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Due to its favorable computational efficiency, time-dependent (TD) density functional theory (DFT)
enables the prediction of electronic spectra in a high-throughput manner across chemical space. Its
predictions, however, can be quite inaccurate. We resolve this issue with machine learning models
trained on deviations of reference second-order approximate coupled-cluster (CC2) singles and
doubles spectra from TDDFT counterparts, or even from DFT gap. We applied this approach to
low-lying singlet-singlet vertical electronic spectra of over 20 000 synthetically feasible small organic
molecules with up to eight CONF atoms. The prediction errors decay monotonously as a function of
training set size. For a training set of 10 000 molecules, CC2 excitation energies can be reproduced
to within ±0.1 eV for the remaining molecules. Analysis of our spectral database via chromophore
counting suggests that even higher accuracies can be achieved. Based on the evidence collected, we
discuss open challenges associated with data-driven modeling of high-lying spectra and transition
intensities. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928757]

I. INTRODUCTION

Quantum mechanical rational compound design strat-
egies1,2 to model molecular valence electronic spectra hold
great promise to narrow down the discovery of novel photonic
and optoelectronic devices. Potential applications include the
fabrication of low cost dye-sensitized solar cells,3 organic
light emitting diodes,4 photosensitizers that are inert to envi-
ronmental factors but useful in photodynamic therapy,5 and
organic ultraviolet (UV) filters (aka sunscreens) in cosmetics.6

For any given compound, the relevant prediction accuracy can
readily be attained with an established excited state wave-
function method. Successful studies include the quantitative
description of solar cell materials,7 organic diodes,8 and even
biologically relevant phenomena such as photo-induced dy-
namics of vitamins B29 and D.10 For a robust forecast, depend-
ing on computational budget, one can also select a method
according to the most appropriate cost-to-performance ratio
from the series of equations of motion (EOM) or linear response
(LR) variants of the coupled cluster (CC) theories CCS, second-
order approximate coupled-cluster (CC2), CCSD, CC3, and
coupled-cluster theory with single, double, and triple excita-
tions (CCSDT). These methods scale from O(N4) to O(N8),
where N is the number of orbitals.11 When increasing size,
or number of molecules, the next viable compromise between
accuracy and computational complexity is linear response
time-dependent density functional theory (LR-TDDFT) within
the adiabatic approximation.12,13 TDDFT, commonly based on
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local or semi-local exchange correlation (XC) functionals, has
been shown to yield qualitatively inaccurate predictions when-
ever the valence excitations involve charge-transfer (CT),14

and the adiabatic approximation fails to accurately describe
transitions with double excitation character.15 Such qualitative
failure of TDDFT, hard to anticipate without visual inspection
of molecular orbitals involved in the transitions, dramatically
reduces its usefulness for high-throughput screening of mole-
cules with interesting electronic spectra. Application of CC
methods for large scale computation is already prohibitive even
when considering just electronic ground state properties of
small sub-fractions of the known small molecule chemical uni-
verse, such as the GDB-17 with over 166 × 109 organic mole-
cules with no more than 17 atoms (not counting hydrogens).16

For combinatorially and computationally hard problems,
such as navigating chemical space in quest of an optimal
electronic spectra,17 statistical inference from large volumes
of data offers an appealing alternative to the conventional
strategies of investing in ever more sophisticated approx-
imations, faster hardware, or more efficient programming.
Statistical learning has already contributed to scientific prog-
ress in biology18 or climate research.19 Inspired by the suc-
cess of such efforts, several computational chemistry studies
have recently made use of supervised machine learning (ML)
models to infer quantum mechanical properties of query mole-
cules from those of a set of example molecules, computed
a priori. Effectively, this amounts to modeling expectation
values calculated with approximate solutions to the electronic
Schrödinger equation, most notably the energy.20 By now, ML
models have been shown to reach the highly coveted quantum
chemical accuracy for many different ground-state molecular
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properties.21–23 As such, also quantum mechanical expectation
values can be interpolated in chemical space.17 Improvement of
molecular models of chemical properties based on molecular
similarity24,25 is also related to this approach. These develop-
ments have also inspired studies on transition state dividing
surfaces,26 orbital-free kinetic energy density functionals,27

electronic properties of crystals,28 transmission coefficients
in nano-ribbon models,29 or densities of states in Anderson
impurity models.30 More recently, a single kernel has been
introduced for the simultaneous modeling of multiple elec-
tronic ground-state properties for training-sets comprised of up
to 40 000 molecules.31 Here, we report on our findings when
trying to apply these ML methods to infer properties of mole-
cules in their electronically excited states. More specifically,
we discuss ML models which combine CC accuracy with DFT
efficiency.

II. METHODS

A. ∆-ML model of excited states properties

In Ref. 23, some of us introduced the ∆-ML Ansatz to
estimate molecular ground-state properties from an expensive
targetline theory, at the computational cost of an inexpensive
baseline theory (B). The ML model for the quantitative predic-
tion of molecular electronic spectra is built in analogy, using
ML models of the deviation of TDDFT excited state properties
from CC2 reference numbers. We approximate an electronic
static property, pi, corresponding to the ith excited state of
query molecule q at CC2 level of theory as the sum of baseline
prediction and a linear combination of exponentially decaying
functions in molecular similarity to training molecules t,

pCC2
i (dq) ≈ pB

i (dq) +
N
t=1

cite−|dq−dt |/σ, (1)

where N is the number of molecules in training set, σ is the
kernel width, and |dq − dt | corresponds to the Manhattan (L1)
norm between molecular descriptors d (vide infra). A previous
study22 benchmarked the performance of various norms in the
above equation when directly modeling atomization energies
(no baseline), and found the L1 norm to yield the lowest cross-
validated errors. The second term on the right side of Eq. (1)
therefore models exclusively the error in baseline method B’s
estimate of pi when compared to CC2 for query molecule q,

∆pest
i (dq) =

N
t=1

cite−|dq−dt |/σ. (2)

In this study, we have investigated two excited state prop-
erties, pi, namely, excitation energy (with respect to the ground
electronic state), Ei, and oscillator strength, f i, for the lowest
two (i = 1, 2) singlet electronic states. Other excited states
properties could have also been considered with this generic
approach. Due to their popularity, we have selected for this
study DFT and TDDFT as baseline B, and CC2 as target-
line. The CC2 method, with a triple-zeta basis set, has been
shown to predict experimental valence excitation energies with
a mean absolute error (MAE) of 0.12 eV.32 This error de-
creases slightly to 0.10 eV, when CC2 is compared to the

computationally more demanding method, CC3.33 To serve as
a reference method, in this ML study, we therefore consider
CC2 to represent the optimal compromise between sufficient
accuracy and acceptable computational cost. To compare the
impact of the baseline on the ∆-ML strategy, we have consid-
ered various DFT34,35 baseline theories with increasing sophis-
tication. However, any other combination of methods could
have been chosen just as well. Our simplest non-zero base-
line for pi = Ei is the HOMO-LUMO gap of the ground-
state computed using DFT-PBE0.36–39 We also consider pi
from LR-TDDFT13,40 using the hybrid functionals PBE0 and
CAM-B3LYP.41

In the following, we use matrix notations compatible with
Ref. 31, and denote matrices by capital bold, and vectors
by small bold cases. Regression coefficients corresponding to
training molecules, {cit}, have been obtained as solutions to

(K + λI) ci = pCC2
i − pB

i = ∆pref
i , (3)

where I and K are the identity and kernel matrices, respec-
tively, the latter with elements Kst = e−|ds−dt |/σ. Note that in
ML literature, the exponential kernel function is also denoted
as Laplace kernel, owing to the fact that the exponential func-
tion, in certain coordinate systems, is a solution to Laplace’s
equation. Eq. (3) minimizes the λ-regularized (λ quantifies the
regularization strength) least-squares error in estimations30

minimize
ci

∥∆pref
i − ∆pest

i ∥2
2 + λcT

i Kci, (4)

where ∥ · ∥2 stands for L2 norm of a vector, (·)T denotes trans-
pose operation, and ∆pest

i is defined in Eq. (2). Derivation of
Eq. (3) from Eq. (4) is presented as Appendix.

B. Cross-validation

Overfitting of the kernel models to training molecules is
typically avoided by optimizing the two hyperparameters (σ,
λ) through five-fold cross-validation (CV). In this procedure,
N training molecules are randomly distributed into 5 bins,
each with N/5 molecules. Every bin is used once as a test (or
validation) set, while the remaining four bins act as training
sets. Hyperparameters are optimized such that they minimize
the model’s MAE for the test-bin. Here, we employed Nelder-
Mead’s simplex method42 for the 2D optimization. The cross-
validation procedure is the most time-consuming process in
training the ML model, with each evaluation of MAE of the
test-bin requiring O(n3) scaling matrix inversion operations,
where n = 4N/5. In the present work, n is at most 8k. This
results in roughly one central processing unit (CPU) day of
training for a fully converged ML model.

For larger training set sizes, CVs become prohibitive,
one can employ the property-independent “single-kernel”
Ansatz,31 with optimal hyperparameters estimated exclusively
from the structures of the training molecules. This approach
assumes the training data to be devoid of outliers, and en-
forces λ to be a fixed, property-independent scalar (typically
set, or close, to zero). The width of the kernel function can
be chosen according to some heuristic, for example, such
that the maximal value of the off-diagonal elements of K is
1/2, which renders the kernel sufficiently global to have all
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training molecules contribute in the generation of the regres-
sion weights {cit}. For the exponential (aka Laplace) kernel,
with L1 distance metric, Ki j = e−|di−d j |/σ, this constraint re-
sults in σ = max

�|di − d j |	 / log(2). In Ref. 31, we have
demonstrated a universal kernel derived in this fashion to
enable systematic reduction of out-of-sample prediction errors
for 13 molecular ground-state properties of 112k molecules,
using up to 40k training molecules. Here, in order to accelerate
the CV procedure, we have made use of this heuristic as
an initial guess. For the molecular datasets considered, these
values in atomic units are typically σ = 1000 and λ = 0. After
CV, globally optimal hyperparameters have been obtained by
taking the median of the 5 folds. A median value is considered
instead of mean, because the median of a distribution is not
influenced by extreme values, such as the hyperparameters
that could be found for a test bin with extreme outliers in
structure or property. A final kernel with globally optimized
hyperparameters is used for the prediction of properties of out-
of-sample molecules that took no part in training.

C. Choice of molecular descriptor

In order to assess the effect of the molecular representa-
tion on the ML model’s performance, we report results based
on two definitions of molecular representations, namely, the
Coulomb-matrix (CM) with atom indices sorted by norm of
rows in order to reach invariance with respect to permutation
of identical nuclei,20 as well as a recently introduced more
compact variant of the CM, called bag-of-bonds (BOB).43 The
elements of the CM20 are defined as

MI I = 0.5Z2.4
I , MI J = ZIZJ/RI J, (5)

where I and J are atomic indices, RI J is the interatomic dis-
tance, and Z is the atomic number. The off-diagonal elements
of a CM uniquely represent the geometry and atomic compo-
sition of a molecule,44 while the diagonal elements provide
a simple exponential fit to the negative of the potential en-
ergy of the neutral atoms. As such, the diagonal is similar to
the total potential energy of a neutral atom within Thomas-
Fermi theory, ETF = −0.77Z7/3, or its modifications with a Z-
dependent prefactor in the range 0.4–0.7.45 It is sufficient to
consider only the lower or upper triangle of the CM. In order
to enable comparisons between two molecules with different
number of atoms, the CM matrix of the smaller molecule is
padded with zero elements.

BOB is a labeled set of off-diagonal CM elements which
enables the comparison of pairwise distance between any given
combination of two atom types. For instance, for H2O, BOB is
the set of two sorted row vectors, {[MHO,MHO] , [MHH]}, with
elements corresponding to the CM entries. Due to the pair-
wise partitioning, however, any two homometric molecules
with identical stoichiometry will yield a zero descriptor differ-
ence according to BOB.44 As such, BOB does not uniquely
represent molecules. The CM, by contrast, is able to uniquely
encode any molecule, up to its enantiomers. The molecular
dataset considered in this study, however, is devoid of homo-
metric molecules. In addition to the aforementioned sorted CM
matrix, BOB has also been tested since it has been shown to
yield slightly better accuracy for the prediction of molecular

atomization energies.43 In general, we have found that for
large N , both CM and BOB converge towards similar predic-
tion accuracy for energy-related properties. For smaller train-
ing sets, however, BOB typically exhibits a more substantial
advantage.

D. Excited states data

We have relied on the recently published molecular quan-
tum chemistry database with relaxed geometries computed
using DFT B3LYP with basis set 6-31G(2df,p).46 This data set
corresponds to the smallest 133 885 (134k) organic molecules
with up to 9 CONF atoms out of the list of 166 B syntheti-
cally feasible organic molecules, called GDB-17 database, and
published by Reymond and co-workers.16 For this study, we
have eliminated 3054 molecules from the 134k dataset due to
high steric strain in the B3LYP/6-31G(2df,p) geometries,46 and
we further have limited ourselves to those 21 800 molecules
with only up to 8 CONF atoms. For these molecules, we
have performed single point calculations using the program
TURBOMOLE47 to compute the ground (S0),48 and the lowest
two vertical electronic excited states (S1 and S2) of singlet
spin-symmetry. We also performed calculations at the LR-
TDDFT40 level employing the hybrid XC functional PBE037,39

with def2SVP basis set,49 and at the resolution-of-identity
approximate coupled cluster with singles and doubles substi-
tution (RI-CC2)50 level with def2TZVP basis set.49 Using the
larger basis set, we also performed LR-TDDFT calculations
with PBE0, and CAM-B3LYP41 functionals, the latter using
the program Gaussian09.51

All calculations were performed with C1 symmetry and
in DFT calculations default integral grids were employed to
compute the XC energy contributions. For 7 molecules (most
of them highly symmetric, e.g., cubane), the RI-CC2 cal-
culations did not converge the first excited state wavefunction.
For 7 other molecules (with multiple CO groups, e.g., 2,3-
dioxobutanedial), emission has been found, i.e., negative lowest
transition energy, presumably arising from orbital relaxation.
For the purpose of this study, we have removed these exotic 14
molecules. The lowest two singlet transition energies, as well
as corresponding oscillator strengths in length-representation,
have been used for the remaining 21 786 molecules, to which
we refer in the following as the set of 22k molecules. All
indices of the 22k GDB-8 molecules along with corresponding
TDDFT and CC2 results are given as supplementary material
in gdb8_22k_elec_spec.txt.65 The indices enable retrieval
of geometries from the 134k GDB-9 dataset.46

III. RESULTS AND DISCUSSION

A. Excitation energies and oscillator strengths
for 22k organic molecules

The smoothened distribution of CC2 predicted S0 → S1
transition energies E1 and corresponding oscillator strengths
f1 features in Figure 1 for all 22k molecules. This 2D count
density has been computed via kernel-density estimation.52,53

The first excitation energy distribution is bimodal (see also
Fig. 2 for the 1D projection), corresponding to one Gaussian
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FIG. 1. Joint distributions of oscillator strength f1, and
transition energy E1 for the first electronic excited singlet
state of the 22k organic molecules. All values correspond
to the RICC2/def2TZVP level of theory. For selected E1
values, representative molecules with large f1 are shown
as insets.

centered at 0.18 a.u. with small variance, and another centered
near 0.26 a.u. with significantly larger variance (the shoulder
possibly implying two peaks, rather than one broad peak).
Collectively, the 22k molecules span the spectral range of
UV-B and UV-C, with few molecules in the UV-A region
(>300 nm or <0.15 a.u.). The lack of transitions in the visible
region is consistent with the fact that small organic molecules
typically exhibit an energy gap of >5 eV between highest
and lowest occupied molecular orbital, HOMO and LUMO,
respectively. Not surprisingly, when proceeding from low to
high transition energy regions, one notices that molecules
gradually turn from being aromatic, or highly unsaturated,
into increasingly saturated structures. The oscillator strength
( f1), by contrast, leads to an exponentially decaying distri-
bution, with the largest fraction of compounds in the 22k
set having negligible or zero values. A small minority of
molecules, however, have significant f1-magnitude, imply-
ing potential usefulness of these molecules as components
in metal-free organic sensitizers.54 Only a dozen molecules,
highlighted in Figure 1, display f1 > 0.5, resulting in light
harvesting efficiencies55 larger than 100 × (1 − 10−0.5) ≈ 68%.
These molecules contain ketoxime, R(R′)C = NOH, or ami-
dine, R-C(NH2) = NR′, chromophores. They all exhibit push-
pull type conjugation of π-bonds, with electron-donating, and
electron-withdrawing groups on opposite ends, resulting in
highly polarized electron densities. However, also the symmet-

FIG. 2. Distributions, smoothened by 1D kernel density estimation as im-
plemented in GNUPLOT,56 of spectral properties and predicted errors. Top:
densities of first and second singlet transition energies (E1 and E2, respec-
tively, in eV) of 17k organic molecules with up to eight CONF atoms, at the
CC2, and TDPBE0 levels of theory. Bottom: error distribution for E1 (left)
and E2 (right) with respect to CC2. Errors are given for TDPBE0 and ∆-ML
models based on 1k, and 5k training molecules with TDPBE0 baseline.

ric molecule (point group C2h), dimethylglyoxime, a chelating
agent commonly used in gravimetric analysis of nickel, has a
large oscillator strength for its first excitation with f1 = 0.56
at E1 = 0.2 a.u.

The effect of level of theory is shown for TDPBE0 and
CC2 predictions of E1 and E2 in the top panel of Figure 2. For
both states, TDDFT leads to a depletion in count densities at
≈7 eV when compared to the CC2 distribution, compensated
by overestimated densities in low and high energy regions. In
the following, we will discuss how to mitigate this depletion
using ML models.

B. ML models of excitation energies

Despite the obvious differences in prediction in the top
panel of Fig. 2, the ∆-ML model of Eq. (1) captures the neces-
sary correction. This is illustrated by the signed error distribu-
tions (with respect to CC2) in the bottom panel of Figure 2,
for both excitation energies. Distributions are shown for ∆-
ML models trained on molecular sub-sets containing either
N = 1k or N = 5k molecules, drawn at random from the 22k
data set. All ML results discussed in this paper, including these
distributions, correspond to out-of-sample predictions for the
remaining (22k - N) molecules. For comparison, the TDDFT
deviation from CC2 is also shown in the bottom panel of Fig. 2
for both transition energies, resulting in a bimodal distribution
which suggests that systematic errors are present. These errors
can be either due to PBE0 kernel or smaller basis-set, or both.
The ML errors, by contrast, are normally distributed around
zero, with increasing and decreasing height and width, respec-
tively, as one increases the training set from 1k to 5k. This
implies that the ∆-ML model is properly accounting for the
systematic errors in the TDDFT predictions, replacing them by
a normal error distribution. MAEs of the TDDFT predictions
amount to 0.27 and 0.37 eV, for E1 and E2, respectively. These
MAEs are reduced to 0.16 and 0.23 eV for the 1k ML models
and to 0.13 and 0.20 eV for the 5k ML models. We have also
investigated the effect of the other aforementioned descriptor
in the ML model, BOB. BOB results in ML prediction errors
of 0.13/0.20 and 0.09/0.16 eV for E1/E2, using models trained
on 1k and 5k training sets, respectively—slightly better than
the corresponding CM predictions.

In order to investigate in a systematic fashion the perfor-
mance of the ∆-ML model, we have calculated out-of-sample
MAEs of E1 predictions for various baseline methods. In
Figure 3, the resulting MAEs are shown as a function of
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FIG. 3. Systematic improvement of ML models of singlet-singlet transition energies (E1). Mean absolute error (MAE in eV) with respect to reference
CC2/def2TZVP values is shown as a function of training set size (N ) for 22k−N out-of-sample predictions. Various baseline methods are shown. The value of
the baseline-free ML model (red) at N = 0 corresponds to the CC2 standard deviation in the 22k test set. Other baselines include HOMO-LUMO gap (blue),
TDPBE0 E1 without (yellow), and with (green) bivariate systematic shift corrections which explicitly account for σ and π chromophores. Also included are
def2TZVP baseline results for TDCAM-B3LYP E1 (black) and TDPBE0 E1 (blue). Baseline errors at N = 0 correspond to standard deviations, obtained after
subtraction of an average shift with respect to the CC2-targetline.

training set size N for N = 0 (i.e., the error of the baseline
method), 10, 100, 1k, 2k, 3k, 4k, 5k, and 10k. More specifically,
zero baseline results correspond to setting EB

1 to zero in Eq. (1).
We also used the PBE0 HOMO-LUMO gap as a baseline, as
well as TDPBE0 and TDCAM-B3LYP. As one would expect,
the predictive accuracy improves with increasing level of
sophistication of the baseline: The zero, gap, and TD baseline
with def2SVP basis set yield 0.4, 0.3, and 0.13 eV, respectively,
for the most accurate model trained on N = 10k molecules.
Increasing the basis set from def2SVP to def2TZVP improves
PBE0’s baseline value, eventually resulting in a very small
MAE of 0.08 eV for 10k ∆-ML. These observations are in
line with previous benchmark studies57 which concluded the
TDCAM-B3LYP is somewhat inferior to TDPBE0 for the
prediction of singlet-to-singlet excitation energies of small
molecules. Overall, it is encouraging that all models, no matter
which baseline, converge towards the same learning rate,
i.e., slope on the log-log scale of error versus training set size.
As such, the baseline merely leads to a difference in off-sets —
which could also be compensated for by adding more training
data. Due to the immense size of chemical space,17 the addition
of more molecules can easily be envisioned. For∆-ML models
of E2, similar curves can be obtained, albeit slightly off-set
yielding less accurate predictive power.

C. Inclusion of systematic shifts

It is not obvious to us that there is a single reason for
TDPBE0/def2SVP’s substantial underestimation of first and
second transition energies near 7 eV, see Figure 2. A simple
pattern, however, emerges after splitting the 22k set into satu-
rated and unsaturated molecules, i.e., into two sets containing
either π- or σ-chromophores. The corresponding signed error
densities for the two sets are well separated, as shown for E1
in Figure 4. They are centered around −0.31 and +0.19 eV for
the saturated σ and unsaturated π-chromophores, respectively.
The systematic underestimation of TDPBE0-based E1 of π-
type excitations (π → π∗ or n → π∗) is a well-known issue of
approximate XC functionals when it comes to the description

of CT-type excitations,14 i.e., transitions with small overlap
between donor and acceptor orbital overlap.58 Our results are
consistent with this finding, strengthening the indications that
the underestimation of E1 is universal for all π-type excitations.
Furthermore, the other distribution in Figure 4 clearly shows
a systematic overestimation of TDPBE0-based E1 of σ-type
excitations (σ → σ∗ or n → σ∗). This systematic blue shift
of TDPBE0 E1 is, at least partly, due to the finiteness of the
relatively small basis set (def2SVP) used. This reasoning is
in line with the variational principle: The difference between
the lowest two eigenvalues of the molecular Hamiltonian is
always larger when represented in a small basis set than when
compared to the complete basis set limit. For instance, using
literature values59 of the HOMO-LUMO gap of the water
molecule, we note the PBE0 value with the minimal basis set,
STO-3G, to be 13.3 eV, overestimating more converged basis
set PBE0 results by roughly 4.6 eV.

The degree of saturation can easily be detected before-
hand using SMILES strings. We can therefore readily exploit

FIG. 4. Bivariate error distribution of the TDPBE0/def2SVP lowest singlet-
singlet transition energies (E1 in eV) of 22k organic molecules with up to
eight CONF atoms (yellow). Partitioned error distributions over saturated
(blue) and unsaturated (red) molecules are shown as well. The molecular
structures correspond to extreme outliers for TDPBE0/def2SVP.



084111-6 Ramakrishnan et al. J. Chem. Phys. 143, 084111 (2015)

this knowledge by subtraction of the distribution’s centered
value −0.31 and +0.19 eV from the baseline number for satu-
rated and unsaturated chromophores, respectively. The result-
ing TDPBE0 ∆-ML model in Eq. (1) improves indeed: The
out-of-sample MAE decreases at a lower off-set with training
set size, as shown in Figure 3, yet at similar learning rates
as the other models. For the 10k model of the E1 transition
energy, the MAE is found to decrease from 0.13 eV to 0.1 eV.
It is interesting to note that the performance of the TDCAM-
B3LYP/def2TZVP level is virtually identical with the shifted
TDPBE0/def2SVP result (N = 0), as well as for larger N
values. For smaller training sets (N = 10 or 100), the shifted
TDPBE0/def2SVP ∆-ML model even outperforms the corre-
sponding TDCAM-B3LYP/def2TZVP variant.

D. DFT and ML model outliers

It is always interesting to consider the worst predictions
of a model. The average errors discussed so far neither imply
better ML predictions for DFT outliers nor do they quantify the
ML outliers. Here, we briefly discuss the accuracy of predicted
E1 for the 10 most extreme outliers among all out-of-sample
molecules, i.e., all molecules that were not part of the training
sets for the 1k and 5k ∆-ML models. Table I lists SMILES
strings of the corresponding molecules, model prediction er-
rors, and CC2 numbers for comparison. The 10 outliers are
sorted by their TDPBE0, 1k, or 5k ML model deviation. As
also already indicated in Figure 4, the worst DFT outliers corre-
spond to unsaturated molecules. This observation holds true for
the 10 most extreme DFT outliers in Table I, deviating by up
to 2.15 eV from CC2. These molecules could be of interest as
benchmarks for developing improved DFT kernels for TDDFT
calculations. The numbers in Table I show that for all outliers,
the 5k ML model yields better performance than DFT, while
the 1k ML model improves all predictions but the one for
the worst, namely cyclopenta-1-en-4-on (O=C1CC=CC1). This
molecule is also shown in Fig. 4. Note that other outliers shown
in that figure have been part of the training set and therefore
do not feature in Table I. The finding that the ML models
also improve on the baseline method’s outliers agrees with
conclusions drawn in a previous finding where we applied the
∆-ML Ansatz to model DFT-level enthalpies of atomization for
the 134k dataset, and where we found that for the most extreme
outlier the baseline model’s error reduced systematically with
the training set size of the augmenting ML model.23

When considering the 10 most extreme outliers of the ML
models in Table I, neither order nor identity of the DFT outliers
is conserved. Among the top 10 outliers of the 5k model, for
example, there is even a saturated molecule from the oppo-
site (blue) end of the error distribution in Fig. 4: tetra-fluoro-
methane CF4, with an underestimating deviation −1.42 eV.

E. ML models of oscillator strengths

We have also investigated the applicability of the ∆-
ML Ansatz to model oscillator strengths, f1 and f2 for S0
→ S1 and S0 → S2 transitions, respectively. While the ∆-ML
models of excitation energies can be systematically improved

TABLE I. 10 most extreme outliers for TDPBE0/def2SVP and ∆-ML mod-
els. Largest deviations of predicted lowest singlet-singlet transition energy
(E1) from the corresponding CC2/def2TZVP value. All values in eV.

Molecule TDPBE0 1k ∆-ML 5k ∆-ML CC2

Top DFT outliers
FC1=COC=NC1=O 1.63 1.41 1.40 5.85
CC1=COC=CC1=O 1.64 1.22 1.04 5.69
CC1=CC(=O)C=NO1 1.66 1.08 0.88 5.23
CC1=C(NN=N1)C=O 1.73 1.55 1.51 5.57
O=CC1=CN=CN=C1 1.81 1.50 1.42 5.38
CC1=C(C)CC(=O)C1 1.82 1.62 1.56 6.12
CN1C=C(C=O)C=N1 1.84 1.62 1.35 5.82
CC1=C(C=O)N=NO1 1.92 1.52 1.74 5.82
C#CC1=NC=CN=N1 1.99 1.43 1.76 5.02
O=C1CC=CC1 2.13 2.15 1.95 6.44

Top 1k ∆-ML outliers
O=N(=O)C1=NC=CO1 1.53 1.33 1.41 5.31
FC1=COC=NC1=O 1.63 1.41 1.40 5.85
C#CC1=NC=CN=N1 1.99 1.43 1.76 5.02
CC(=O)C1=CC=NN1 1.62 1.46 0.91 5.55
O=CC1=CN=CN=C1 1.81 1.50 1.42 5.38
CC1=C(C=O)N=NO1 1.92 1.52 1.74 5.82
CC1=C(NN=N1)C=O 1.73 1.55 1.51 5.57
CC1=C(C)CC(=O)C1 1.82 1.62 1.56 6.12
CN1C=C(C=O)C=N1 1.84 1.62 1.35 5.82
O=C1CC=CC1 2.13 2.15 1.95 6.44

Top 5k ∆-ML outliers
O=N(=O)C1=NC=CO1 1.53 1.33 1.41 5.31
FC(F)(F)F −1.20 −1.27 −1.42 13.98
O=CC1=CN=CN=C1 1.81 1.50 1.42 5.38
O=CC1=NC=CC=C1 1.58 1.31 1.46 5.09
CC1=C(NN=N1)C=O 1.73 1.55 1.51 5.57
OC1=NOC(C=O)=C1 1.59 1.32 1.54 5.18
CC1=C(C)CC(=O)C1 1.82 1.62 1.56 6.12
CC1=C(C=O)N=NO1 1.92 1.52 1.74 5.82
C#CC1=NC=CN=N1 1.99 1.43 1.76 5.02
O=C1CC=CC1 2.13 2.15 1.95 6.44

through mere addition of training data, corresponding models
for f1 or f2 do not become more accurate with increasing
training set size. TDCAM-B3LYP has been shown to yield
oscillator strengths with minimal deviations with respect to
correlation TD methods.60 For our 22k dataset, TDCAM-
B3LYP/def2TZVP yields a MAE of 0.0101 a.u., compared to
CC2/def2TZVP. This deviation is reduced to only 0.0100 and
0.0099 a.u. when augmenting the CAM-B3LYP numbers with
∆-ML models trained on 1k and 5k molecules, respectively.
Also changing the descriptor from CM to BOB did not improve
the state of affairs.

The ∆-ML model approach might fail for several reasons.
For one, f i is a rather complex property which requires knowl-
edge of a certain combination of two wavefunctions,

f i ∝ |⟨0| µ̂|i⟩|2Ei. (6)

This could imply the need for substantially larger training sets
in order to obtain satisfying learning curves. Another expla-
nation might be that the training problem is ill posed. In fact,
TDDFT often yields a different ordering of states than CC2,



084111-7 Ramakrishnan et al. J. Chem. Phys. 143, 084111 (2015)

implying that the baseline property corresponds to a different
matrix element than the targetline property. This, in turn, will
also result in substantially less efficient ML training scenarios.
However, this reasoning, while appealing to explain the failure
of a ∆CC2

TDDFT-ML model, does not satisfyingly explain why
also a direct ML model with zero baseline shows insignificant
prediction improvement with increasing training set size. Fi-
nally, we remark that also previously we have seen significantly
less impressive learning rates for other electronic integrals,
e.g., the norm of the molecular dipole moment in organic
molecules.31

IV. CONCLUSIONS

In summary, we have applied the ∆-ML approach,
previously introduced to accurately model molecular ground
state properties, to the data-driven modeling of electronic
excitation energies. We have computed the low-lying valence
electronic spectra for a modest chemical universe of 22k
organic molecules, made up from up to 8 CONF atoms, at the
level of TDDFT (using PBE0 and CAM-B3LYP), and CC2.
We have presented numerical evidence that large basis set
CC2-level valence excitation energies can be estimated at the
speed of small basis set TDPBE0 through statistical inference
of the difference, derived from training on a fraction of this
database.

Analysis of the data-sets, based on kernel density esti-
mates, suggests small basis set TDPBE0 level of theory to
over- and under-estimate the lowest two transition energies for
organic molecules with σ- and π-chromophores, respectively.
This behavior results in well separated bivariate error distri-
bution. Accounting for these systematic shifts enables further
improvement of the ∆-ML models. From a methodological
point of view, this procedure allows to readily integrate expert
knowledge of error distributions in the ML model, resulting in
improved predictions. For an automated estimation of system-
atic shifts arising from multivariate property distributions, one
can adapt clustering protocols based on kernel density esti-
mates. Such clustering has been done previously in the context
of analyzing Monte Carlo trajectories,61 collective variables in
molecular dynamics,62,63 or even to quantify the contribution
of a MO to total electronic energy.64

The numerical evidence for the modeling of excita-
tion energies suggests that severe flaws in TDDFT based
predictions can easily be rectified through statistical learning,
irrespective of their origin such as possible incorrect state
ordering, basis set incompleteness, inherent limitations of
adiabatic TDDFT for states with doubly excited, or CT
character.

The poor performance of ML models for predicting oscil-
lator strengths warrants future investigations. The database
of excited states properties for 22k organic molecules (see
the supplementary material)65 might also be useful for bench-
marking the performance of other approximations and models,
as well as to facilitate the identification of potential, hitherto
unknown, chromophore-auxochrome relationships. Eventu-
ally, our study might aid the computational design of func-
tional molecular components with desirable photochemical
properties.
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APPENDIX: DERIVATION OF EQ. (3)
IN MATRIX NOTATION

We derive the linear system of equations in Eq. (3) by em-
ploying the regularized least squares error measure, Eq. (4). Let
us denote the reference property values of training molecules
as the column vector x = pref. The kernel-ridge-regression
Ansatz for the estimated property values of training molecules
is pest = Kc. The L2-norm of the residual vector, penalized by
regularization of fit coefficients, is the Lagrangian

L = ∥pref − pest∥2
2 + λcTKc

= (x −Kc)T (x −Kc) + λcTKc
= xTx − xTKc − (Kc)Tx + (Kc)TKc + λcTKc, (A1)

where (·)T denotes transpose operation. To minimize the
Lagrangian, we equate its derivative with respect to the regres-
sion coefficients vector, c, to zero,

d
dc
L = −xTK −Kx +KKc + cTKK

+ λKc + λcTK = 0. (A2)

Here, we have used the fact that the kernel matrix K is sym-
metric, i.e., KT = K along with the matrix calculus identity,
(d/dc) cT = I, where c is a column vector and cT is a row vector.
Grouping by row and column vectors yields

(KKc + λKc −Kx) + (KKc + λKc −Kx)T = 0, (A3)

which is satisfied, iff

(KKc + λKc −Kx) = 0. (A4)

Multiplication of the above equation with K−1 from the left,
and rearranging results in Eq. (3).
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