider the extreme limit correspond-
ing to a molecule at very low or zero temperature, in which
different conformers are not sampled by overcoming the re-
alistic barriers on the potential energy surface but rather by
including them in the chemical space and accessing them
only via unrealistic � paths. This would be the limit in which
the number of real degrees of freedom is minimal, only cor-

responding to the vibrational zero-point modes, while the
number of chemical-space degrees of freedom becomes ex-
ponentially large. As an example, a simple alkane chain
CnH2n+2, with three conformational minima per dihedral
angle, would span a chemical space which includes 3n−3 rota-
mers.

From this discussion, one can conclude that for a
quantum-chemical treatment of chemical space, the two fun-
damental parameters Ne and Np are always needed, no matter
how many additional degrees of freedom the chemical space
is allowed to possess.

B. Molecular grand-canonical ensemble theory

A theoretical study of chemical space must be intimately
linked to a molecular GCE theory since only the latter offers
the physical framework to rigorously relate molecular fluc-
tuations in phase space to compositional fluctuations in par-
ticle space.

Generation of a conventional GCE distribution using
classical statistical mechanical approaches such as grand-
canonical Monte Carlo8 is straightforward and textbook
knowledge. In addition, arbitrary � paths connecting differ-
ent molecules or functional groups via chemical or “alchemi-
cal” transformations can be used for the purpose of comput-
ing relative free energies within classical Monte Carlo or
molecular dynamics �MD� calculations via thermodynamic
integration or other �-sampling techniques.9–16

As noted above, a general description of chemical space
involving the breaking and forming of chemical bonds is
possible within a first-principles or ab initio theory. An elec-
tronic GCE theory was established decades ago within the
development of Kohn-Sham �KS� density functional theory
�DFT�.17–19 Parr and Yang20,21 and Geerlings et al.22 pro-
vided a chemical interpretation of this formalism, leading to
the development of conceptual DFT. Hartree-Fock theory
was only recently extended to treat electronically open sys-
tems variationally.23 Despite the grand-canonical character of
electronic DFT, current applications are mostly carried out
within the canonical ensemble.24 Concerning fractional num-
bers of electrons, a controversy emerged after the seminal
papers of Janak,25 and of Levy and co-workers26,27 �see Refs.
28–36�. The differentiability of electron density functionals
with respect to the number of electrons has also been dis-
cussed for vanishing derivative discontinuities when the mol-
ecule is coupled to a reservoir or for very high
temperatures.37,38 Using mixed electronic states, however,
Sprik and co-workers have already demonstrated the appli-
cability of DFT for electronic grand-canonical processes, i.e.,
redox processes, in the condensed phase and at finite
temperature.39,40 Here, we seek to avoid this aspect of DFT
altogether by referring to a quote from Kohn, Becke, and
Parr: “For moving from one Ne to another no error is intro-
duced if we arrange to connect all the correct integral Ne

functionals…. In this way, we can imagine finite-difference
formulas for all derivatives and functional derivatives that
enter the formal theory in which Ne is treated as a continuous
variable.”34

For an entirely general molecular GCE, electrons and
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nuclei must be permitted to fluctuate so that one compound
can change into another. Over the last few decades, several
proposals for a multicomponent �MC� non-Born-
Oppenheimer DFT, wherein electrons and nuclei are treated
on the same footing, have been presented.41–44 In particular,
Capitani, Nalewajski, and Parr41 �CNP� proved a multicom-
ponent version of the Hohenberg-Kohn theorem,17 thereby
establishing the existence of an energy density functional of
electronic and nuclear densities whose minimum is the
ground state equilibrium geometry of the total Hamiltonian
of a system of Ne electrons and N� nuclei of type �. This
theory was later revisited by Kreibich and Gross43 who noted
that the densities used by CNP as the basis of their MC-DFT
must necessarily be constant for all isolated atoms, mol-
ecules, and solids due to the translational invariance of the
Hamiltonian; they presented a MC-DFT based on densities
describing the internal properties of a system. However,
while these studies strive to incorporate nuclear quantum ef-
fects into the electronic DFT framework, treating electrons
and nuclei on the same footing, the molecular GCE theory
presented in this study is rather concerned with a grand-
canonical extension of the usual Born-Oppenheimer
scheme—as employed within conventional ab initio molecu-
lar dynamics or Monte Carlo schemes. In other words, we
seek a theory that, within the accuracy of KS-DFT, describes
the simultaneous variation of the electron and proton distri-
butions in a molecule. We are not aware of any formulation
of such a quantum-chemical molecular GCE theory in terms
of continuous electron and proton densities.

Within the Born-Oppenheimer approximation molecules
correspond to superimposed electron and nuclear �or proton�
distributions, as illustrated for acetylene in Fig. 1. While Ne

and Np are independent grand-canonical variables, their ca-
nonical distributions in real space are complementary by vir-
tue of the Hohenberg-Kohn theorems.17 CNP formulated an
auxiliary variational functional � using electronic- and
nuclear-type dependent global chemical potentials as
Lagrange multipliers for the electronic and nuclear density
normalization conditions. The need to consider nuclear baths
for each type of nucleus, i.e., for each atomic number, can be
circumvented by considering a single proton distribution
which at the position of a given nucleus has to integrate to
the corresponding atomic number. We show that such a
theory emerges if the Lagrange multiplier corresponding to a
nuclear chemical potential, �n�r�, is treated as a local quan-
tity, used to fix the number of protons at each point in space.

In Ref. 4, such a local nuclear chemical potential was pro-
posed in an ad hoc fashion and shown to correspond to the
electrostatic potential which measures, by construction, the
response of a system to a positive test charge. Indeed, for
inhomogeneous systems such as molecules, the notion of a
local nuclear chemical potential is by no means counterintui-
tive. Unless the most extreme conditions prevail, an inhomo-
geneous system will remain inhomogeneous as the system
samples its potential energy surface. Thus, for example, the
work needed to insert a water molecule in the core of a
globular protein will be very different from that needed to
insert one somewhere in the surrounding solvent. In addition,
within the context of classical density functional theory, fre-
quently used for polymer models, local Lagrange multipliers
corresponding to a local �or segmental� chemical potential
are not uncommon.45 The nuclear chemical potential at the
position RI of the Ith nucleus, �n�RI�, measures the response
of the system to a transmutation with respect to an alchemi-
cal variation of the atomic number of that atom. �n�RI� has
therefore been termed the alchemical potential of atom I.

C. Overview of key results and interpretations of the
theory

Before discussing the theory at a detailed level, we
present a brief summary of the basic results of the theory. A
Gibbs-Duhem analog is derived along the lines of CNP but
using a continuous protonic Lagrange multiplier. As a result,
we obtain a set of thermodynamic relations, in particular, the
nuclear hardness, �n�r ,r��, and a new molecular Fukui func-
tion, fm�r�, that couples electronic and nuclear degrees of
freedom. The former, in complete analogy to the electronic
hardness, is the second order derivative of the energy func-
tional with respect to the nuclear density, i.e.,

�2E�Ne;�,Z�
�Z�r��Z�r��

=
��n�r�
�Z�r��

� �n�r,r�� , �1�

implying that the nuclear hardness is a kernel. Z�r� and ��r�
are the proton and electron densities, respectively.
E�Ne ;� ,Z� is the total molecular potential energy—a func-
tional of � and Z, and a simple function of Ne.

The nuclear hardness can be expected to be of use for
the study of molecular acid-base relations, or in the context
of compound design, for the tuning of pKa’s. In that sense, it
might close the protonic conceptual gap with respect to the
finite difference �deprotonated-protonated� reactivity studies
on the external potential by Ayers and Parr.46

The molecular Fukui function is the mixed second order
derivative of the energy with respect to proton density and
electron number, Ne,

�2E�Ne;�,Z�
�Ne�Z�r�

=
��n�r�

�Ne
=

��e

�Z�r�
� fm�r� . �2�

This index can be interpreted as the response of the elec-
tronic chemical potential, �e, which equates the negative of
electronegativity20,47 and, via Janak’s theorem,25 also the ei-
genvalue of the highest occupied molecular orbital �HOMO�,
with respect to variations of the nuclear charge distribution.
By means of the Maxwell relation, however, it can likewise

FIG. 1. Qualitative sketch of the nuclear �or proton� and electron real space
distributions along the molecular axis of acetylene �C2H2�.
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be seen as the response of the electrostatic potential due to
variation of the number of electrons in the system. Hence,
fm�r� constitutes an index for changing a compound by “di-
aling in” a certain HOMO eigenvalue/electronegativity or
electrostatic potential. For the ground state, it will be shown
that the electronic hardness, �e, is connected to the molecular
Fukui functional and to the nuclear hardness via

�2E�Ne;�,Z�
�Ne

2 = �e =
1

V
� drfm�r�

=
1

V2 � drdr��n�r,r��

=
1

V2 � drdr�
�2E�Ne;�,Z�
�Z�r��Z�r��

, �3�

where V is the volume.
After the derivation of the framework along the lines of

CNP and the introduction of the molecular Fukui function
and the nuclear hardness, we will illustrate grand-canonical
applications for the case of the small, yet nontrivial many-
particle system, ammonia �NH3�, using standard KS-DFT
calculations: First, the two expressions for the molecular
Fukui function, which are equal according to a Maxwell re-
lation, are evaluated numerically for the geometry-optimized
minimal total potential energy structure of ammonia. We find
that computing fm�r� as the derivative of the electrostatic
potential leads to practically negligible deviation from its
expression as the response of the HOMO eigenvalue due to
perturbing the nuclear charge distribution. This agreement
numerically supports the validity of Janak’s theorem. Sec-
ond, a finite temperature study is presented, illustrating how
the free energy difference between neutral and oxidized am-
monia at 300 K in vacuo can be estimated. We find that
integrating over the continuous particle number path corre-
sponding to the reversible removal of an electron leads to a
value which deviates only by roughly 1 kcal/mol from what
can be predicted from the harmonic vibrational spectra of
NH3 and NH3

+.

III. THEORY

A. From densities to Lagrange multipliers

CNP introduced in Ref. 11 a nonadiabatic variational
energy functional for electronic, ��r�, and nuclear, �n��r�	
�for every atom-type ��, one particle densities and demon-
strated that the external potential due to the nuclei of an
optimized geometry corresponds to the grand-canonical en-
semble equilibrium. Here, in contrast, we formulate a theory
based on the single particle electron and proton densities,
��r� and Z�r�, which, despite the translational invariance of
the electronic and ionic ground-state wave function
���R	 , �r	�,43 can be formally defined as

Z�R� = Np� dNp−1RdNer
���R		,�ri	�
2

=� dNpRdNer
���R		,�ri	�
2�
	

��R − R	� �4�

and

��r� = Ne� dNpRdNe−1r
���R		,�ri	�
2

=� dNpRdNer
���R		,�ri	�
2�
i

��r − ri� , �5�

where 	 and i enumerate all Np protons and Ne electrons of
the system to which the densities integrate, �drZ�r�=Np, and
�dr��r�=Ne. For simplicity, we will only consider the ionic
zero-temperature limit in the present formulation. Assuming
the standard molecular Hamiltonian,

Ĥtotal = Ĥee + ĤeZ + ĤZZ, �6�

where Ĥee and ĤZZ are the Hamiltonians of the isolated elec-

tronic and nuclear subsystems and ĤeZ is the interaction be-
tween them, the total KS-energy functional, E�Ne ;� ,Z�, in
terms of electron and proton densities is given by

E�Ne;�,Z� = Fee��� + EeZ��,Z� + EZZ�Z�

= Fee��� −� dr��r�v�r� + 1
2 � drZ�r�v̄�r� .

�7�

Here, Fee is the universal Hohenberg-Kohn functional, ex-
pressible within KS-DFT in terms of the noninteracting ki-
netic �Ts��
i	�, where 
i�r� is a KS orbital�, Hartree �EH� and
exchange-correlation �Exc� energies,

Fee��� = Tee��� + Vee��� �8�

=Ts��
i	� + EH��� + Exc��� . �9�

When considering a somewhat artificial “quantum-chemical”
proton density, instead of densities of nuclear types, one has
to take into account that protons in the same nucleus would
repel each other. In order to avoid this artifact, the corre-
sponding singularities in the nuclear Coulomb repulsion need
to be excluded. It is straightforward to circumvent this prob-
lem using a formally modified external potential of the form

v̄�r� =� dr�
Z�r��erf��
r − r�
�


r − r�

, �10�

for the nuclear Coulomb repulsion term. Here, the parameter
� can be chosen large enough that only a vanishingly small
neighborhood around 
r−r�
�0 is excluded.

In the spirit of CNP, one could introduce an auxiliary
variational functional,
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��Ne;�,Z� = E�Ne;�,Z� − �e� dr��r� − Ne�
− �g� drZ�r� − Np� , �11�

where �e and �g are the global Lagrange multipliers associ-
ated with the normalization constraints on the electronic and
protonic charge densities, respectively. CNP also proved a
version of the Hohenberg-Kohn theorem for such a DFT. In
the thermodynamic limit, sampling these properties should
yield averaged estimates for the global work required for a
molecule to accept another proton or electron, respectively.

Of course, at finite temperature, and within the Born-
Oppenheimer approximation, the nuclear density is given by
a quantum canonical ensemble average rather than by Eq.
�4�,

Z�r� =
Tr�e−	HN�I

NI��r − RI��

Tr�e−	HN�
, �12�

where NI is the number of protons in atom I, HN is the
nuclear Hamiltonian, and 	=1/kBT. In the classical limit, a
limit commonly used within standard ab initio molecular dy-
namics, this becomes a classical configurational average de-
noted

Z�r� = ��
I

NI��r − RI�� , �13�

and, as the temperature goes to 0, the nuclear density be-
comes simply Z�r�=�INI��r−RI�, as expected.

Thus, at zero temperature, and when nuclei are treated at
the classical level, the use of a local multiplier, �n�r�, is
necessary. Assuming a classical form for Z�r�, we introduce
an alternative auxiliary variational functional,

��Ne;�,Z� = E�Ne;�,Z� − �e� dr��r� − Ne�
−� dr�n�r�Z�r� − �

I

NI��r − RI�� . �14�

Here, the nuclear positions RI become variational parameters
and minimization of � with respect to Z�r� is tantamount to
a geometry optimization—when the nuclear charges are con-
strained.

From Eq. �14�, the Euler equations determining the exact
ground-state densities Z�r� and ��r� which make � station-
ary, yield the conditions

�e = ��E�Ne;�,Z�
���r�

�
Z�r�

= � �E�Ne;�,Z�
�Ne

�
Z�r�

�15�

and

�n�r� = ��E�Ne;�,Z�
�Z�r�

�
Ne

. �16�

The functional derivative of the zero-temperature electronic
chemical potential �e is a constant for a given com-
pound20—if the electron density is forced to be the ground
state density—and can be thought of as the negative value of

the electronegativity of the system.47 Assuming that the
variation in Ne concerns solely the highest occupied �HO�
KS orbital with eigenvalue �HO, Janak’s theorem,25

�E

�f i
= �i, �17�

f i being the occupation number of the KS-state i, implies that
�e=�HO. Note that in a GCE context, where Ne varies by
virtue of the fact that the electronic occupation numbers can
be summed without restriction, the validity of Janak’s theo-
rem is manifestly clear. Janak’s theorem is hence in agree-
ment with the fact that �e0 for all bound electrons. For
isolated systems, the exact exchange-correlation functional
exhibits derivative discontinuities at integer electron
numbers26 which has led to the consideration of “left” and
“right-sided” derivatives of the E vs Ne curve and the use of
“mean” values �averages of ionization potential and electron
affinity� to approximate the derivative.20 One should keep in
mind that for an isolated molecule, the convex isoprotonic
grand-canonical potential energy function consists of lines
�for a rigid molecule� with discontinuous changes of slope at
integer Ne, i.e., whenever an empty KS level becomes occu-
pied. It should be noted, however, that while the generalized
gradient approximation �GGA� �see Sec. IV A�, which has
been used for the applications considered herein, yields a
continuous �e,

4 the self-interaction error can be expected to
increase for noninteger occupation numbers.48

According to Eqs. �7� and �15�, the local nuclear chemi-
cal potential is

�n�r� =� dr�
�Fee���
���r��

���r��
�Z�r�

−� dr� ��r��

r − r�


+ v�r��
���r��
�Z�r� � + v̄�r� . �18�

However, due to the Hellmann-Feynman theorem this
derivative does not depend on variations in the elec-
tronic structure,49 and can hence be identified with the

�modified� electrostatic potential, V̄ESP�r�,

�n�r� =� dr�
Z�r��erf��
r − r�
� − ��r��


r − r�

= V̄ESP�r� . �19�

It is well known that the derivative of the energy with respect
to the atomic number corresponds to the electrostatic poten-
tial at the position of the atom,50–52 a fact that has been used
for alternative formulations of atomic and molecular
energies.49,53 Furthermore, the fundamental role of the elec-
trostatic potential has been elucidated by Murray and
co-workers,51,52 who emphasized its suitability for indexing
such important properties as atomic and covalent radii,
charges, and even electronegativity �which is the negative of
�e� as the sum over all electrostatic potentials at the posi-
tions of the atoms in a molecule. In Eq. �19�, we have there-
fore identified this important property as a grand-canonical
quantity that is defined everywhere in space and that can be
interpreted as the nuclear chemical potential. We call �n�r
=RI� the alchemical potential of nucleus I since it measures
the tendency of a system to “transmute” the nucleus at R.
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The usefulness of this quantity for the purposes of compound
design has already been illustrated within a quantum-
mechanical/molecular mechanical �QM/MM� drug-design
application.4 The relationship between the local nuclear
chemical potential and the global protonic chemical poten-
tial, �g in Eq. �11�, is elucidated in the Appendix.

Recall that when expressing the electronic chemical po-
tential as the eigenvalue of the highest KS orbital, the ap-
proximation due to the use of a chosen exchange-correlation
functional is retained. In contrast, the identification of the
nuclear chemical potential as the modified electrostatic po-
tential is exact and not limited to KS-DFT. However, the
accuracy of the nuclear chemical potential corresponds to the
accuracy of the electron density obtained from the given
exchange-correlation functional.

B. Gibbs-Duhem

Following CNP, we now derive the Gibbs-Duhem equa-
tion for the nuclei via an auxiliary Legendre transformed
energy functional Q��e ,�n�, wherein the extensive variables
Ne and Z�r� are replaced by their intensive conjugates �e and
�n�r�,

Q��e,�n� = E�Ne;�,Z� −� dr��e��r� + �n�r�Z�r�� ,

�20�

where we have used Eqs. �15� and �16�. The total differential
is then

dQ��e,�n� = dE�Ne;�,Z� − Ned�e − �edNe

−� dr�Z�r���n�r� + �n�r��Z�r�� , �21�

where the differential of the grand-canonical total potential
energy hypersurface dE= 
�e
ZdNe+�dr�n
�r�
Ne

�Z�r�. Re-
placement of dE in Eq. �21� leads to

dQ��e,�n� = − Ned�e −� drZ�r���n�r� , �22�

the Gibbs-Duhem equation analog of CNP but for a continu-
ous nuclear charge distribution. Since dQ is an exact differ-
ential, a Maxwell relation for the extensive variables and
their intensive conjugates follows

�

�Z�r�
�E

�Ne
=

��e

�Z�r�
=

��n�r�
�Ne

= fm�r� . �23�

The function fm�r� measures hence the response of the elec-
tronic �nuclear� chemical potential with respect to variations
in the nuclear charge density �electron number�. As such,
fm�r� is a new type of Fukui function which we call the
molecular Fukui function, fm�r�, as it considers both charged
particle species, electrons and protons, which build up mol-
ecules �or, more generally, a complete condensed-phase sys-
tem�.

Now let us consider the grand-canonical total differential
of the chemical potentials, �e�Ne ;� ,Z� and �n�Ne ;� ,Z ,r�,

d�e = �edNe +� drfm�r��Z�r� , �24�

��n�r� = fm�r�dNe +� dr��n�r,r���Z�r�� , �25�

where �e=��e /�Ne is the electronic hardness �which is in-
versely proportional to the global softness, which, in turn, is
a polarizability index within conceptual DFT �Ref. 22��, and
where we call the kernel �n�r ,r��=�2E / ��Z�r��Z�r���
=��n�r� /�Z�r�� the nuclear hardness.

Introducing Eqs. �24� and �25� into the Gibbs-Duhem
expression, Eq. �22�, and rearranging, we find

dQ��e,�n� = − �eNedNe −� drfm�r��Ne�Z�r� + Z�r�dNe�

−� drdr��n�r,r��Z�r��Z�r�� , �26�

which is an expansion of the differential in terms of second
order energy derivatives. From Eq. �26�, it becomes clear
how fm�r� couples the nuclear with the electronic grand-
canonical degrees of freedom. Regrouping with respect to
particle variations gives

dQ��e,�n� = − �eNe +� drfm�r�Z�r��dNe

−� dr fm�r�Ne +� dr��n�r,r��Z�r����Z�r� ,

�27�

which can be used for deriving further Maxwell relations
between the third order derivatives of the energy, i.e., deriva-
tives of �e, �n�r ,r��, and fm�r� with respect to Ne and Z�r�.

At equilibrium, the chemical potentials must be station-
ary, i.e., ��n=d�e=0. From Eqs. �24� and �25�, it follows
then that

�e = −� drfm�r�
�Z�r�
�Ne

�28�

and that

fm�r� = −� dr��n�r,r��
�Z�r��
�Ne

, �29�

which, when incorporated in the Gibbs-Duhem analog, Eq.
�27�, yields the stationarity of Q; and—if dNe /V=�Z�r� �V is
the volume�—allows the electronic hardness to be related
with fm�r� and the nuclear hardness,

�e = −
1

V
� drfm�r� =

1

V2 � drdr��n�r,r�� . �30�

C. Second order derivatives

Using finite difference approximations to the derivatives,
fm�r� is accessible either as the variation in the electrostatic
potential, VESP, due to an infinitesimal change in Ne; or al-
ternatively, from Janak’s theorem,25 fm�r� is the change in
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�HO due to an infinitesimal change in the nuclear charge
distribution, Z�r��Z�r�+�Z�r�. Consequently, fm�r�0,
implying that grand-canonical variations are consistent with
the extensive nature of the total potential energy functional.
Hence, fm�r� measures how a compound’s chemical potential
varies upon change of its composition.

For atomic transmutations, the alchemical hardness
�n�RI ,RI� must be 0 in order to ensure the concavity of the
isoelectronic nuclear grand-canonical potential energy
surface.54,55 Clearly, the nuclear hardness kernel is closely
related to the linear response kernel, �2E / ��v�r��v�r���
=���r� /�v�r��, a well known reactivity indicator.22,56

Apart from the molecular Fukui function, the electronic
and nuclear Fukui functions, ���r� /�Ne=��e /�v�r�= fe�r�
and ��e /�RI=�FI /�Ne= fn�RI�, respectively, represent two
well studied quantities within conceptual DFT,20–22 where FI

is the ionic force of atom I. The electronic Fukui function,
fe�r�, can be related to fm�r� via

fm�r� =
��e

�Z�r�
=� dr�

��e

�v�r��
�v�r��
�Z�r�

�31�

=� dr�
fe�r��


r − r�

. �32�

Exploiting Maxwell-type relations, and for the sake of
completeness, all combinations of second order energy de-
rivatives involving the variables ��r�, Z�r�, RI, and v�r� can
be written. In addition to fe�r�, fn�r�, and fm�r�, three more
combinations emerge,

�2E

�v�r��Z�r��
=

��n�r��
�v�r�

=
���r�
�Z�r��

, �33�

�2E

�RI�Z�r��
=

��n�r��
�RI

=
�FI

�Z�r��
, �34�

�2E

�RI�v�r�
=

�FI

�v�r�
=

���r�
�RI

. �35�

The identity Eq. �33� is the perturbed electron density, i.e.,
the kernel of the electronic response to variations of the
nuclear charge and is identified with the functional derivative
of the nuclear chemical potential with respect to the external
potential. The middle identity in Eq. �34� shows that the
change in the ionic forces due to variation of the nuclear
charge density is equal to the change in the nuclear chemical
potential due to ionic displacement. The last relation, Eq.
�35�, indicates that the Fukui function analog, ���r� /�R,57 is
equal to the change in ionic forces due to variation of the
external potential. A related quantity, �
i�r� /�R, has recently
been proven useful as an orbital bias for scanning chemical
reaction pathways within ab initio molecular dynamics
�AIMD�.58,59 Second order energy derivatives with respect to
the same variables are well established. �2E /�RI

2 is simply
the curvature of the potential energy surface, and �2E /�v2 is
the aforementioned linear response kernel.

IV. APPLICATIONS

In order to illustrate the utility of the quantities derived
from the theory, electronic properties of the simple but non-
trivial many-particle system NH3 have been considered. Spe-
cifically, using finite difference, the two expressions for the
molecular Fukui function have been evaluated as well as the
relative free energy of oxidation of NH3 at 300 K.

A. Technical details

All DFT calculations have been carried out with the
BLYP �Refs. 60–62� functional and the plane-wave code
CPMD �Ref. 63� in a box of �8 Å�3. Noninteger occupation
numbers have been imposed via noninteger molecular
charges—a standard feature in CPMD. Fractional protons
have been included in the calculations via scaled hydrogen
pseudopotentials. The Fukui function results have been ob-
tained using the hard and analytical pseudopotentials from
Ref. 64 with a large plane-wave basis-set energy cutoff of
100 Ry. For the relative free energy study numerical
pseudopotentials,65 a cutoff of 70 Ry and a massive ionic
Nosé-Hoover chain thermostatting scheme, in which each
ionic degree of freedom is coupled to a separate thermostat
chain,66–69 have been used. The latter maintains the nuclei at
a temperature of T=300 K. Here, we assume that at 300 K
the electronic thermal fluctuations are negligible and that the
standard ab initio MD protocol can be applied. Heavy hydro-
gen atoms with mass of 7 amu have been employed allowing
for relatively large time steps of 25 a.u. ��0.6 fs�. For every
molecular configuration of the trajectories, the electronic
KS-eigenvalue spectrum has been evaluated. For this study,
and without any loss of consistency, the effect of a local spin
density has always been neglected in order to enhance com-
putational efficiency.

B. Molecular Fukui function

First, the variation of the nuclear chemical potential due
to a change of 1% in electron number has been approximated
by the finite difference in the electrostatic potential,

fm�r� =
��n�r�

�Ne

�
VESP�Ne + dNe,r� − VESP�Ne,r�

dNe
= fm

VESP�r� . �36�

The result is depicted as a contour plot in Fig. 2 and predicts
a maximal decrease of the HOMO eigenvalue in the vicinity
of the nitrogen atom, especially at the location of the free
electron pair, and becomes weaker as the distance increases.

Secondly, as displayed in the structure sketch in Fig. 2,
1% of a proton has been placed above the nitrogen along the
C3v-symmetry axis at distances from 0.4 to 2.4 Å in steps of
0.1 Å, keeping the relative positions of all other atoms fixed.
For all of these setups and for the unperturbed ammonia
Kohn-Sham eigenvalues have been computed and fm�r� has
likewise been determined by finite difference,
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fm�r� =
��HO�Z�

�Z�r�
�

�HO�Z + dZ�r�� − �HO�Z�
dZ�r�

= fm
� �r� .

�37�

The resulting values of fm�r� are plotted in Fig. 3. The ob-
tained unperturbed eigenvalues of ammonia are in reasonable
agreement with BLYP literature values using localized basis
sets.70

While for the calculation of fm
� �r� a Kohn-Sham eigen-

value calculation is necessary for every value of r, fm
VESP�r�

can be obtained from just two wave function optimizations
yielding the necessary electrostatic potentials in Eq. �36�.

As expected, Fig. 3 shows that fm�r� is bound from be-
low zero and that it increases in magnitude the more one
approaches the high electron density region surrounding the
nitrogen atom. Note that the behavior for the smallest dis-
tances is unrealistic, as these correspond to the region of the
nitrogen pseudopotential. Furthermore, Fig. 3 can be seen as
a numerical validation of Janak’s theorem.

Given the importance of frontier orbital levels for chemi-
cal reactivity as well as for optical properties and charge
transfer71 and Fermi-level properties, this result is encourag-
ing since it indicates how to easily access fm�r� via Eq. �36�
with KS-DFT accuracy.

C. Oxidation of ammonia

In order to further demonstrate the utility of the molecu-
lar GCE-DFT theory presented here, an AIMD calculation of

the free energy profile along the microscopic variation of
particle numbers has been performed using Born-
Oppenheimer MD. In principle, using successive AIMD cal-
culations with specific combinations of the electronic and
nuclear chemical potentials, relative free energies between
any chemical compounds A and B, representing different
points in chemical space, are accessible via thermodynamic
integration,9,10

�F = �
B

A

d�� �E���
��

�
�

�38�

=�
Ne

A

Ne
B

dNe� �E�Ne;�,Z�
�Ne

�
Ne

+� dr�
ZA�r�

ZB�r�
dZ�r�� �E�Ne;�,Z�

�Z�r� �
Z�r�

, �39�

which for practical purposes becomes the sampled electronic
chemical potential and a linear combination of sampled al-
chemical potentials,

�F = �
Ne

A

Ne
B

dNe��e�Ne
+ �

I
�

ZA�RI�

ZB�RI�
dZ�RI���n�RI��Z�RI�

.

�40�

In the zero-temperature limit and for Ne
A= �ZA�RI�	=0, this

corresponds to the expressions for atomic and molecular to-
tal potential energies as presented by Wilson, Foldy, Politzer
and Parr, and Berlin.49,50,53,72 It is shown in the Appendix
how the integrand in Eq. �39� can be related to the global
protonic chemical potential, �g in Eq. �11� via the work,
dW=�dN.

However, upon reversibly transforming one compound
into another via fractional amounts of particles, one is con-
fronted with the technical question of choosing the most ap-
propriate � path requiring minimal computational effort for
the thermal equilibration, i.e., the specific nuclei �I	 which
are to be transmuted. In order to circumvent this problem for
this study and without any loss of generality, we limit our-
selves here to the electron particle space alone and postpone
alchemical relative free energy estimates for future studies.
Hence, we are exploiting the global character of the elec-
tronic chemical potential, i.e., that there is only one global
grand-canonical coordinate for the removal or addition of
electrons. This is different from the case of nuclear variations
where, in all nontrivial cases of inhomogeneous systems
such as molecules, arbitrarily many combinations and se-
quences of grand-canonical changes leading to the same mo-
lecular transformation can be envisioned.

We illustrate our approach for a relative free energy,
trivially related to the half-reaction redox potential, corre-
sponding to the oxidation of ammonia: NH3→NH3

++e−.
Consequently, the relative free energy expression reduces to
the redox term, which �recall that �e is a Lagrange multi-
plier� via Janak’s theorem25 equates the sampled HOMO ei-
genvalue,

FIG. 2. �Color online� Illustration of the molecular Fukui function for am-
monia. Left: isosurface of the electrostatic potential of ammonia �left� and of
the molecular Fukui function �right�, fm

VESP, as computed from the finite
difference in the electrostatic potential in Eq. �36�. Right: planar contour
plot of the molecular Fukui, fm

VESP, function. On the C3v-symmetry axis
above the nitrogen perturbative positive point charges have been placed
from 0.4 up to 2.4 Å distance in steps of 0.1 Å in order to compute the
molecular Fukui function, fm

� , as approximated in Eq. �37�. The results for
fm

VESP and fm
� are illustrated and compared in Fig. 3.

FIG. 3. Finite difference results for the molecular Fukui function. fm is
plotted as a function of the distance from the N-atom along the
C3v-symmetry axis in ammonia as depicted in Fig. 2. fm

VESP �Eq. �36�� cor-
responds to squares, whereas fm

� �Eq. �37�� corresponds to circles.
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�FNH3→NH3
+ = �

Ne=10

Ne=9

dNe� �E

�Ne
�

Ne

�41�

=�
Ne=10

Ne=9

dNe��e�Ne
= �

Q=0

Q=1

dNe��HO�Q. �42�

For this study, this integral is approximated by the normal-
ized sum over the sampled HOMO eigenvalues, ��HO�Q, for
the charge Q� �0.0,0.1, . . . ,0.8,0.9,1.0	 by varying Ne�Q
=Np−Ne�. For every charge value, ammonia has been
sampled at 300 K in vacuo for 2.1 ps. The obtained ���HO�Q	
feature in Fig. 4 as a function of time, together with their
time average, and represent the “grand-canonical” free en-
ergy redox profile.

The integral value for �F is −190.4 kcal/mol. This re-
sult is in good agreement with a free energy difference esti-
mate obtained at the same level of theory from the �har-
monic� vibrational spectra of NH3 and NH3

+, respectively,
�F=−189.2 kcal/mol. The remaining deviation is attributed
to the harmonic approximation and to the above mentioned
shortcomings of the approximated exchange-correlation
functional. As can be seen in Fig. 4, the thermal fluctuations
decrease as the charge varies from 0 to 1, presumably owing
to the transformation of ammonia’s double well potential en-
ergy surface into a single well for the oxidized species.

V. CONCLUSION

A multicomponent molecular grand-canonical ensemble
theory incorporating the notion of a local nuclear chemical
potential has been introduced as a means of sampling chemi-
cal space. We have also given a heuristic description of the
latter, including a discussion of the relationship between
physical and “chemical” degrees of freedom. From the
theory introduced, the relations for the nuclear chemical po-
tential, the molecular Fukui function, and the nuclear hard-
ness have been derived. For the case of ammonia it has been
illustrated how to employ grand-canonical quantities for the
purpose of indexing the tuning of electronic eigenvalues or,
within the context of finite temperature AIMD, for the deter-
mination of free energy differences. Sampling of chemical

space within conventional ab initio sampling schemes such
as ab initio MD or ab initio Monte Carlo will be especially
challenging since molecular grand-canonical fluctuations of
both the electronic and the nuclear density require evaluation
within an ergodic treatment. In analogy to the sampling of
phase space, the presence of high barriers in chemical space
is expected, and methods to overcome such barriers will be
needed. The presented scheme is expected to be of relevance
to rational compound design, relative free energy calcula-
tions from first principles, multiscale simulations where the
intrinsic grand-canonical degrees of freedom can vary, and
enhanced sampling methods exploiting arbitrary variable
transformations.73

ACKNOWLEDGMENTS

The authors are grateful to D. Andrienko for encourag-
ing discussion during the workshop Bridging Time and
Length Scales in Materials Science and Bio-Physics, Fall
2005, at the Institute of Pure and Applied Mathematics,
UCLA, as well as to A. P. Seitsonen and C. Corminboeuf for
their remarks and comments. One of the authors �O.A.v.L.�
greatly acknowledges the SNF Grant No. PBEL2-110243.
The other author �M.E.T.� acknowledges funding from NSF
CHE-0121375 and NSF CHE-0310107.

APPENDIX: FROM THE LOCAL TO THE GLOBAL
NUCLEAR CHEMICAL POTENTIAL

The global nuclear chemical potential, �g, measuring the
likelihood to insert a proton is given via the Euler equation
for the Lagrange multiplier introduced in Eq. �11� as

�g =
�E

�Np
. �A1�

The associated work, or relative free energy, can be com-
puted via dW= ��g�dNp, i.e., in terms of a thermodynamic
integration,

�F = �
Np

A

Np
B

dNp��g�Np
. �A2�

The integral over all changes in Z�r�, however, must be nor-
malized to correspond to the overall change in proton num-
ber which, for an infinitesimal but constant global change
dZ�r�=dZg, leads to

dNp =� drdZ�r� = dZg� dr = VdZg. �A3�

With this, the term for the local nuclear chemical potential in
Eq. �39� becomes

�F =� dr�
ZA�r�

ZB�r�
dZ�r���n�r��Z�r� �A4�

=�
Zg

A

Zg
B

VdZg� dr��n�r��Z�r� �A5�

FIG. 4. �Color online� �e at 300 K for different charges as a function of
time for 2.1 ps. The free energy profile �diamonds� for the oxidation of
ammonia, i.e., ��e�Ne

as a function of charge Q is superimposed �Q=Np

−Ne�.
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=�
Np

A

Np
B

dNp� dr��n�r��Z�r� �A6�

=�
Np

A

Np
B

dNp�� dr�n�r��
Np

, �A7�

which must equate Eq. �A2� under the constraint that
�drZ�r�=Np, and consequently,

�g =� dr�n�r� . �A8�

�n�r� can hence be seen as an intrinsic spatial weight inte-
grating to the global protonic chemical potential of a mol-
ecule.
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