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Machine Learning (ML) and Internet of Things (IoT) are complementary advances: ML techniques unlock the potential of IoT with
intelligence, and IoT applications increasingly feed data collected by sensors into ML models, thereby employing results to improve
their business processes and services. Hence, orchestrating ML pipelines that encompass model training and implication involved in
the holistic development lifecycle of an IoT application often leads to complex system integration. This paper provides a comprehensive
and systematic survey of the development lifecycle of ML-based IoT applications. We outline the core roadmap and taxonomy, and
subsequently assess and compare existing standard techniques used at individual stages.
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1 INTRODUCTION

Rapid development of hardware, software and communication technologies boosts the speed of connection of the
physical world to the Internet via Internet of Things (IoT). A report 1 shows that about 75.44 billion IoT devices
will be connected to the Internet by 2025. These devices generate a massive amount of data with various modalities.
Processing and analyzing such big data is essential for developing smart IoT applications. Machine Learning (ML) plays
a vital role in data intelligence which aims to understand and explore the real world. ML + IoT type applications thus
are experiencing explosive growth. However, there are un�lled gaps between current solutions and the demands of
orchestrating the development lifecycle of ML-based IoT applications. Existing orchestration frameworks for example
Ubuntu Juju, Puppet and Chef are �exible in providing solutions for deploying and running applications over public or
private clouds. These frameworks, however, neglect the heterogeneity of IoT environments that encompasses various
hardwares, communication protocols and operating systems. More importantly, none of them are able to completely
orchestrate a holistic development lifecycle of ML-based IoT applications. The development lifecycle must cover the
following factors: 1) how the target application is speci�ed and developed, 2) where the target application is deployed,
(3) what kind of information the target application is being audited. Application speci�cation de�nes the requirements
including the ML tasks, performance, accuracy and execution work�ow. Based on the speci�cation and the available
computing resources, the ML models are developed to meet the speci�ed requirements while optimizing the training
processes in terms of the cost of time and computing resources. Next, the model deployment considers the di�culty of
∗Zhenyu is the corresponding author
1https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
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the heterogeneity of the IoT environment for running a set of composed ML models. Finally, ML-based IoT applications
closely connect with people’s lives and some applications such as autopilot require high reliability. Therefore, essential
monitoring information has to be collected to improve the performance of the application in the next iteration of the
lifecycle.

In this survey, we present comprehensive research on orchestrating the development lifecycle of ML-based IoT
applications. We �rst present the core roadmap and taxonomy, and subsequently summarize, compare, and assess
the variety of techniques used in each step of the lifecycle. Previous e�orts provided broad knowledge that can drive
us to build the taxonomy. For instance, [260] discussed encountered challenges of developing the next generation
of AI systems. [197, 310] gave comprehensive reviews of available deep learning architectures and algorithms in IoT
domain. To the best of our knowledge, this is the �rst work that presents a comprehensive survey to illustrate the whole
development lifecycle of ML-based IoT application, which paves the way for developing an agile, robust and reliable
smart IoT application. Before introducing the roadmap and taxonomy, we provide a smart city example in the next
subsection that illustrates ML-based IoT applications in real-world.

1.1 Smart City Applications

Smart city uses modern communication and information techniques to monitor, integrate and analyze the data collected
from core systems running across cities. Meanwhile, smart city makes intelligent responses to various use cases, such
as tra�c control, weather forecasting, industrial and commercial activities. Fig. 1 represents a smart city which consists
of various IoT applications with many of them using Machine Learning (ML) techniques. For example, a smart tra�c
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Fig. 1. Smart City

routing system consists of a large number of cameras monitoring the road tra�c and a smart algorithm running on
the cloud recommending the optimal routes for users [321]. On the other hand, a smart car navigation system [136]
allows the passengers to set and change destinations via built-in car audio devices. The two systems work together to
provide real-time interactive routing services. More speci�cally, the user’s voice commands are translated in the car
edge side and sent to the cloud where the smart tra�c routing system works. The best route is translated back to voice
guiding the users to their destinations. The above-mentioned applications involve various computing resources (e.g.,
cloud, edge, and IoT devices) and ML techniques, making the development of these ML-based IoT applications very
challenging both for the ML models and the IoT system. To �ll this gap, we orchestrate the development lifecycle of an
ML-based IoT application. In the next subsection, we present a roadmap for the development lifecycle along with a
comprehensive taxonomy that surveys the techniques relevant for developing the application.



1.2 Roadmap and Taxonomy

Roadmap. Fig 2 shows the roadmap of developing an ML-based IoT application. The roadmap starts with the require-
ments speci�cation where the required computing resources (hardware and software) and ML models are speci�ed.
Based on the speci�cation, we carefully design the infrastructure protocol, data acquisition approach and machine
learning model development pipeline. Next, we implement and train the model with various ML algorithms. We also
evaluate and optimize the models to achieve high e�ciency without sacri�cing too much accuracy. After the model
development, an optimized deployment plan is generated based on the speci�ed ML models and infrastructures. The
deployed application must be audited while it is running on real IoT environments; the audit aims to explore the
performance issues in terms of security, reliability and other QoS metrics. Finally, the audited issues will guide the
corrections of orchestration details in the next iteration of the application development.
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Fig. 2. The development lifecycle of an ML-based IoT application

Taxonomy. Fig. 4 depicts our taxonomy which systematically analyzes the core components in the orchestration of
the development lifecycle of a ML-based IoT application. Note that the survey in [286] has reviewed cloud resource
orchestration techniques. It outlines the key infrastructure orchestration challenges for cloud-based application as well
as being extendable for IoT applications. Thus, in this survey, we focus more on the challenges of implementing ML
models and orchestrating their IoT application development lifecycle. To this end, we extract the core building blocks of
the development lifecycle relevant to ML and identify four main categories based on their speci�c functionality during
the development process. The outline of the paper follows the structure of the taxonomy as well.

(1) Model Development.We propose a general pipeline for developing a ready-to-deploy MLmodel. We investigate
the ML techniques to build each block of the pipeline (refer to §2).

(2) Model Deployment. In our work, we review the software deployment techniques and analyze the challenges
of applying such techniques to deploy the ML models in IoT environments (refer to §3).

(3) Model Audit. Audit is one of the important dimensions in building a robust application. We survey the main
security, reliability and performance issues in ML-based IoT applications (refer to §4).

(4) Data Acquisition. Data quality is important in building ML models. We identify three important dimensions
throughout the data acquisition pipeline: data collection, data fusion and data preprocessing (refer to §5).

2 MODEL DEVELOPMENT
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Fig. 3. A general pipeline of model development

One of the core components in this paper is machine learning (ML) models, which may be roughly divided into three
categories: Traditional Machine Learning (TML), Deep Learning (DL) and Reinforcement Learning (RL). To develop ML
models in the IoT environment, we propose a generic pipeline (see Fig. 3) including model selection, model generation,
model optimization and model evaluation and explain with adaptive video streaming [183] as an example.
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Adaptive video streaming. Video transmission between server and mobile devices employs http-based adaptive
streaming techniques. In a typical video server (e.g., DASH 2), videos are encoded and stored as multiple chunks at
di�erent bitrates. One video usually consists of several chunks with each containing seconds of content. To maximize
video quality, the video player in a client (e.g., mobile device) usually employs adaptive bitrate (ABR) algorithms aiming
to pull high-bitrate chunks from the server without compromising the latency. As shown in Fig. 5, ABR algorithms use
simple heuristics to make bitrate decisions based on various observations such as the estimated network throughput
and playback bu�er occupancy. ABR algorithms require �ne-grained tuning and can be hardly generalized to handle
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Fig. 5. Adaptive video streaming

various network conditions that �uctuate across time and di�erent environments. Thus we are seeking to solve the
problem using modern ML technologies.

To this end, we �rst need to perform model selection (§2.1) to �nd a subset of suitable models. In this scenario, the
server must give a bitrate decision so that the client can return feedback that conveys whether the decision is satisfactory.
Such interaction problems necessitate further use of RL and we will present proper choice of RL algorithms based on
di�erent selection criteria (§2.1.4). Next, we will choose a suitable development framework to implement the model and
utilize di�erent acceleration techniques to reduce the latency of model generation (§2.2). In this example, Tensor�ow
and A3C algorithm [196] are used as the development framework and distributed training protocol respectively for
faster convergence. Once generated, the model has to be adapted into the real environment. Considering heterogeneity
of IoT infrastructure, models need to be optimized according to the computing resources. This procedure is called
model optimization (§2.3). In model evaluation (§2.4), model performance is measured to validate whether the
model meets expected results. Particularly in this case, performance is evaluated by the total reward obtained from the
simulated environment. The following subsections will discuss the the pipeline in detail.

2.1 Model Selection

Model selection aims to �nd the optimal ML model to perform user-speci�ed tasks whilst adapting to the complexity
of IoT environments. In this section, we discuss the model selection from three categories i.e., TML, DL and RL, and
survey well-known models (or algorithms) in each category along with their corresponding criteria for model selection.

2.1.1 TML vs. DL vs. RL. Compared with the most popular DL , TML is relatively lightweight. It is a set of algorithms
that directly transform the input data (to output), according to certain criteria. For supervised cases when a class label
is available for training, TML aims to map the input data to the labels by optimising a model, which can be used to infer
unseen data at the test stage. However, since the relationship between raw data and label might be highly non-linear,
feature engineering— a heuristic trial-and-error process — is normally required to construct the appropriate input
feature. The TML model is relatively simple, the interpretability (e.g., the relationship between the engineered features
and the labels) tends to be high.
2https://github.com/Dash-Industry-Forum/dash.js
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DL has become popular in recent years. With powerful capability for modelling complex non-linear relationships
(between the input and output), DL does not require the aforementioned heuristic (and expensive) feature engineering
process, making it a popular modelling approach in many �elds such as computer vision and natural language processing.
Compared with TML, DL models tend to have more parameters (to be estimated) and generally they require more
data for reliable representation learning. However, it is crucial to guarantee the data quality and a recent empirical
study[202] suggested the increasing number of noisy/less-representative training samples may harm DL’s performance,
making it less generalizable to unseen test data. Moreover, DL’s multilayer structures make it di�cult to interpret the
complex relationship between input (i.e., raw features) and output. However, more and more visualisation techniques
(e.g., attention map [313]) were used, which play an important role in understanding DL’s decision-making process.

RL has become increasingly popular due to its success in addressing challenging sequential decision-making problems
[265]. Some of these achievements are based on the combination of DL and RL, i.e., Deep Reinforcement Learning. It has
shown its considerable performance in natural language processing [163, 296], computer vision [9, 48, 230, 264, 305],
robotics [221] and IoT systems [182, 183, 320] and related applications like video games [9], visual tracking [230, 264, 305],
action prediction [48], robotic grasping [221], question answering [296], dialogue generation [163], etc. In RL, there
is usually one or more agent(s) interacting with the outside environment, where optimal control policies are learnt
through experience. Fig. 6 illustrates the iterative interaction circle, where the agent starts without knowing anything
about environment or task. Each time the agent takes action based on the environment states, and it receives a reward
from the environment. RL optimises this process such that it learns to make decisions with higher rewards received.
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Fig. 6. Reinforcement Learning Paradigm

Discussion. In IoT environments, a variety of problems can be modelled by using the aforementioned three approaches.
The applications range from system and networking [183] [182], smart city [320] [164], to smart grid [290] [235], etc. To
begin with modeling, it is essential for users to choose a suitable learning concept at the �rst stage. The main selection
criteria can be divided into two categories: Function-based selection and Power Consumption-based selection.

Function-based selection aims to choose an appropriate concept based on their functional di�erence. For example,
RL bene�ts from its iterative environment↔ agent interaction property, and can be applied to various applications
which need interaction with environment or system such as smart temperature control systems, or recommendation
systems (with cold start problem). On the other hand, TML algorithms are more suitable for modelling structured
data (with high-level semantic attributes), especially when interpretability is required. DL models are typically used to
model complex unstructured data, e.g., images, audios, time-series data, etc. and are an ideal choice especially with high
amount of training data and low requirement on interpretability.

Power Consumption-based selection aims to choose an appropriate model given constraints in computational power or
latency. In contrast to TML, the powerful RL/DL models are normally computationally expensive with high overhead.
Model compression techniques were developed, making RL/DL models for e�cient some IoT applications. However,
on some mobile platforms with very limited hardware resources (e.g., power, memory, storage), it is still challenging
to employ compressed RL/DL models, especially when there are some performance requirements (e.g., accuracy, or
real-time inference) [51]. On the other hand, lightweight TML may be more e�cient, yet reasonable accuracy can only
be achieved with appropriate features (e.g., high level attributes derived from the time-consuming feature engineering).



2.1.2 Traditional Machine Learning. Given di�erent tasks, TML can be further divided into Supervised Learning and
Unsupervised Learning. Herein we contrast two categories (algorithm details are available in TML method Appendix
B), and discuss the criteria for choosing the TML algorithms.

Supervised Learning. Supervised learning algorithm (i.e., Fig. 7) can be used when both the input data X and the
corresponding labels Y are provided (for training), and it aims to learn a mapping function such that Y :← f (X ). The

Supervised learning Unsupervised learning

Fig. 7. Examples of Supervised Learning (Linear Regression) and Unsupervised Learning (Clustering)

most representative algorithms include Logistic Regression (LR),Arti�cial Neural Networks (ANN),Decision Tree (DT) [222]
and Random Forest (RF) [36], Support Vector Machine (SVM) [63]. The TML algorithms are based on mathematics and
statistics modelling which give more interpretability for model itself.

Unsupervised Learning. The unsupervised learning algorithm (see Fig. 7 right) aims at learning the inherent rela-
tionship between the data when only input data X exists (without class label Y ). For example, the clustering algorithm
can be used to �nd the potential patterns of some unlabelled data and the obtained results can be used for future
analysis. K-Means[116] and Principal Component Analysis (PCA) [246] are the two most popular unsupervised learning
algorithms. K-means aims to �nd K group patterns from data by iteratively assigning each sample to di�erent clusters
based on the distance between the sample and the centroid of each cluster. PCA is normally used for dimensionality
reduction, which can de-correlate the raw features before selecting the most informative ones.

Discussion. A common principle for IoT application is to select the algorithm with the highest performance in
terms of e�ectiveness and e�ciency. One can run all related algorithms (e.g., supervised, or unsupervised), before
selecting the most appropriate one. For e�ectiveness, one has to de�ne the most suitable evaluation metrics, which
can be task-dependent, e.g., accuracy or mean-f1 score for classi�cation tasks, or mean squared errors for regression,
etc. Before model selection, a number of factors should be taken into account: data structure (structured data, or
unstructured data that need extra preprocessing), data size (small or large), prior knowledge (e.g., class distribution),
data separability (linearly, or non-linearly separable which may require additional feature engineering), dimensionality
(low, or high which may require dimensionality reduction), etc. There may also exist additional requirements from the
users/stakeholders, e.g., interpretability for health diagnosis. Additionally, it is necessary to understand the e�ciency
requirement speci�c to an IoT application and one has to consider how the training/testing time grows with respect
to data size. Time complexity shown in Table 2 in Appendix B provides more insights. Take KNN as an example:
although no training time is taken, KNN ’s inference time can be very high (especially with a large training set), and thus
unsuitable for certain time-critical IoT applications. Also, the deployment environment is another non-negligible factor
when developing IoT applications since many applications run (or partially run) on low power computing resources.

2.1.3 Deep Learning. In this section, we primarily introduce three classical deep models (i.e., Deep Neural Networks
(DNN)/ Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN)) for



supervised learning tasks on unstructured data such as image, video, text, time-series data, etc. We also brief two
popular unsupervised models: Autoencoder (AE), and Generative Adversarial Networks (GAN).

Supervised DL.We contrast the features of three basic supervised DL models: DNN, CNN and RNN.
Deep Neural Networks (DNN). As previously mentioned, a deep neural network (DNN ) is an ANN with more than one

hidden layer, and hence it is also called multilayer perceptron (MLP). Compared with ANN with a single hidden layer,
DNN has more powerful modelling capabilities and its deep structure makes it easier for it to learn higher-level semantic
features, which is crucial for classi�cation tasks on complex data. However, for high-dimensional unstructured input
data (such as images), there may be many model parameters to be estimated, and in this case, over�tting may occur if
there is not enough labelled data. Nevertheless, generally DNN has decent performance when input dimensionality is
not extremely high, and it has been successfully applied to various applications, for example human action recognition
[274], tra�c congestion prediction[75] and healthcare[203].

Convolutional Neural Network (CNN). When it comes to high-dimensional unstructured data such as images, in
visual recognition tasks it is hard to directly map the raw image pixels into target labels due to the complex non-linear
relationship. The traditional way is to perform feature engineering, which is normally a trial-and-error process, and
may require domain knowledge in certain circumstances, before TML is applied. This heuristic approach is normally
time-consuming, and there exist substantial recognition errors even in simple tasks since it is very challenging to
hand-engineer the high-level semantic features. CNN, a deep neural network with convolutional layers and pooling
layers, can address this issue e�ectively. The convolution operation can extract the higher level features while the
pooling operation can keep the most informative responses and reduce the dimensionality. Compared with DNN, the
weight sharing concept (of the convolution operation) enables CNN to capture the local pattern without su�ering from
the “curse of high-dimensionality” from the input. These operations and the hierarchical nature make CNN a powerful
tool for extracting high-level semantic representations from raw image pixels directly, and successfully applied to
various recognition tasks such as object recognition, image segmentation [89] and object detection [117]. Because
of the decent performance on various visual analysis tasks, CNN is usually considered as the �rst choice for some
camera-based IoT applications, for example tra�c sign detection [248].

Recurrent Neural Networks (RNN). Nowadays, with the increasing amount of generated stream and sequential data
from various sensors, time series analysis has become popular among the machine learning (ML) community. RNN is
a sequential modelling technique that can e�ectively combine the temporal information and current signal into the
hidden units for time-series classi�cation/prediction. An improved RNN named Long Short Term Memory (LSTM) [122],
including complex gates and memory cells within the hidden units for “better memories”, became popular in various
applications such as speech recognition [104], video analysis [273], language translation [177], activity recognition [108]
etc. Since data streaming is most common in the IoT environment, RNN (LSTM) is deemed as one of the most powerful
modelling techniques, and there are various IoT applications such as smart assistant [91, 274], smart car navigator

system [136], malware threat hunting [111], network tra�c forecasting [225], equipment condition forecasting [315],
energy demand prediction system [200], load forecasting [152], etc.

Unsupervised DL. Two unsupervised DL models are hereby introduced:Autoencoder (AE) [15] and Generative Adver-

sarial Network (GAN) [100]. Without requiring any label information, AE can extract compact features and reconstruct
original (high-dimensional) data with the extracted features. It is normally used for dimensionality reduction, latent
distribution analysis or outlier detection. GAN, on the other hand, applies an adversarial process to learn the “real”
distribution from the input data. More precisely, GAN consists of two parts, namely generator and discriminator. The



generator aims at generating indistinguishable samples compared to the real data. While the discriminator works
adversarially to distinguish the generated fake samples from the real data. With iterative competition process, GAN
will eventually reach to a state where the generated samples are indistinguishable from the real data. The learnt "real"
distribution can be used to generate samples for di�erent purposes. Both AE and GAN are powerful and promising tools
for computer vision as well as IoT applications. AE can be used for diagnosis/fault detection tasks [57, 205] or simply as
a preprocessing tool (i.e., feature extraction/dimensionality reduction). GAN has been used for studies on generating
rare category samples, and this upsampling approach may further improve the model performance [318, 319].

Discussion. The aforementioned DL models can be e�ective tools for processing di�erent unstructured data types.
The way of applying them is generally very �exible, and they can be used jointly to process the complex data from
various sources in the IoT environments. For example, although CNN /RNN could be used in an end-to-end manner
(e.g., as image/time-series classi�ers), they could also be used as feature extractors, based on which one can easily
aggregate features extracted from di�erent sources (e.g., audio, images, sensor data). With high-dimensional video data,
one can either model by training CNN+ LSTM jointly [278], or use CNN /AE as feature extractors, before the sequential
modelling (e.g., using LSTM). However, when modelling the data with limited labels (e.g., rare event), one needs to
consider the potential over�tting e�ect when using DL directly. One may go back to the TML approaches or use some
upsampling techniques (e.g., GAN ) to alleviate this e�ect.

2.1.4 Reinforcement Learning (RL). In this section, we �rst introduce the strategies used to formulate the aforementioned
video streaming example (see §2) with Reinforcement Learning (RL). As mentioned earlier, in RL an agent interacts with
the environment, learning an optimal control policy through experience. It requires three key elements, observation,
action, and reward. Based on these, we can formulate the adaptive bitrate streaming problem. Speci�cally, observation
can be the bu�er occupancy, network throughput, etc. At each step, the agent decides the bitrate of the next chunk.
A reward (for example the quality of service feedback from the user) is received after the agent takes action (chunk
bitrate). The algorithm proposed in [183] collects and generalizes the results of performing the past decisions and
optimizes its policy from di�erent network conditions. This RL-based algorithm can also make the system robust to
various environmental noises such as unseen network conditions, video properties, etc.

As shown in Fig. 8, there is a plethora of algorithms in the whole reinforcement learning family. More details of
these RL algorithms can be found in the RL methods in Appendix B, and here we focus on selecting appropriate RL
algorithms based on di�erent selection criteria.
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Environment Modelling Cost In RL modelling, sample e�ciency is one of the major challenges. Normally the RL
agent can interact either with the real world or a simulated environment during training. However, it can be di�cult to
simulate the heterogeneous IoT environments and complex IoT devices. RL models can also be trained directly in real
world IoT environments, yet one major limitation is the heavy training cost, which may range from seconds to minutes
for each step. The model-based RL method, a method that can reduce the sample complexity, can decrease the training
time signi�cantly. It �rst learns a predictive model of the real world, based on which the decisions can be made. When



compared with model-free approaches, model-based methods are still in their infancy, and because of the e�ciency
property, they may attract more attention in the near future.

Action Space: The action space of RL algorithms can be either continuous or discrete. For those RL algorithms with
discrete action space, they choose from a �nite number of actions at runtime. Take the video streaming task for example,
the action space is di�erent bitrates for each chunk. Another task formulated in discrete action space can be found
in [182], where the action space is the “schedule of the job at i-th slot”. Available algorithms for discrete action space
tasks most reside in the policy gradient group, for example DQN, DDQN. The continuous action space, on the other
hand, is in�nite for all possible actions. Relationships exist between the actions that are usually sampled from certain
distributions such as Gaussian distribution. For example, in an energy-harvesting management system, PPO algorithm
[238] is used to control IoT nodes for power allocation. The action space, as stated in [201], is sampled from a Gaussian
distribution to denote the load of each node ranging from 0% to 100%. Similarly, in another work [7] that studied energy
harvesting WSNs, the Actor-Critic [150] algorithm is implemented to control the packet rate during transmission. One
advantage of continuous action space lies in its ability to accurately control the system, thus a higher QoE is expected.

2.2 Model Generation

Based on the user requirement and task speci�cation, we have selected a variety of models. Next, the models need to be
developed and implemented. In this section, we will introduce the available tools for the development. We will also
present the approaches that can be utilized to accelerate the training process.

2.2.1 Machine Learning Development Framework. The training and execution of ML models can be tricky and it may
require numerous engineering e�orts. E�orts have been devoted to developing frameworks to support the model
development. These frameworks have their own strengths and weaknesses in terms of the supported models, usability,
scalability, etc. In this section, we will review several development frameworks.

For TML, the most famous development framework is Sci-kit learn. It is a free ML library with Python interface.
Sci-kit learn supports almost all main-stream machine learning models and is a popular tool for fast prototyping. For
DL, we list some of the most popular DL frameworks and discuss their pros and cons in Table 1. Users can choose the
most suitable frameworks based on their needs.

DL
frameworks

Core
language Interface Pros Cons

Tensor�ow (2) C++ Python, Javascript,
C++, Java, Go

- E�ective data visualization
- Distributed learning
- E�cient model serving
- On-device inference with low latency for
mobile devices
- Eager Execution with TF2, easy to debug

- Steep learning curve (migration from TF 1 to
TF 2)
- Poor results for speed

Pytorch C/C++ Python, C++ - Simple and transparent modeling
- Eager execution - Hard to serve even with ONNX support

Ca�e (2) C++ Python, C++ - Fast, scalable, and lightweight
- Server optimized inference

- Limited community support
- Limited in implementing complex networks

Mxnet C++ Python, C++, Java,
Julia, R, Perl, Clojure

- Fast, �exible, and e�cient in terms
of running DL algorithms
- Run on any device
- Easy model serving
- Highly scalable

- Smaller community compared with Tensor�ow
or Pytorch

DL4J Java Java, Clojure, Kotlin - Robust, �exible and e�ective
- Works with Apache Hadoop and Spark

- Robust, �exible and e�ective
- Works with Apache Hadoop and Spark

Table 1. Comparison of Deep Learning Frameworks

When IoT comes into context, more challenges arise with edge computing as it is trying to move the computation
close where the data is generated [245]. The device heterogeneity of edge computing has made the development of



the DL models more complicated. There are many portable Edge computing devices, each optimized with di�erent
inference engines. For example Nvidia Jetson series GPU computing unit compiles models with TensorRT inference
engine while TensorFlow Lite is specially optimized for Google coral TPU. These inference engines optimize the model
graph and quantize the model parameters to lower precision, thus delivering low latency and high-throughput for
on-device inference. Some attempts [269] have been made to integrate both inference engines but the compatibility
issue still exists. TVM [49] breaks the boundaries among diverse hardware, aiming at cross-framework and cross-device
end-to-end optimization of DL models.

2.2.2 Single Machine Learning (Centralized). Model training via single machine is a common strategy for ML model
generation. By placing the learning-related computation in the same place, the model learns from the data and updates its
parameters. In this subsection, we highlight two approaches that leverage hardware for the training process acceleration:
Computation Optimization, Algorithm Optmization.

Computation Optimization The basic computation unit of neural networks consists of vector-vector, vector-matrix and
matrix-matrix operations. E�cient implementation of computations can accelerate the training and inference process.
The Basic Linear Algebra Subprogram (BLAS) standardizes the building blocks for basic vector, matrix operations.
A higher level linear algebra library such as cuBLAS implements BLAS on top of NVIDIA CUDA and is e�cient in
utilizing the GPU computation resource. Intel Math Kernel Library (MKL) on the other hand, maximizes performance
on Intel processors and is compatible with BLAS without the change of code.

Di�erent DL architectures (e.g., DNNs, CNNs and RNNs) may require di�erent optimizations in terms of basic
computations. The DNN computation is usually basic matrix-matrix multiplication and the aforementioned BLAS
libraries can e�ciently accelerate the computations with GPU resources. The CNNs and RNNs are di�erent in their
convolution and recurrent computations. Convolutions can not fully utilize themulti-core processors and the acceleration
can be achieved by unrolling the convolution [45] to matrix-matrix computation or computing convolutions as point-
wise product [185]. For RNN (LSTM), the complex gate structures and consecutive recurrent layers di�er from the DNNs
and CNNs in that these computation units can not be split and deployed directly at di�erent devices. This has made
parallel computation di�cult to apply. Optimization is possible though, with implementations on top of NVIDIA cuDNN
[52]. Computations among the same gates can be grouped into larger matrix operations [8] and save intermediate steps.
We can also accelerate by caching RNN units’ weights with the GPU’s inverted memory hierarchy [76]. The weights
are reusable between time steps, making a maximum 30× speed up on a TitanX GPU.

Algorithm Optimization Apart from the resource utilization optimization, the algorithmic level optimization is
another important research direction for e�cient model training and faster convergence. Optimization algorithms aim
at minimizing/maximizing a loss function that varies for di�erent machine learning tasks. They can be divided into two
categories: First Order Optimization and Second Order Optimization.

First Order Optimization methods minimizing/maximizing the loss function with the gradient values with respect
to the model parameters. Gradient Descent is one of the most important algorithms for neural networks. After back-
propagation from the loss function, the model parameters are updated towards the opposite direction of the gradient.
Gradient descent approaches fall into local optima when the absolute value is either too big or too small. Also it
updates the gradient of the whole data set at one time, memory limitation is always a big problem. Variants have been
proposed to address the aforementioned problems, including Stochastic gradient descent [32], mini-batch gradient
descent [73]. Also, much famous research enables faster model convergence: Momentum [218], AdaGrad [82], RMSProp
[119], ADAM [148]. Second Order Optimization methods take second order derivative for minimizing/maximizing loss



function. Compared to the First Order Optimization, it consumes more computation power and is less popular for
machine learning model training. However, Second Order Optimization considers the surface curvature performance
and is less likely to get stuck on saddle points. Thus it sometimes outperforms the First Order Optimization. Famous
Second Order Optimization methods include [12, 40, 118, 198, 206]. For more systematic survey on the optimization
methods for machine learning training, one can refer to [33].

2.2.3 Distributed Machine Learning. Modern ML models such as neural networks require a substantial amount of data
for the training process. These data are usually aggregated and stored in the cloud server where training happens.
However, when the training process of large volume data outpaces the computing power of a single machine, we need
to leverage multiple machines available in the server cluster. This requires the development of novel distributed ML
systems and parallel training mechanisms which distribute and accelerate the machine learning workload.
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Fig. 9. Distributed Machine Learning Pipeline

Fig 9 shows the schematic diagram of a distributed ML pipeline. It has multiple components which are engaged in
Training Concurrency, Single Machine Optimization, and Distributed System. In Training Concurrency, either the models
or the data are split into small chunks and placed on di�erent devices. With Single Machine Optimization (which shares
similar techniques as conventional ML, see § 2.2.2) that accelerates the training process, we get all local gradient updates.
Finally, Distributed System discusses strategies that e�ciently aggregate the gradient updates.

Training Concurrency in Distributed ML. In the distributed machine learning, the selection of parallel strategy
depends on two factors: data size and model size. When either the datasets or the model parameters are too big for
single-machine processing, it is straightforward to consider partitioning them into smaller chunks for processing at
di�erent places. Here we �rst introduce two basic methods data parallel, model parallel. We also introduce pipeline
parallel and other hybrid approaches that take advantage of both approaches.

Data Parallel. In a multi-core system where a single core can not store all the data, data parallel is considered by
either splitting the data samples or the features. Data parallel has been successfully applied to numerous machine
learning algorithms [58] with each core working independently on a subset of data. It can be used for training ML
algorithm for example decision trees and other linear models where the features are relatively independent. Parallel
with the split of data features, though, it can not be used directly with neural networks because di�erent dimensions of
the features are highly correlated.

In deep learning, data parallel works by distributing the training dataset across di�erent GPU units. The dominant
data parallel approach is batch parallelism where mini-batch SGD is employed to compute local gradient updates on a
subset of the data. A central server is responsible for aggregating all local updates to global parameter and pushing
new models back to the working units. One of the earliest works trained with GPUs can be found in [224] where
the authors implemented distributed mini-batch SGD unsupervised learning concurrently with thousands of threads



in a single GPU. By varying the batch size [102, 255, 302], this method is e�ective in reducing the communication
cost without too much accuracy loss. In the next paragraph, we will discuss more about the parallel SGD algorithms
[187, 259, 304, 312, 325] for improving the communication e�ciency, which can be seen as one way of improving the
performance of data parallelism. Another type of data parallel that addresses the memory limit on single GPU is spatial
parallelism [141]. Spatial parallelism considers partitioning spatial tensors into smaller subdivisions and allocating them
to separate processing units. It thus di�ers from batch parallelism in that the latter puts the groups of data in the same
process. Spatial parallelism approach has proven to show near linear speedup on modern multi-GPU systems.

Model Parallel. Data parallel su�ers from the infeasibility of dealing with very large models especially when it
exceeds the capacity of a single node. Model parallel addresses this problem by splitting the model with only a subset of
the whole model running on each node [35, 72, 147, 160]. The computation graphs can be divided within the layers
(horizontal) or across the layers (vertical). Mesh-tensor�ow [244] allows linear within-layer scaling of model parameters
across multiple devices after compiling a computation graph into a SPMD program. However, this approach requires
high communication cost as it needs to split and combine model updates across a large number of units. [134] introduced
decoupled parallel backpropagation to break the sequential limitation of the back-propagation between the nodes,
greatly increasing the training speed without much accuracy loss. For CNN, as each layer can be speci�ed as �ve
dimensions including: samples, height, width, channels, and �lters, existing literature [79, 80] studies the split of models
among dimensions. Another research direction that optimizes the communication overhead is by searching the optimal
partition and device placement of computation graphs via reinforcement learning [193]. The literature [140, 284]
followed this idea and shows interest in automatic search of optimal parallel strategies.

Pipeline Parallel. Although model parallel has proven successful in training extremely large models, the implemen-
tation is complicated due to the complexity of the neural network structure. This is especially true for CNNs since
the convolution operators are highly correlated. Also, GPU utilization is low for model parallel. Due to the gradient
interdependence between di�erent partitions, usually only one GPU is in use each time. To solve the aforementioned
problems, pipelining has been studied [213, 293] for speeding up the model training. With pipeline parallel, models
are partitioned and displayed across di�erent GPUs. Then mini-batches of training data are injected to the pipeline
for concurrent processing of di�erent inputs at the same time. Fewer worker GPUs are idle in the pipeline parallel
setting as each node is allocated jobs, without waiting for other nodes to �nish their work. According to the synchro-
nization strategy we discussed earlier, gradients are aggregated by either synchronous pipeline model (GPipe [132]) or
asynchronous pipeline model (PipeDream [115], SpecTrain [46], XPipe [107]). Theoretical analysis of pipeline parallel
optimzation has also been studied and with Pipeline Parallel Random Smoothing (PPRS) [60], convergence rates can be
further accelerated.

Hybrid. Data and model parallel are not mutually exclusive. Hybrid approaches that combine the bene�ts of both
methods are e�ective in further accelerating the training process. Pipeline parallel [115, 132] can be seen as an approach
built on top of data parallel and model parallel. Apart from that, [154] proposed combining data parallel and model
parallel for di�erent types of operators. With data parallel for CNN layers and model parallel for DNN layers, it achieved
a 6.25× speed up with only 1% of accuracy loss on eight GPUs. Another implementation MAPS-Multi [18] borrows the
idea of [154] and automates the partitioning of workload among multiple GPUs, achieving 3.12× speed up on four GTX
780 GPUs. Other forms of data parallel and model parallel hybrids exist in the literature [53, 72, 95, 96] that reduce the
overall communication and computation overhead.



Distributed ML System.When we have acquired a local model update with partial data slice, multi-node and multi-
thread collaboration are important for e�ectively updating the model. Network communication plays an important role
in sharing the information across the nodes. In this section, we present the three most important features in network
communication: 1) network topology, 2) synchronization strategy and 3) communication e�ciency.
Network Topology. The network topology de�nes the node connection approach in the distributed machine learning
system. When the data and models are relatively simple, it is common to utilize existing Message Passing Interface
(MPI) or MapReduce infrastructure for the training. Later when the systems are becoming more and more complex,
new topologies should be designed to facilitate the parameter update.

The Iterative MapReduce (IMR) or AllReduce approaches are commonly used for synchronous data parallel training.
Typical IMR engines (for example the Spark MLlib [190]) generalizes MapReduce and enables the iterative training
required by most ML algorithms. Synchronous training can also be implemented by AllReduce topology. MPI (Message
Passing Interface) supports AllReduce and is e�cient for CPU-CPU communication. Many researchers implement their
own version of AllReduce for example Ca�e2 Gloo, Baidu Ring AllReduce. In the ring-Allreduce topology, all nodes
connect to each other without a central server, just like a ring. The training gradients are aggregated through their
neighbors on the ring. To provide more e�cient communication for DL workload in the GPU cluster, libraries such as
Nvidia NCCL [62] are developed and support the AllReduce topology. In NCCL2 [138], the multi-node distribution
feature is also introduced. Horovod [240] replaces the Baidu ring-Allreduce backendwith NCCL2 for e�cient distribution.

A Parameter Server (PS) infrastructure [166] is usually composed of a set of worker nodes and a server node which
gathers and distributes computation from worker nodes. As asynchronous training of PS neglects stragglers, it provides
better fault tolerance capability when some of the nodes break down. Parameter server also features high scalability and
�exibility. Users can add nodes to the cluster without restarting the cluster. Famous projects such as DMTK Microsoft
Multiverso [84], Petuum [295] and DistBelief [72] enable training of even larger networks.
Synchronization Strategy. In distributed ML, model parameter synchronization between worker nodes is cost-extensive.
The trade-o� between the communication and the fresher updates has great impact on the parallelism e�ciency.

Bulk Synchronous Parallel (BSP) [186] is the simplest strategy for ensuring model consistency of all worker nodes.
For each training iteration, all nodes wait for the last (slowest) node to �nish the computation and the next iteration
does not start before the all the model updates are aggregated. Total Asynchronous Parallel (TAP) [72] approaches are
proposed to address the problem of the stragglers within the network. With TAP, all worker nodes access the global
model via a shared memory. They can pull and update global model parameters any time when the training is �nished.
As there is no update barrier for this approach, the system fault tolerance is greatly improved. However, stale model
updates can not guarantee convergence to global optimum. Many famous frameworks use the TAP strategy, including
Hogwild! [229] and Cyclades [207].

Stale Synchronous Parallel (SSP) [121] compromises between fully-synchronous and asynchronous schemes. It allows
a maximum staleness by allowing faster working nodes to read global parameters without waiting for slower nodes.
As a result, the workers spend more time doing valuable computation, thereby improving the training speed greatly.
But when there is too much staleness within the system, the convergence speed can be signi�cantly reduced. Many
state-of-the-art distributed training systems implement BSP and SSP for e�cient parallelism, for example tensor�ow
[1], Geeps [67], Petuum [295].

In contrast to the SSP which limits the staleness of the model update, the Approximate Synchronous Parallel [127]
(ASP) limits the correctness. In Gaia [127], for each local model updates, the global parameter is aggregated only if



the parameter change exceeds a prede�ned threshold. This “signi�cance" only strategy eliminates unnecessary model
update and is e�cient in utilizing the limited bandwidth. However, the empirical determination of threshold only
considers the network tra�c and is insu�cient for dealing with dynamics in the IoT environment. [285] has addressed
this problem by also considering resource constraints for e�cient parallelism.
Communication E�ciency. Communication overhead is the key and often the bottleneck in distributed machine learning
[167]. The sequential optimization algorithms implemented in the worker nodes require frequent read and write from the
global shared parameters which poses great challenge on balancing network bandwidth and communication frequency.
To increase the communication e�ciency, we can either reduce the size of the model gradient (communication content)
or the communication frequency.

Communication content. The gradient size between working nodes is correlated to both the model size itself and the
gradient compression rate. We have reviewed four types ofmodel compression techniques in §2.3.2 which are e�ective in
reducing the overall gradient size. Hereby we focus on the techniques that compress the gradient before transmission,
discusses the gradient quantization and sparsi�cation.

Gradient quantization di�ers from the weight quantization (§2.3.2) as the former compresses the gradient transmission
between worker nodes while the latter focuses on faster inference via smaller model size. Works that reduce the gradient
precision [71] have been proposed and 1-bit quantization [239, 261] is e�ective in greatly reducing the computation
overhead. Based on the idea, QSGD [6] and Terngrad [288] consider stochastic quantization where gradients are
randomly rounded to lower precision. Additionally, weight quantization and gradient quantization can also be combined
[125, 133, 292, 311, 323] for e�cient on device acceleration.

The weights of the DNNs are usually sparse and due to the large number of unchanged weights in each iteration, the
gradient updates are even more sparse. This sparsi�cation nature of the gradient transmission has been utilized for more
e�cient communication. Gradient sparsi�cation works by sending only important gradients when exceeding a �xed
threshold [261] or adaptive threshold [81]. Gradient Dropping [3] uses layer normalization to keep the convergence
speed. DGC [171] uses local gradient clipping for sending important gradients �rst while the less important ones are
aggregated with momentum correction for later transmission.

Communication Frequency. Local (Parallel) SGD [187, 259, 304, 312, 325] entails performing local updates several
times before parameter aggregation. Motivated by reducing the inter-node communication, this approach is also called
model averaging. One-shot averaging [187, 325] considers only one aggregation during the whole training process.
While [312] argues that one-shot averaging can cause inaccuracy and proposes more frequent communications, many
works [170, 216, 303, 314] prove the applicability of the model averaging approach in various deep learning applications.
In an asynchronous setting, the communication frequency can also be maneuvered through the push and pull operations
in the worker nodes. DistBelief [72] has adopted this approach with a larger push interval compared to the pull interval.

2.2.4 Federated Learning. In traditional distributed machine learning, the training usually happens on the cloud data
center with aggregated training data generated by collecting, labelling and shu�ing raw data. The training data is thus
considered identical and independent distributed (IID) and balanced. This facilitates the training process as one only
needs to consider distributing the training task across various computation units and updating the model by aggregating
all local gradient updates. However, this is not the case when IoT comes into play. The ML-based IoT applications di�er
from the traditional ML applications in that they usually generate data from heterogeneous geo-distributed devices
(e.g., user behavior data from mobile phones). These data can be privacy-sensitive as users usually prefer not to leak



personal information, making conventional distributed ML algorithms infeasible for solving such problems. Thus novel
optimziation techniques are required to enable training in such scenarios.

Federated learning (FL) [151] is a type of distributed machine learning research that moves the training close to
the distributed IoT devices. It learns a global model by aggregating local gradient updates and does not require the
movement of the raw data to the cloud center. FederatedAveraging (FedAvg) [188] is a decentralized learning algorithm
speci�cally designed for the FL. It implements synchronous local SGD [47] on each device with a global server averaging
over a fraction of all the model updates per iteration. FedAvg is capable of training high-accuracy models on various
datasets with many fewer communication rounds. Following this work, [151] proposed two approaches: Structured
updates and sketched updates for reducing the communication cost, achieving higher communication e�ciency. Further
research addresses the privacy limitation of FL by Di�erential Privacy [189] and Secure Aggregation [30]. Finally, [29]
delivers system-level implementation of FL based on previously mentioned techniques. It is able to train deep learning
models with local data stored on mobile phones.

FL is still developing rapidly with many challenges remaining to be solved. On the one hand, FL shares similar
challenges as in conventional distributed machine learning methods in terms of more e�cient communication protocol,
synchronization strategy as well as parallel optimziation algorithms. On the other hand, the distinct setting of FL
requires more research preserving the privacy of training data, ensuring the fairness and addressing bias in the data.
For a more thorough survey on details of FL, one can refer to [144].

2.2.5 Knowledge Transfer Learning. The knowledge learnt from trained models can be transferred and adapt to new
tasks. This is especially helpful in IoT environments where usually limited data/labels are available. In this section
we introduce four types of knowledge transfer learning (KTL) approaches: Transfer learning, Meta learning, Online
learning and Continual learning.

Transfer Learning [266] — transferring knowledge across datasets— is the most popular KTL approach. It trains a
model in the source domain (with adequate data/labels, e.g., on ImageNet [74] for general visual recognition tasks), and
�ne-tunes the model parameters in the target domain to accommodate the new tasks (e.g., medical imaging analysis on
rare diseases). The rationale behind is that low-level and mid-level features can be representative enough and thus
shared across di�erent domains. In this case, only the parameters related to high-level feature extraction need to be
updated. This mechanism does not require a large amount of data annotation for learning reliable representation
in the new tasks, which could be useful in cases when annotations are expensive (e.g., medical applications). Meta
Learning [277] is another popular KTL approach; instead of transferring knowledge across datasets, it focuses on
knowledge transfer across tasks. Meta learning means learning knowledge or patterns from a large number of tasks,
then transfer this knowledge for more e�cient learning of new tasks. When with continuous data streaming, it is also
desirable to update the model with incoming data, and in this case Online Learning [124] can be used. However, it is
di�cult to model when the incoming data is from a di�erent distribution or a di�erent task. Most recently, Continual
Learning[210] was proposed to address this issue. Not only can it accommodate the new tasks or data with unknown
distribution, it can also maintain the performance on the old/historical tasks (i.e., no forgetting [145]), making it a
practical tool for real-world IoT applications. These four KTL approaches are similar in concept yet have di�erent use
cases. Transfer/Meta learning are focused on knowledge transfer across datasets or tasks (irrespective of data types),
while online/continuous learning are more suitable for data streaming and can transfer the knowledge continuously to
the new incoming data or tasks.



2.2.6 Discussion. E�ort has been devoted to implementing the distributed machine learning on top of modern deep
learning frameworks. Remarkable results have been achieved where with proper implementation [102] with Tensor�ow,
the training time of the state-of-art ImageNet can be reduced from days to one hour. Compared with Tensor�ow, more
e�cient implementation such as Horovod can increase the GPU utilization for even more acceleration. Horovod has
already been incorporated in various deep learning framework ecosystems (e.g., Pytorch, Mxnet).

Deep learning ecosystems free the researcher from heavy implementation e�ort. There are however, challenges
for model generation in a distributed setting: (1) The choice of hardware. The same implementation can have di�erent
performance on di�erent devices. One would have to be aware of the device features for e�cient acceleration. (2) Parallel
hyperparameter tuning strategy. Compared with single machine training, the distributed system is more complex and it
is thus more di�cult to �nd an optimal structure. (3) E�ective work of DL frameworks with other big data application like

Hadoop/Spark. Existing big data frameworks (e.g., Spark/Hadoop) can also be applied for e�ectively distributing the DL
training pipeline, and a deeper integration of both frameworks is urgently required.

2.3 Model Optimization

We have discussed the model selection and model generation where a model is generated catering to the speci�c needs
of IoT applications. There are, however, still things to be considered before model deployment. The IoT application
di�ers signi�cantly from other areas in terms of deployment devices and data sources. The limited computational
budget of edge devices requires smaller models for small-scale computational workload to ensure low inference latency.
Also, heterogeneous data sources in IoT environments usually contain redundant information that can even mislead
the decision of the ML models. It is important to select only relevant and informative features or to perform model
compression for performance optimization. In this section, we discuss these two topics.

2.3.1 Feature Selection. The high-dimensional data in IoT environments poses challenges on the training of the ML
algorithms. Noisy and redundant signals exist and may consume substantial computational power. Feature selection can
help reducing the computational complexity, improve the performance in terms of both e�ectiveness and e�ciency—
crucial factors in the limited-resource IoT environments. Brie�y, feature selection is the process of preserving relevant
features while discarding irrelevant/redundant features. There are generally three categories of feature selection, namely
the Filter approach [16, 69, 112], the Wrapper approach [98, 110, 143, 184] and the Embedded approach [37, 223].

For future research, one could extend the single-object optimization to multi-object optimization. For example in
IoT systems, optimal feature selection algorithms assist the machine learning models to optimize the execution time.
We can explore the modi�cations of the feature selection algorithm to minimize the energy consumption of routing
decisions as well [83]. One can also study how to detect the dynamics within the data �ow and then adaptively apply
the search algorithms accordingly to further improve the performance of the feature selection algorithms.

2.3.2 Model e�iciency. The state-of-the-art DL models often require high computational resources beyond the capabili-
ties of IoT devices. Models that perform well on large CPU and GPU clusters may su�er from unacceptable inference
latency or even be unable to run on edge devices (e.g. Raspberry Pi). Tuning the deep neural network architectures to
increase the e�ciency without sacri�cing much accuracy has been an active research area. In this section, we cover
three main optimization directions: E�cient architecture design, Neural architecture search and Model compression.

E�cient architecture design. There exist neural networks that can speci�cally match the resource and application
constraints. They aim to explore highly e�cient basic architecture specially designed for platforms such as mobiles,



robots as well as other IoT devices. MobileNets [126] is among the most famous works and proposed to use depth-wise
separable convolutions [250] to build CNN models. By controlling the network hyper-parameters, MobileNets can strike
an optimal balance between the accuracy and the constraints (e.g., computing resources). Later in MobileNetv2 [237],
the inverted residual with linear bottleneck architecture was introduced to signi�cantly reduce the operations and
memory usage. Other important works include Xception [56] Shu�eNet [317], Shu�eNetv2 [178], CondenseNet [131].
These neural networks optimize on-device inference performance via e�cient design of building blocks, achieving
much less computational complexity while keeping or even raising accuracy on various computer vision datasets. Some
work even outperforms the neural architectures generated through exhaustive automatic model search. Also, di�erent
building blocks can be combined together for even lighter models.

Neural architecture search (NAS). Another research direction named neural architecture search aims at searching
an optimal network structure in a prede�ned search space. There are usually three types of algorithms: reinforcement
learning approach [172, 214], Genetic Algorithm (GA) based [173, 228], and other algorithms [13, 39].

The models generated by these methods are normally constrained to smaller model sizes. Model size and operation
quality are the two most common metrics to be optimized, over other metrics such as inference time or power
consumption. Representative works including MONAS [128], DPP-Net [77], RENA [324], Pareto-NASH [85] and
MnasNet [267] are interested in �nding the best model architectures to meet these constraints. These approaches
are more straightforward as they optimize directly over real world performance. However, one drawback of NAS is
the extensive computing power required for �nding the optimal neural architectures. Thus, the already generated
architectures can be utilized as guidance for future design for more e�cient neural network architecture.

Model Compression. As modern state-of-art DL models can be very large, reducing the model computation cost is
crucial for deploying the models on IoT devices, especially for those latency-sensitive real-time applications. Model
compression methods can be divided into four categories: 1) Parameter pruning and sharing that removes the redundant
parameters [64, 109, 227, 276]. 2) Low-rank factorization that decomposes the CNN or DNN tensors to lower ranks [159].
3) Transferred/compact convolutional �lters that reduces the memory consumption by implementing special structural
convolutional �lters [161, 243, 307]. 4) Knowledge distillation that learns a new, more compact model that mimics the
function presented by the original complex DL model [14, 120, 234, 306].

Types of model compression techniques have their own strengths and weaknesses and thus optimal choice is based
on speci�c user requirements. Parameter pruning and sharing methods are the most commonly applied techniques for
compression models from original models. It is stable as with proper tuning, this approach usually delivers no or few
accuracy losses. On the other hand, Transferred/compact convolutional �lters methods address the compression from
scratch. This end-to-end e�cient design for improving the CNN performance approach shares similar insights to the
e�cient neural architecture design approach as we discussed earlier. Knowledge distillation methods are promising when
working with relatively small datasets as the student model can bene�t from the teacher model with less data. All these
methods are not mutually exclusive, we can make combinations based on speci�c use cases to optimize the models that
are more suitable for low-resource IoT devices.

2.4 Model Evaluation

After the models have been trained, based on suitable metrics their performance should be evaluated before deployment.
Accuracy is one of the most popular evaluation metrics in classi�cation tasks, yet it faces several problems in di�erent
scenarios. For example, it is an overall measure without indicating the recognition capability for each class, which



may be heavily biased if there exists a signi�cant class imbalance problem. There are various evaluation metrics and it
is key to select the most appropriate one. For the rest of this section we investigate several widely used metrics for
classi�cation and regression tasks. For classi�cation/regression tasks, one aims to construct a model (i.e. f (·)) that can
predict the value of dependent variable Y from independent variable X . The di�erence between these two tasks is the
fact that the dependent variable Y is numerical for regression and categorical for classi�cation.

2.4.1 Classification Problem based metric. In classi�cation tasks, one of the most e�ective evaluation metrics is a
confusion matrix [271]. As demonstrated in Table 2 for a binary classi�cation task, in a confusion matrix the row
represents the predicted class and the column represents the ground truth (actual class). The entries True Positive (tp) and
True Negative (tn) represent the correctly classi�ed positive and negative samples, while the entries False Negative (f n)
and False Positive (f p) denote the misclassi�ed positive and negative samples, respectively.

Actual Positive Class Actual Negative Class
Predicted Positive Class True Positive (tp) False Negative (f n)
Predicted Negative Class False Positive (f p) True Negative (tn)

Table 2. Confusion Matrix for Classification

Based on the confusion matrix, several evaluation metrics can be derived. The accuracy (i.e., tp+tn
tp+tn+f p+f n ) and error

rate (i.e., f p+f n
tp+tn+f p+f n or 1 − accuracy) are the most commonly used metrics because it is more understandable and

intuitive for humans. However, these two metrics are powerless in terms of class-wise informativeness [179], which
may neglect the minority class [44] (if there is a class imbalance problem).

The metrics precision and recall can be used to measure the performance irrespective of the class imbalance problem
(more de�nitions of classi�cation evaluation metrics can be found in Table 4 in Appendix C). In binary classi�cation
problems, as mentioned earlier tp, f n, f p are de�ned as the the number of “positives correctly classi�ed as positives”,
“positives incorrectly classi�ed as negatives” , “negatives incorrectly classi�ed as positives” respectively. Then we can see
recall (i.e., tp

tp+f n ) indicates the ability of a classi�er to detect (true) positives out of all positive instances, while precision

(i.e., tp
tp+f p ) is the percentage of detected (true) positives out of all the detected ones. Since the binary classi�cation’s

decision may highly depend on the threshold, there is a trade-o� between precision and recall. For example, if a high
threshold has been chosen—the similarity scores (the model outputs) have to be higher to give positive decisions—the
classi�er tends to have high f n and low f p, yielding low recall and high precision. Similarly, reducing the value of the
threshold may increase recall and decrease precision accordingly. For di�erent applications, one needs to consider the
optimal threshold for their requirements. For example, forensic applications may prioritize high precision (i.e., low in
f p) while a medical diagnosis may prioritize high recall (i.e., low in f n).

In some tasks when both recall and precision are important, the F1-score (i.e., 2 precision ·r ecall
precision+r ecall )—a measure that

can balance the precision/recall trade-o�— is normally used. It is worth noting that for multi-class cases, the multi-class
confusion matrix can be calculated, and the aforementioned precision/recall/F1-score can be extended to measure the
class-wise performance. Depending on the data/applications, the overall performance can be measured by aggregating
all the class-wise metrics. Two popular aggregation operations are averaging, and weighted averaging, e.g., mean
F1-score, or weighted F1-score (over all the class-wise F1-scores).

2.4.2 Regression Problem based metric. For regression problems, the evaluation metrics are di�erent from the clas-
si�cation ones. Popular evaluation metrics include Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean
Percentage Error (MPE), etc. Details and formulas of these metrics can be found in Table 5 Appendix C.



Mean Absolute Error (MAE) and Mean Squared Error (MSE) are the simplest metrics for regression evaluation. They
denote the expected model errors de�ned in terms of absolute di�erence and squared di�erence (between the predicted
value and the ground truth), respectively. Alternatively, theMean Absolute Percentage Error (MAPE) andMean Percentage

Error (MPE) can also be applied to regression problems. The MAPE is similar to MAE but more intuitive as it shows
percentage. The MPE lacks the absolute term on MAPE, which means the positive and negative errors will cancel out.
In this case, the MPE can not be directly used to measure the performance of a model. However, it can be used to check
whether the model systematically underestimates (more negative errors) or overestimates (more positive errors).

All of the above metrics can be applied to the regression problem, but it is important to consider the property of
the dataset beforehand. For example, some �elds may (or may not) be more prone to outliers, and the corresponding
(e�ective) evaluation metrics may be di�erent.

3 MODEL DEPLOYMENT

When the ML model development process is �nished, the developed models are to be deployed and composed as an
application in the complex IoT environments. To simplify the deployment, the ML models and underlying infrastructure
need to be speci�ed (§3.1). Next, the optimization techniques can be applied to generate the deployment plans that select
the suitable ML models for the deployment, optimizs the resource utilization of the model deployment and improve the
reusability of the deployed models (§3.2). Once the deployment plans are generated, the models will be deployed over
the speci�ed infrastructure and the deployed models will be composed as de�ned in the plan (§3.3).

3.1 Declarative Machine Learning and Deployment

Declarative ML. Declarative ML aims to use high-level language to specify ML tasks by separating the applications
from the underlying data representation, model training and computing resources. There are three general properties of
declarative ML. First, the high-level speci�cation only considers data types of input, intermediate results and output.
They are exposed as abstract data types without considering the physical representation of the data or how the data
is processed by the underlying ML models. Second, the ML tasks are speci�ed as high-level operations through well-
de�ned semantics. The basic operation primitives and their expected accuracy levels (or con�dence interval) are de�ned
accordingly. Based on the operation semantics, declarative ML systems select the features and underlying ML models
automatically or semi-automatically, optimize the model performance and accuracy for varying data characteristics
and runtime environments. Notably, the selection is based on the available models, provided as services. Finally, the
correctness of the ML models must be satis�ed when a given model produces the equivalent results in any computing
resources with the same input data and con�gurations. As a result, the declarative ML enables execution of the ML
models over various hardware and computation platforms (such as Apache Spark) without any changes. Besides, these
speci�cation languages also bring �exibility and usability in the ML model deployment stage.

SystemML [28] is an implementation of declarative ML on Apache Spark. Through domain-speci�c languages, it
speci�es the ML models as abstract data types and operations, independent of implementation. The system is able
to specify the majority of ML models: matrix factorizations, dimension reduction, classi�cation, descriptive statistics,
clustering and regression. There is also other state-of-the-art research on declarative ML, including TUPAQ [256]
and Columbus [309]. They utilize language speci�cation and modelling technologies to describe the ML models for
automatic model and feature selection, performance and resource optimization, model and data reuse.



Declarative Deployment. Hardware in the IoT environment consists of three basic types of device: data generating
devices, data processing devices and data transferring devices. Data generating devices are also called “Things” (e.g.,
sensors, CCTV) and are used to collect environmental data. Data transferring devices such as router, IoT gateway, base
station are used to transfer the generated data to the data processing devices. Data processing devices are used to run the
analytic jobs. They can be GPU, CPU and TPU servers running in cloud or ARM based edge device such as Raspberry
Pi and Arduino. An ML-based IoT application is usually running across a fully distributed environment, such that it
requires correct speci�cation of the component devices as well as the precise interoperation between these devices.
[252] lists fundamental aspects that may simplify the hardware speci�cation, i.e., processor, clock rate, general purpose
input/output (GPIO), connectivity methods (Wi-Fi, Bluetooth, wired connection) and communication protocols (serial
peripheral interface), universal asynchronous receiver-transmitter (UART).

Regarding the software, it is often categorized into three groups based on operation levels: operating system (OS),
programming language and platform. IoT OS allows users to achieve the basic behavior of a computer within internet-
connected devices. The choice of OS in di�erent layers of the IoT environment depends on the hardware properties
such as memory and CPU. The programming language helps the developers to build various applications in di�erent
working environments with diverse constraints. The choice depends on the capability of devices and the purpose of
the application [41]. The IoT software platform is a system that simpli�es the development and deployment of the
ML-based IoT application. It is an essential element of a huge IoT ecosystem which can be leveraged to connect new
elements to the system. For more details of the most popular OSs, programming languages and platforms in IoT domain,
one can refer to Appendix A. The ML development platforms have been discussed in § 2.2.1.

The heterogeneity of IoT infrastructures makes the deployment very complicated and di�cult to automate. To
overcome this issue, the infrastructure must be described and speci�ed by machine understandable languages. Then,
the declarative deployment systems are able to automatically map the ML models to the infrastructures and generate
the deployment plans that optimize the performance and the accuracy.

The declarative TOSCA model [68] is able to specify the common infrastructures such as Raspberry Pis and cloud
VM (hardware), MQTT and XMPP (communication protocol). The deployment logic can be de�ned through TOSCA

Lifecycle Interface that allows users to customize the deployment steps. However, this declarative model is still very
basic and can not handle complex deployments such as specifying the details of ML based application. Moreover, the IoT
applications consist of installing devices and sensors which require human tasks. These tasks are not natively supported
by any available declarative deployment [38]. The imperative tool (e.g., kubectl commands) allows the technical experts
with diverse knowledge of di�erent deployment systems and APIs to interact with a deployment system and decide
what actions should be taken. However, current imperative frameworks such as Juju, Kubernetes still do not support
interactions such as sensor installation. In future, declarative deployment systems should interact with declarative ML
systems to deploy a complex application over the heterogeneity of IoT infrastructure while supporting the human tasks
through a more human centered imperative deployment model.

3.2 Deployment Optimization

When the infrastructures and deployment work�ow of the ML models are speci�ed, the deployment optimization
problem can be formed as a mathematical expression subject to a set of system constraints. Then, resource allocation
algorithms can be used to e�ciently and precisely �nd the best solution for the given mathematical expressions.
Moreover, the optimization objectives are a set of QoS parameters including storage and memory, budget, task execution
time and communication delay etc,. These algorithms can be divided into two classes based on whether an optimal



solution can be guaranteed: meta-heuristic method and iterative method (or mathematical optimization). Nowadays,
ML methods are becoming popular and being applied to solve these resource allocation problems by learning “good”
solutions from the data. We investigate the representative works in resource allocation based on these three classes.

Iterative-based method. This class of algorithm generates a sequence of improved approximate solutions with
each driven by previous solutions. Eventually, the solutions will converge to an optimal point proved by a rigorous
mathematical analysis. The heuristic-based iterative methods are also very common, categorized as meta-heuristic

based method. The most popular algorithms of this class include newton’s method [180, 181], gradient method [17] and
ellipsoid method [176]. To apply and adapt iterative-based algorithms to optimize resource allocation requires strong
mathematical background, which can be an obstruction for software developers to utilize these algorithms to optimize
their deployment. Furthermore, the algorithms perform for di�erently for di�erent problems in terms of e�ciency and
accuracy. As a result, more algorithms from iterative-based methods need to be studied and simpli�ed by the system
researchers, providing toolkits (or solvers) to tackle di�erent optimization problems in IoT application deployment.

Meta-heuristic basedmethod. The optimization problems in IoT applications can have large search spaces or be time-
sensitive. The meta-heuristic based method is faster than iterative-based method in �nding a near-optimal solution. This
type of method consists of two subclasses: trajectory-based method and population-based method. The trajectory-based
method �nds a suitable solution with a trajectory de�ned in the search space. First, the resource allocation problems are
mapped into a set of search problems such as variable neighborhood search, iterated local search, simulated annealing
and tabu search. Then, the meta-heuristic algorithms are used to �nd the solutions. Many survey papers [114, 174, 253]
have reviewed the algorithms applied for resource allocation in IoT, cloud computing, mobile computing. Additionally,
population-based methods aim to �nd a suitable solution in the search space described as the evolution of a population
of solutions. This method is also called evolutionary computation and the most well-known algorithm is the genetic
algorithm. [308] investigates the resource allocation problems solved by evolutionary approaches in cloud computing.

Machine learning based method.ML based method is inspired by the ability of data to represent the performance
and utilization of the contemporary systems. The ML based methods are used to build data-driven models that allows
the target systems to learn and generate an optimized deployment plan. The proposed algorithms have been used
to optimize various QoS parameters such as latency [183, 299], resource utilization [194], energy consumption [21]
and many others. Zhang et al. [310] have given a comprehensive survey of the ML based methods used for resource
allocation in mobile and wireless networking.

Deployment (or resource allocation) optimization problems have been studied for decades, and remain a huge
legacy for overcoming the optimization problems in deploying ML-based IoT applications. Instead of developing new
optimization algorithms, more e�orts are required to model the complex optimization problems, in which the system
scale, conditions and diversity have been ampli�ed signi�cantly.

3.3 Action and Model Composition

Deployment of ML models in a pipeline requires proper model composition to maximize the user QoS. As shown in
§1.1, a smart car navigator system comprises multiple ML models, including speech recognition, text classi�cation, text
generation and text-to-speech (TTS) model.

Action composition is de�ned by composing a set of basic actions for complex decisions. In a self-driving car operating
system, actions can be accelerating, braking, turning left and right, etc. The combination of various action spaces
increases the di�culties of learning optimal decisions in such complex systems. Hierarchical abstract machines (HAM)



[254] are well studied in the context of reinforcement learning [211, 270] by allowing agents to select from a constrained
list of action spaces, speeding up the learning and adaptation to the new environment.

Model composition aims to create a ML-based IoT application by using reusable, portable, self-contained modules via
inserting new components or removing existing components. Apache Air�ow is an open-source platform for creating,
scheduling and monitoring work�ows in Python. The Valohai operator is an extension of Air�ow that utilizes the
docker container to build self-contained modules for each model while providing the �exibility for users to de�ne the
steps to execute. [146] reported the following challenges for chaining the ML models:

• How to allocate computing resources automatically for di�erent models. An application is chained by various ML
models require di�erent computing resources across heterogeneous infrastructures. It is challenging to provision
the computing resources e�ciently for the chained ML models while meeting their performance requirements.
• How to chain the dependent models. Each individual ML model has its own speci�cation and data format of
the inputs and outputs. The challenge is to design a data messaging system to orchestrate the data �ow across
di�erent models while considering their required speci�cation and data format.
• How to meet the security requirements. The inferences are performed through various components, with each
deployed across di�erent computing resources. This introduces a set of challenges including privacy, veri�cation
of outputs of each model, changing the security policies of components, etc.
• How to monitor failure. The composed application consists of a set of ML models that needs to be monitored,
ensuring that everything is streamlined and executed as anticipated.

Apart from challenges mentioned above, the literature discusses the techniques to improve the performance of
individual models via system con�guration, including model batch size, model replica and system bu�ering.

Per-Model Batch Size. Batching the received user queries optimizes throughput by fully utilizing the features of the
pre-trained models, which is faster than processing one query at a time. However, batching query can potentially
increase latency because the the model will wait for a whole batch of queries to come before it starts to proceed. The
�rst query is not returned until the �nal query is processed [65]. The choice of the per-model batch is challenging due
to the sequential composition between the models.

Model Replica. In heavy or bursting loads, a system must quickly respond to the query �uctuations to meet the
latency requirements. To alleviate the system congestion and achieve high throughput, it is critical to identify the
bottleneck, which can be challenging due to the system dynamics. The bottleneck models can be resolved by replicating
the model instances across multiple devices [66], therefore balancing the workload. However, distributing the queries
across more model replica in a parallel setting [66] is also challenging since the optimal placement depends on the
model performance and the device capacity.

System Bu�ering. Serving system as a stream processing system comprises components across multiple devices.
These devices usually process at di�erent speeds, making system bu�ering across nodes necessary. Message queues are
usually implemented to ensure smooth running within the system. However, bu�ering mechanism would increase the
latency based on various system con�gurations [66]. It is thus challenging to design proper strategies to balance the
message queue overhead and the system latency.

4 MODEL AUDIT

Audit aims to evaluate whether the application is operating e�ectively, safely and reliably with the collected evidence.
To this end, we must know what we should audit. Most work focuses on monitoring or debugging the issues caused by



infrastructure failures [155], implementation bugs [78, 153] and deployment errors [263]. In this section, we investigate
the security, reliability and performance issues caused by ML models, especially DL models.

4.1 Security

There are many surveys regarding IoT security issues and challenges. The security of IoT standardized communication
protocols were evaluated in [103] based on their proposed model. [249] categorized the security issues of IoT into eight

domains including authentication, access control, con�dentiality, privacy, trust, secure middleware, mobile security and
policy enforcement. [233] studied the main challenges and solutions of designing and deploying security mechanisms
in centralized and distributed IoT architectures. [169] discussed the security features of IoT and categorized the attacks
into four layers. i.e., the perception layer, the network layer, and the application layer.

In this subsection, we discuss security issues for deep learning based IoT applications: Model exploratory attack, Data
poisoning attacks and Evasion attacks. Model exploratory attacks do not happen during training, instead the attacker
tries to discover information from the trained model including the model itself and training data. Data poisoning attacks
happen during the training phase, where the attacker attempts to shift the boundary of DL models in their favor
by polluting the training data. Finally, evasion attacks maliciously craft the inputs for the deep learning based IoT
application to trigger abnormal model behavior. Interestingly, the development of the research on adversarial learning
has started an arms race between adversaries and defenders.

The following subsection summarizes the most popular attacks (The defenses can be found in Apendix D) of these
attacks. We also propose research directions for development of robust IoT applications.

4.1.1 Model exploratory a�ack. This type of attack is usually performed on open-source frameworks such as Predictio-
nIO and cloud-based machine learning service. This ML-as-a-service may allow users to input partial feature vectors
while still being able to receive con�dence values in addition to prediction results. Thus, the attacker can leverage this
feature to either extract the model or the sensitive information underlying the model. Model stealing and Membership

leakage are two main types of model exploratory attack. Model stealing attack aims to duplicate the functionality of
the model that allows the attacker to evade detection by the stolen model [10, 204]. [272] proposed a method that
learns the target models via a prediction API. Evaluations show that this method successfully extracts the models
including logistic regression, SVM, neural network and decision tree from BigML and Amazon Web Services. More
attack methods can be created based on the extensive literature on learning theory, e.g., PAC learning [275] and its
variants [19]. Membership leakage attacks are interested in stealing the information from the training data which may
not be publicly available and may contain some sensitive information such as trade secrets, medical records etc. In
this type of attack, an attacker is able to infer the members of the population or the members of the training dataset.
Attacking the members of the population means that the types of data are used to create the model. Therefore, the
target model has not been generalized for the adversary, because he/she has the sample of the entire population of the
training dataset. The attacks were successfully performed in the dataset including voice, handwritten images, network
tra�c, online shopping, record of hospital stays etc [10, 247]. The members of the training dataset attack aim to identify
the individuals whose data are used for training the model, which causes a serious privacy issue. For example, if an
attacker knows that a patient’s medical record was used to train a disease detection model, it also reveals that the
patient has this disease. The experiments in [272] show that the attacks are able to extract the training dataset when
the model is based on kernel logistic regression.
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4.1.2 Data poisoning a�ack. Unlike model exploratory attack, an adversary performs the attacks during the model
training phase. These attacks insert carefully constructed poison instances into the training dataset to manipulate the
performance of a system. We introduce types of data poisoning attacks both in traditional machine learning and deep
learning.

Data poisoning attack in machine learning. (1) supervised learning. A causative attack was proposed by Xiao et al.
against SVMs which utilizes label �ipping to poison the training data [294]. A label �ipping attack attempts to add a
noise label to the training data. These �ipping labels are able to cause some malicious samples to be labeled as legal, or
make legal samples appear to be malicious. To improve the e�ciency of the attack, Biggio and Laskov [23] utilized the
gradient descent algorithm to �nd the best attack points to �ip the labels.

(2) unsupervised learning. The poisoning attack has been demonstrated against various clustering algorithms. The
idea is to introduce carefully crafted data points to the training dataset to cause clusters to merge. In [24, 231], the
authors assumed that the attacker has full knowledge of the clustering algorithm and then reduced the attack to an
optimization problem. The evaluations show that the clustering algorithms are compromised signi�cantly with a very
small percentage of poisoned input data.

Data poisoning attack in deep learning. There are very few data poisoning attacks in neural networks. [258] showed
that a deep learning model lost 11% accuracy after modifying 3% training data. Moreover, if the attacks are focus on
attacking the speci�c test instances, the successful rate, time consumption and required resources (the number of
modi�ed samples) can be reduced signi�cantly [50, 106, 258]. [242, 262] targeted real-world scenarios where the labels
are examined by human reviewers and malware detectors. The authors aimed to over�t the deep learning models by
poisoning the training data. Thus, the target instants (trained models) would not perform well during inference time.

4.1.3 Evasion a�ack. With the explosive development of machine learning, evasion attacks are becoming the most
prevalent type of attack in machine learning, attracting people’s attention from both academia and industry. Fig. 10
shows the arms race between the attacker and defender. It shows that the attacker attempts to confuse the defender
with a crafted adversarial example, while the defender aims to strengthen its ability to �lter out illegitimate input.

During both training and inference, the attacker can generate adversarial examples by modifying the samples. The
training phase modi�cation is similar to data poisoning attacks in that the decision boundary of the defender classi�er
is modi�ed by insertion, modi�cation or deletion of the training dataset. There are two approaches for generating
adversarial samples, white-box or black-box. In the white-box setup, the adversarial samples are crafted based on the
attacker who has access to both the training data and the targeted model. Therefore, an adversary is able to obtain the
boundaries of the targeted model by carefully modifying the training data. To be more explicit, as shown in Fig. 10, the
defender aims to stop using the illegitimate input X to train the itself. In order to fool the defender, the attacker attempts
to learn the boundaries of the defender by adding the perturbations to X and then performing the attack. This process
is repeated until the adversarial samples break the boundaries. The most representative techniques [101, 157, 209] are
based on the attacker who has knowledge of both target model and instance of data. In the black-box setup, the attack
introduced in [208] is not aware of the training data and the targeted model. The only observation of the targeted model
is the inputs and their labels given by the targeted model. Based on this, a local model is trained to replace the target
DNN. 84% of the adversarial examples generated by the local substitute model are misclassi�ed by the targeted DNN.

4.1.4 The system challenges of building a secure ML-based IoT application. Most of the attacks and defenses reviewed in
previous sections focus on developing the algorithms for functional tasks such as computer version, natural language
processing, audio speech processing etc. To build a secure IoT application, we must consider the security issues from
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Fig. 10. Arms race game between the a�acker and the defender. The a�acker takes an illegitimate example (X ) as the input of his/her
neural network and generates an adversarial example (X ′). This example a�empts to fool the defender which is a classification neural
network. If the classifier recognizes the adversarial example as Y which belongs to the legitimate input, it means the a�acker wins
the game. On the contrary, the defender wins the game if the adversarial example is classified as X . When the a�acker fails, it will
try to update its model to generate a stronger adversary example based on the feedback. Similarly, the defender will enhance its
model based on the lesson learned from the successful a�ack.

the system perspective, as the functional tasks cannot perform well when the system is under attack. We discuss two
system challenges to improve the security of ML-based IoT application.

Developing new attacking and defending models.ML has been widely used in IoT system developments including
network engineering [168, 183], resource allocation [162, 298], system debugging [43, 251], network intrusion detection
[149, 175, 280] and network operations[130]. These systems can be exposed to the aforementioned attacks as well. The
literature [2, 87, 113] has revealed successful examples of attacks and defenses. Further to the e�orts on functional tasks,
more research and development (R&D) work is required to improve the security of ML-based IoT applications.

Developing new security platforms/frameworks. We have discussed the arms race game between the attacker
and defender (see Fig. 10). This can be utilized to ensure the resilience of IoT applications to various attacks. At a
high level, an ideal platform would be able to launch various attacks via a prede�ned deployment pipeline to attack
the experimental group. Meanwhile, the attack behaviors and system performance will be monitored to reinforce the
capacity of the defender. To this end, three research questions need to be answered. 1) How to automate the attacks.

Unlike the traditional software deployment problem, deploying attacks is much more complicated. For example in an
evasion attack, the proposed platform must be able to use various ML models to craft the adversarial examples. It is very
di�cult to automate this process. Due to the di�erence between the model inputs and outputs, the models may need to
be retrained based on the observation of the real world to generate better adversarial examples. 2) How to monitor the

attacks. As discussed in previous sections, attacks can happen in data collection, model training and model inference.
Therefore, the traditional log system is not able to handle this complexity. In a data poisoning attack, for instance, the
traditional log system is unable to capture the impact caused by fake data points injection into the system, thus the
training of a defender is unfeasible. 3) How to coordinate the attacker with the defender. At the high level, the arms race
game between the attacker and the defender is very logical. The challenge here is to continuously select the suitable
attacks and thereby improve the defender’s performance. This can be formalized as an optimization problem where one
of the objective is to maximize the ability of a system in defending against certain types of attack.

4.2 Fault Tolerance

Distributed system fault tolerance has been studied for decades. Many works have been proposed to handle the failures
including system architecture [226] and algorithm design [42]. In the IoT environment, the probability of failure increases



signi�cantly with many faults hard to detect. Our previous papers [94, 291] reviewed the state-of-the-art research and
discussed key research directions. In this subsection, we introduce some common faults in IoT-ML applications.

4.2.1 Faults in ML. Generalisation is crucial for ML models, which measure the prediction capacity on unseen test
data [34]. Generally, ML training can be regarded as an optimisation process. For example, the model can be trained by
minimising a certain loss function. However, over�tting may occur when ML models are trained on less representative,
noisy or small data, and in this case, trivial error patterns may be learned, causing lack of generalisation (i.e., faults) at
the test stage. There are many ways to reduce the over�tting e�ect, such as regularization (e.g., with regularization
terms such as L1/L2 norm), Stochastic gradient descent (SGD) [31] or dropout [257] (for DL models), early stopping [20]
(stop training when validation error starts to increase), etc.

Data imbalance may also cause over�tting. The model may mainly learn patterns from the majority classes while it
may easily ignore the contributions from the minority classes (with limited training samples), yielding severe faults at
the inference stage. Various approaches have been proposed for mitigation including data augmentation (e.g.,[281]),
data upsampling (e.g., GAN-based data generation [268], [279]), cost-sensitive learning (which will impose a larger
penalty on training errors with minority classes), transfer learning, etc.

In addition to over�tting e�ect, faults can also be attributed to the optimisation process. For example, with very
deep DL models or with RNN, gradient vanishing/explosion may occur during the optimisation process, causing
representation learning to be challenging or even infeasible. There are also several approaches to address this issue, e.g.,
Batch Normalization (BN)[135] (through normalizing the gradients in each layer), residual connection structure in DL
(to preserve the gradient across many layers). For federated learning or distributed learning, RSA(i.e., Byzantine-Robust
Stochastic Aggregation)[165] has also beenproposed to prevent the incorrect gradient aggregation.

4.2.2 Fault tolerance in neural networks. At a high level of abstraction, neural networks can be viewed as a distributed
system. The failure can happen in neuron or synapse. In [192], Mhanmdi and Guerraoui proposed a general model
to describe the fault model of neural networks. The neuron may stop computing (Crash) or generate some abnormal
outputs (Byzantine). Similarly, the failures of synapse can be abstracted as Crash and Byzantine. Crash represents that
the transmission has not succeeded, and Byzantine is that the incorrect messages are sent from the source neuron
to the destination neuron. Thus, we assume that a given neural network N performs an expected output FN(X ),
and FNf ault (X ) is the output of the faulty network obtained from N . The distance ϵ between FN(X ) and FNf ault (X )

represents the fault tolerance of N , when there are at most n faulty components (including neuron and synapse):

‖ FN(X ) − FNf ault (X ) ‖≤ ϵ (1)

where X is the training dataset, applied to both N and Nf ault . In order to guarantee the robustness of the neural
model, the designer needs to ensure that the error (left hand in Equation 1) is below a prede�ned threshold (right hand
in Equation 1). The threshold depends on the performance of the network and its intended application [192, 217].

Like that in distributed system, the fault tolerance in neural networks also has two types: Passive and Active.
In passive fault tolerance, no diagnostics, relearning, or recon�guration is required thereby avoiding fault detection

and location. The most common passive fault tolerance approach which is also one of the important features of neural
network is inserting redundancy. Such methods learn a small network from the given input/output, and then add the
replicated hidden neurons to share the load of the critical nodes, after the model has been trained. Representative works
[55, 59, 86] addressed the fault tolerance by adding extra links or nodes to the well trained neural network. The authors
in [54] proposed a solution that adds arti�cial faults to the network during the training time. Therefore, the network
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can tolerate the speci�c faults. However, this approach requires that the neural network designers are aware of all the
faulty scenarios while building the network. Also, adding redundancies makes the models very complex and huge,
which brings the challenges of deploying them over lightweight and low-power IoT devices.

Active fault tolerance aims to recover the neural model from faults by resetting the neural network into a fault-free
state. However, it does not attract too much attention from research, a common strategy is to utilize high-performance
computation resources to re-compute the lost work when the hardware fails [1, 287]. Notably, Qiao et al. proposed a
checkpoint-based fault tolerance for deep learning in [219]. This new method partially recovers the model from the
checkpoints based on the priority of the checkpoints thereby signi�cantly reducing the cost of recomputing.

4.3 Performance Evaluation

In this section, we consider several performance criteria that need to be considered for evaluating the e�ciency of the
obtained ML models. The criteria is identi�ed as two main dimensions: model precision and execution latency.

Model Precision. In a typical IoT application, the software performance is assumed stable after deployment. However,
this is not the case for ML application where precision degradation is always expected after deployment. Precision
degradation can happen as various unexpected external changes lead to shift in data distribution. Device location
change, time and the weather are all important factors that may decrease the model performance. Therefore, it is critical
that the model performance is monitored and new data is introduced continuously for retraining of the model. In ML,
we de�ne lifelong learning [210] as continually acquiring data and extracting new information without catastrophic
forgetting of past knowledge. Lifelong learning keeps the model precision at a steady level.

Execution Latency.Many IoT applications are latency-sensitive depending on their tasks. For example, in the afore-
mentioned smart transportation system (see §1.1) where sensors monitor and detect car accidents, instant decisions
have to be made to warn the drivers of potential hazards. Various factors, listed below, have to be evaluated to ensure
seamless communication among the distributed components of a smart IoT application.

Bandwidth Usage. In distributed IoT networks, large scale IoT sensors are generating a huge amount of data all
the time. It is not possible to send all the data to the cloud for data analysis. Fog computing proposed to move the
computing close to the sensors to reduce the data transmission over the IoT network. However, the bandwidth of sensor
network and edge network are still limited, some nodes may experiences high latency due to the network congestion.
This may cause huge latency for the whole system as well. We need to monitor and evaluate this network dynamic
[182] in order to provide solutions to alleviate the congestion in the networks.

Resource Consumption. Hardware in IoT applications varies in computing power, memory and storage capacity.
For any resource-intensive tasks, for example those computation-heavy or memory-heavy ones, resource exhaustion in
one node may lead to unacceptable latency for the whole application. It is thus necessary to design e�cient resource
management systems [199, 301] to monitor and optimize task allocation for these physical devices,

System Throughput. The ML-based IoT applications may be developed to serve millions of people, for example, the
smart tra�c routing application mentioned in 1.1. This massive number of users may send the requests simultaneously.
Responding to these requests quickly without losing user satisfaction is still an unsolved problem in cloud computing.
However, this issue is ampli�ed in ML-based IoT applications, in which the queries may be performed on various
devices and models. Some database optimization techniques such as caching frequent queries, batching queries and
approximate computing are applied [66, 212]. There are remaining gaps in optimizing the query plans by considering
heterogeneousness of the computing resources, uncertainty of the network, and diversity of ML models.



5 DATA ACQUISITION

Data is one of the most important constituents in developing a ML model as the prediction accuracy of the model is
highly correlated with the quality of the input data [195]. To provide high quality data for ML-based IoT applications,
we orchestrate the data acquisition process into several steps. First, raw data are collected from various data sources
(§5.1). With proper preprocessing techniques (§5.2) to remove redundant information and annotate the data, we are
capable of performing several di�erent ML tasks. While we have more data sources during the development process,
we can also fuse (§5.3) them to provide more consistent and useful information. The following subsections will focus on
the mentioned steps and discuss how data acquisition can support development of a robust ML-based IoT application.

5.1 Data Collection

The IoT data can be broadly categorized into Structured data and Unstructured data based on its representation. Structured
data can be represented in a pre-de�ned format (rows and columns). The meaning of each �eld is explicit which eases
the analysis and storage of the data. Examples of structured data include employee register information, visiting logs,
etc. On the other hand, Unstructured data lacks any speci�c structure or format. Varying from text, audio, video to mails
and messages, it accounts for a large proportion of IoT data. These two types of data are generated in three formats:
signal data, log data and packet data. The signal data collects the daily life signal through various hardware such as
sensors, sound recorders, cctv cameras, etc. The log data is usually used to capture the system status. Finally, the packet
data is the data sent over the network and each unit transmitted consists of a header and the actual data. To collect these
data, three important factors need to be considered: 1) Data exchange, 2) Resource consumption and 3) Concept Drift.

Data exchange.Data generated from IoT devices is sent to an edge (sink) node or other IoT devices, eventually collected
and stored in the cloud. The computation power of gateways and edge nodes is improving, which brings an opportunity
to remove data redundancy while saving the energy and bandwidth required for transferring data to downstream
nodes [289]. This aggregation requires application of various data summarization techniques [61] including sampling,
sketching, histograms, wavelets and adaptation of these techniques to meet the constraints of the hardware and the
time-varying channel conditions. Henriette et al. [232] investigated the state-of-the-art stream processing systems
that can be used to implement these data summarization techniques and execute them in a parallel and elastic manner.
However, it still requires a lot of e�ort to develop new data summarization techniques and stream processing systems
to handle the di�culty of processing high volumes data from various sources with multi-modality.

Resource consumption. As mentioned earlier, IoT devices are very limited by resources such as processing capability,
storage capacity, wireless bandwidth and battery power. Thus, it is very critical to optimize the resource utilization
while processing, storing or transferring data to the edge device or cloud. To this end, we need to consider three issues:
resource allocation, energy control and task allocation. Resource allocation in the context of data collection is to assign
computing, storage or bandwidth resources to the data generated by IoT devices before transferring to edge or cloud.
Sending streaming data drains the battery at a faster rate while limited storage capacity does not enable large data
storage. Energy control focuses on optimizing the energy consumption when the IoT data is processed and transferred
over the devices. Task allocation aims to balance the resources consumption in IoT devices while minimizing the overall
latency. These three factors are sometimes considered together and most of the available algorithms are based on
market-enabled pricing schemes, which dynamically exchange the resources among the devices in IoT infrastructure
by creating an arti�cial market [88, 139]. In ML-based IoT application, the ML models should be considered as the
special tasks that are running on extremely heterogeneous computing resources in a distributed manner, and these



tasks are usually compute-intensive, data-intensive and network-intensive. As a result, it is crucial to develop new
market models to describe these special resource consumption problems and new algorithms to solve the problems.

Concept Drift. Due to the dynamicity of the IoT environment, data distribution becomes very uncertain and changes
frequently over time leading to concept drift [93]. Changes can occur abruptly or gradually correlated with the occurrence
of other events. Additionally, the change can be in di�erent forms i.e., input data characteristics or relation between
input data and target variables with single or multiple occurrence (constant or variable recurrence). For the successful
execution of IoT applications, these drifts need to be predicted, distinguished from noise and handled properly. Numerous
algorithms are proposed for managing concept drift. [70, 129] review the generic algorithms to handle the concept drift.
There are two main detection methods, performance-based and data distribution-based. The former can work well if the
data is labeled which may not be possible for all cases while the latter is able to detect only a subset of available drifts.
Since IoT-based ML application data are not always labeled and high accuracy is desired, it is essential to develop new
algorithms which are able to detect and manage the concept drift.

5.2 Data Preprocessing

The real-world data collected from heterogeneous IoT devices usually contains outliers or is incomplete in nature, which
makes it di�cult to feed it into ML models directly. Data preprocessing deals with these anomalies and improves the
data quality and practicality. There are several things that need to be considered, namely data cleaning, data annotation
and feature engineering. We have discussed the details of feature engineering in §2.3.1, will not consider it in this section.

5.2.1 Data cleaning. Much data contains noise that is bound to confuse the ML models and reduce the accuracy of
the prediction results. Data cleaning resolves this problem by completing several routine tasks such as �lling missing

values, smoothing noise data and removing outliers [5, 27]. Empty records in the data set can be replaced manually by
a speci�c value, for example the attribute mean or the most common attribute in the set. It can also be marked with
"unknown" or just ignored if the dataset is large enough. Noisy data, though, can be smoothed by grouping �rst and
then averaging over each group. Data outliers can also be detected during this process if the value exceeds a prede�ned
threshold. There are other common practices such as data normalization [220], which is used to scale dimensions of
data to a speci�c range. This is very e�cient when there is high variation for di�erent dimensions of the data.

5.2.2 Data Annotation. As discussed in §2.1, data annotation is necessary for supervised learning based ML models, in
which both the data and the corresponding target act as the input sample. The model is trained with the labeled data
which is used to predict the target for new unseen data. This is usually costly and complex due to the requirement for a
large volume of labeled data needed for the training. The following investigates di�erent annotation methods that can
be applied according to the size of the data to be annotated and the cost of annotation per data.

Manual Annotation: At the initial stage of a ML project, quick prototyping of a workable model requires only few
labeled data. In this sense, the developers can manually annotate the collected data to create a small dataset. This is
usually done by reviewing the data samples and attaching labels following the annotation guidelines. Manual annotation
by the engineers is quick and precise without any professional training, and the data quality is usually great. the
problem with this approach is the lack of scalability.

Crowdsourcing Annotation: Crowdsourcing annotation is a scalable and cost-e�ective method. It is usually orches-
trated by an online platform that provides access to a workforce of people to complete the annotation tasks. Famous
crowdsourcing platforms include Amazon Mechanical Turk (MTurk). Compared to manual annotation, this approach



can be scaled to large dataset labeling. However, the crowdsourcing method requires delicate design on quality control
mechanisms to ensure the annotation quality, and the incentives or rewards for the crowds.

Active Learning: Active learning [97, 241] aims to design a system capable of choosing and learning from less training
data while still achieving the same or even higher accuracy. An active learning system consists of two components: a
learning module that trains a model with the current training sample and a sample selection module that selects the most
informative samples from the unlabeled samples. The selected samples will then be annotated manually and added
to the training set. The iterative process continues until the training converges. The key here is the sample selection
module which can be approximately subdivided into �ve categories, risk reduction, uncertainty, diversity, density and
relevance according to the selection criteria [282]. These criteria can be used either single-handedly (e.g., risk reduction
[90], uncertainity [142], relevance [11]) or in a combination. In [283], uncertainty, diversity, density and relevance are
combined for multi-modality video annotation. Similarly, work in [123] combines uncertainty, diversity and density

metrics and the evaluation proves the combination performs well on medical image classi�cation tasks.
All the above explained methods work well for the case of static machine learning scenarios with batch data available

beforehand, However, this may not be suitable for IoT-speci�c streaming data imminent with high concept drifts. In
this case, the model needs to learn continuously with the upcoming data. Since the new data does not have any label,
multiple delayed learning concepts [99, 105, 215] are proposed to handle the non-negligible delay in data labeling. These
methods are adequate for the scenario where labeling takes a constant time and latency is not a determining factor.
For IoT data with variable constant drifts, cleaning and labeling may not take uniform time. Also, latency is one of
the deciding factors for IoT-based ML applications. Thus, new sets of methods are essential for data labeling which
considers the �uctuating IoT data with minimum possible delay.

5.3 Data Fusion

Data fusion aims to combine the data from multiple sources to provide more accurate and useful information. It o�ers
numerous advantages for ML-based application by enhancing the data quality (�nding the missing values), detecting any
anomalies, conducting the prediction and �nding any correlations among the distributed dataset [25, 158, 300]. However,
there are multiple challenges in combining heterogeneous IoT data [4] such as data frequency, data imperfection, data
correlation, data alignment and dynamic iterative process. To handle these challenges e�ectively, numerous data fusion
methods are available in the literature. It is mainly categorized into three groups as given below.

5.3.1 Probabilistic Data Fusion Algorithms. This group consists of the algorithms that use density function or probability
distributions as a core method for data fusion. It includes Bayesian techniques [26], Markov models [156], evidential
reasoning [297]and other methods. These methods are simple and widely used in di�erent applications to express the
co-relation and dependency between numerous datasets. However, there are certain drawbacks with probabilistic data
fusion methods highlighted in [4]. First, it can not scale with the size and modality of the data. Second, uncertain and
noisy data can not be handled properly. Finally, prior probabilities and density functions are di�cult to obtain.

5.3.2 Knowledge-based Data Fusion Algorithms. To overcome the uncertainty of data and increase the accuracy of
fusion methods, knowledge-based data fusion methods accumulates knowledge from the imprecise big data and apply
over the fusion process. Di�erent aggregation techniques and ML methods are used for the data fusion process. For
example, [22, 191] (supervised learning method) and [92, 316] (unsupervised learning method) are used to discover the
distribution of the complex datasets. However, the complexity of this type of method is higher than the probabilistic
methods. This class of method, thus, may consume more computing resources and cost more time to process.



5.3.3 Evidence-based Data Fusion Algorithms. This group of methods is based on Demster-Shafer Theorem (DST)
and recursive operations. As compared to probabilistic methods, where there are only two states (happening or non-
happening) of an event, DST includes an unknown state to capture real-world uncertainty. [137, 236] are the applications
of DST for data fusion. However, increasing the data evidence also increases the complexity of this method. Therefore,
this method is not suitable for the applications running on less powerful computing resources.

5.4 Discussion

In this section, we reviewed core components in the data acquisition process and discussed how they can contribute to
generation of high quality, ready-to-use data for IoT-ML application. Multiple research directions can be considered to
leverage others’ e�orts, thereby improving the performance of ML model. 1): Data reuse: with the scaling of the data
volume, past data is stored and usually ignored after use. However, it can be reused and mined for more values. For
example it can be used for boosting semi-supervised data annotation [322], or it can be integrated with newly collected
data for model training. 2): Data re-organization, there exist datasets for di�erent tasks in similar areas. They may not
be the same, but can be re-organized to extract the common distributions. Proper identi�cation and extraction can be
explored to save e�ort on data collection. 3): Feature evolution is also an important trait of streaming data as feature may
appear and disappear over time. If a feature appears and is found to be relevant, it is necessary to incorporate that for
the learning process. In this case, disappearance of a feature can be considered as a drift and the unavailability is treated
as missing values. Ignoring this feature may lead to inaccurate prediction. Taking the relevancy of feature evolution for
di�erent problem domains. Other challenges that related to the unbalanced data have been discussed in §4.2.1 as well.

6 CONCLUSION

Growing numbers of internet-connected things (IoT) produce vast amounts of data, build applications and provide various
services in domains such as smart cities, energy, mobility, and smart transportation. ML is becoming a preliminary
technique for analyzing IoT data. It produces high-level abstraction and insight that is fed to the IoT systems for
�ne-tuning and improvement of the services. In this survey, we reviewed the characteristics of the IoT development
lifecycle and the role of ML for individual steps. Speci�cally, we divided the development lifecycles into di�erent
modules and presented a novel taxonomy to characterize and analyze various techniques used to build an ML-based IoT
application. In summary, this survey seeks to provide systematic and insightful information for researchers. It assists
the development of future orchestration solutions by providing a holistic view on the current status of ML-based IoT
application development, deriving key open research issues that were identi�ed based on our critical review.
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A APPENDIX A

Software Speci�cation Cloud Edge IoT devices

Main OS

- Ubuntu
- CentOS
- Debian
- RHEL
- Windows Server
- Amazon Linux

- Raspbian
- NOOBS
- Amazon FreeRTOS
- RIOT
- Google Fuchsia OS
- Windows 10 IoT

- Amazon FreeRTOS
- Contiki
- TinyOS
- RIOT
- Ubuntu Core
- Mbed OS

Programming Language

- Java
- ASP.NET
- Python
- PHP
- Ruby

- Java
- Python
- C
- C++
- JavaScript

- C
- C++
- Java
- JavaScript
- Python

Platforms

- AWS
- Azure
- Google Cloud Platform
- IBM Cloud
- Oracle Cloud

- Amazon Greengrass
- EdgeX
- Cisco IOx
- Akraino Edge Stack
- Eclipse ioFog

- AWS IoT
- Azure IoT
- GCP IoT
- IBM Watson
- Cisco IoT cloud connect

Table 1. List of OS, programming language and platform in IoT layers

B APPENDIX B

B.1 Traditional Machine Learning (TML) methods

In this subsection, we give the details of several TML algorithms, as well as their IoT applications.

Logistic Regression (LR). Logistic regression is a linear classi�er capable of performing binary or multi-class
classi�cation. It is among the simplest classi�cation algorithms. In a binary classi�cation setting, prediction target y
is usually formulated as y ∈ {0, 1} and the prediction probability of the positive class given a d-dimensional input
x = [x1,x2, ...,xd ] ∈ R

d can be calculated via:

p(y = 1|x;θθθ ) = σ (wT x + b) = σ (
d∑
i=1

wixi + b), (1)

In the equationθθθ = {w = [w1,w2, ...,wd ] ∈ R
d ,b ∈ R} denotes the model parameters, and σ (·) is an activation function

used to squash the linear output within the range [0, 1] for probabilistic interpretation. The training of the classi�er aims
to learn suitable values for the parameters θθθ = {w,b}, starting from some random initialization, through minimizing of
a loss or cost function J (θθθ ). For LR, log (Cross-Entropy) loss is used, i.e., J (θθθ ) = − lnp(y |x;θθθ ) for data point {x,y} to
facilitate the calculation of the model gradient and to minimize the model loss. With the trained model, for any query
data the classi�cation decision can be made via thresholding the predicted probability.

Extend the binary LR to support c-class prediction scenarios, the target y ∈ {1, 2, ..., c}. Softmax function is applied
to the output layer to normalize the c outputs into probabilities. Di�erent from binary LR, there are c sets of parameters
θθθ = {W = [w1, ...,wc ]

T , b = [b1, ...,bc ]T } to be estimated by minimizing the cross-entropy loss (i.e., log loss). With the
trained model parameters, at the inference stage the class label will be assigned to the one with the largest classi�cation
probability.
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Decision Trees (DT). Decision Tree is a tree-like model for classi�cation or regression tasks. A decision tree is made
up of nodes and edges where a node can be seen as a feature, and the edge represents a condition for classi�cation. The
learning process of DT is to select the optimal feature that can best split the training examples in a recursive manner.
Based on certain criteria such as information gain [46] or Gini impurity [13], the root node can be selected from the
features, which will divide the whole training population into two or more homogeneous sets. For each sub-population,
sub-nodes will be selected in a similar manner and this process will repeat until all the subsets are pure (i.e., with the
same class label for each subset). These nodes and edges constitute the trained model and can be used for inference.

Di�erent from most of the other classi�ers (such as LR, SVM, ANN, DL) which require the input to be normalised
to numerical values, the unique tree-structure of DT make it possible to take both numerical and nominal values,
making it a highly interpretable tool for various classi�cation tasks (e.g., medical records diagnosis). However, DT
su�ers from the “curse of dimensionality”, and it faces an over�tting problem when the input dimensionality is too
high. With unstructured high-dimensional data, feature engineering/extraction is one of the necessary steps to take (for
dimensionality reduction), before DT is applied.

DT can be used as a main classi�er (e.g., for low-dimensional structured data) or collaborative classi�er with other
machine learning algorithms on various IoT applications, such as Intrusion detection system [45] in fog environment.

Random Forest (RF). As its name implies, a RF is an ensemble model with many DTs as base classi�ers. The
individual DTs are constructed by random sampling the features and the training examples for diversity, boosting the
performance of multiple classi�er systems. The random sampling process makes the individual DTs less correlated
—with di�erent prediction errors— and the aggregating function can smooth the large prediction variance, making
RF a robust classi�er with high generalization capabilities. There are several key hyper-parameters for RF, and two
main ones are: feature number for individual DTs, and number of DT classi�ers. For individual DTs, there is a trade-o�
between generalization and discrimination capabilities with respect to feature dimension, and one popular heuristic
value is to use the square root of original dimension number (e.g., the default setting in scikit-learn). For the RF though,
the performance of the model usually correlates wit the number of DTs. Yet the performance gain tends to become less
signi�cant since the diversity (among the DT classi�ers, which are correlated to some extent) will decrease accordingly.
Since both the e�ciency and storage are proportional (in a linear manner) to the classi�er number, to �nd a number
con�guration that can result in optimal e�ectiveness, storage and e�ciency performance is of vital importance.

RF is one of the most popular classi�ers due to its great generalization capability. For example, it has been used for
intrusion detection [6, 36] and anomaly detection. In a previous study [36], the authors collected and manually labeled
data from 17 distinct IoT devices and used RF algorithms to recognize IoT device categories from the white list.

Support Vector Machine (SVM). Support Vector Machine (SVM), also referred to as large margin classi�er, aims to
�nd a decision boundary (separating hyperplane) that can best separate (i.e., with the largest margin) positive/negative
classes. Fig. 1 shows some basic concepts in SVM including support vectors, margin and slack variable ξ . ξ is a non-
negative variable that is used to measure the misclassi�ed instances and those within the margin (i.e., margin violation,
as shown in Fig. 1). The objective function of (soft-margin) SVM can be constructed to maximize the margin while
penalizing these instances:

argmin
w,b,ξi

| |w| |2

2 +C
N∑
i
ξi , subject to yi (wT xi + b) ≥ 1 − ξi ,where ξi ≥ 0, i = 1, 2, ...,N . (2)
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In Eq (2), {xi ,yi }Ni=1 are the N training sets with yi ∈ {−1, 1}, and C is a regularization hyper-parameter that trades-o�
between the margin and errors (i.e., measured by

∑N
i ξi ). It is obvious to see that if we set C = 0, we can get a classi�er

with the large margin at a cost of potential high training errors. On the other hand, if we set C to a very large number
(or∞ in theory), errors are less likely to be tolerant, and we may end up with a classi�er with narrow or hard margin. It
is worth noting that Eq.(2) can be further simpli�ed into argminw,b

| |w | |2

2 +C
∑N
i max(0, 1 −yi (wT xi + b)), where the

term max(0, 1 − yi (wT xi + b)) is also referred to as hinge loss.
On the other hand, for highly non-linearly separable data, instead of employing feature engineering/extraction

processes, an elegant alternative—kernel SVM can be applied, and Radial Basis Function (RBF) is one of the most popular
kernel functions. Kernel SVM also has the aforementioned characteristics such as soft margin, and it tends to have
great performance on small non-linearly separable data. Fig. 2 shows the margins on linearly separable (by linear SVM)
and non-linearly separable (by kernel SVM) data, respectively.

SVM is notable for its generalization capability and is suitable for those small datasets with high-dimensional features
[67], and there are many IoT applications such as Android malware detection system [51], smart weather prediction
[47], etc.



K-Nearest Neighbour (KNN). KNN is a nonparametric, instance-based, non-linear classi�er. Under the classi�cation
setting, given any query data, KNN essentially performs majority voting among the K most similar training samples,
as shown in Fig. 3. The similarity can be measured by some distance metrics such as Minkowski distance D(x, y) =
(
∑d
j=1 |x j − yj |

p )
1
p (for d-dimensional vectors x, y). It is worth noting that when p = 1 and p = 2, the Minkowski

distance can be seen as Manhattan Distance and Euclidean distance respectively, yet for di�erent applications the
optimal distance metric may vary from case to case.

One of the key properties is that KNN does not require any training process (i.e., lazy learning), and for any query
data, the distance calculation has to be performed for each sample in the whole training set, which makes KNN a
less-scalable approach for large datasets. Another issue is the selection of hyper-parameter K . A small K may make
KNN sensitive to outliers in the training set while a large one may make KNN less discriminate. Nevertheless, KNN
is a powerful non-linear classi�er with low-dimensional small datasets, and there are many IoT applications such as
network intrusion detection [31], anomaly detection [61] and Urban noise identi�cation [1], etc.

Naive Bayes (NB). NB is a probabilistic classi�er which takes the class prior distribution into account, and assumes
the features are conditionally independent. Based on the Bayesian theory and the posterior probability, it can be presented
as p(y |x) = p(x |y)p(y)

p(x) , where p(x|y) is the likelihood; p(y) is the prior; p(x) is the evidence. The classi�cation process is
to assign the label with the largest posterior probability, and in this case the term evidence p(x) remains a constant
which can be cancelled out, i.e., p(y |x) ∝ p(x|y)p(y), which can be further written into p(y |x) ∝

∏d
j=1 p(x j |y)p(y) for

d-dimensional input x due to the feature independence assumption. In practice, logarithm is often used to avoid the
problem of �oating point under�ow, and the class label ŷ can be assigned via:

ŷ = argmax
y∈{1,2, ...,c }

lnp(y) +
d∑
j=1

lnp(x j |y), (3)

NB is good at modelling both continuous and discrete data. For example the likelihood of a discrete feature can be
calculated by frequency while the likelihood of a continuous feature can be calculated by density estimation (e.g.,
Gaussian). It takes the prior of class distribution into consideration, which is helpful in data imbalanced problems.
However, it also su�ers from the “curse of dimensionality” like DT, and normally can not be used directly on unstructured
data before feature extraction/engineering approaches have been applied. When the feature independence assumption
is not signi�cantly violated, it is normally served as an e�cient and e�ective classi�er. There are many IoT applications,
such as network tra�c analysis for DoS attach detection [23], animal health monitoring [56], etc.

K-Means. Di�erent from the supervised classi�cationmodels above, K-means is an unsupervised clustering algorithm
without using class label information for training. Given a number of data points, K-Means aims to �nd K centroids (i.e.,
means), and the corresponding nearest samples to form the clusters. Various distance metrics can be used for K-means
algorithm, and the most common one is based on Euclidean distance, whose objective function is:

argmin
N∑
i=1

K∑
k=1

γik | |xi − µk | |
2, (4)

where µk is the centroid of the kth cluster and γik ∈ {0, 1} denotes whether sample xi belongs to the kth cluster
(1) or not (0). K-means clustering is an heuristic process—starting from random values (of the centroids {µk }Kk=1), it
will 1) assign each example to the nearest cluster and 2) update the K centroids (by re-calculating the means of the



Table 2. Summary of Traditional Machine Learning Models (Note: In time complexity,m represents the number of training sample, n
represents the feature dimension, k represents the selected K value, c represents the class number and t indicates the tree number)

Method Learning model Category Typical
input data

Time
Complexity Characteristics IoT Application

DT Discriminative Various O(m · n2) [60]

• Dividing training samples to branches and leaves
• High interpretability method
• Require large memory space due to the
construction nature.

• Intrusion detection [44]
• Suspicious detection on
tra�c sources [14]

• Future Heart Attack
Quantity prediction [26]

SVM Discriminative Various O(m2 · n)[8]

• Good Generalization capability and suitability
for small dataset with large feature

• Di�cult on selection optimal kernel
• High computation complexity on large dataset
with complex kernel

• Malware detection [51]
• Attack detection in smart
grids [62]

• Smart weather prediction [47]

NB Discriminative Various O(m · n + n · c)
[8]

• Ease to implement
• Generalizes well to multi-class problem
• Low dependence on large dataset and robustness
• Hard to capture relation information

• Detection of network
intrusion [39]

• Animal health monitoring [56]

KNN Discriminative Various O(m · n · k) [77]

• Nonparametric, instance-based
• No training process, no model construction
• Sensitive to the outlier
• Di�cult on selection optimal K

• Anomalies detection [19]
• Urban noise identi�cation [1]

RF

Supvervised

Discriminative Various O(t · n2 · loдn)
[34]

• Robust to over-�tting
• Bypasses feature selection
• Impractical in speci�c real-time application

• DDoS attack detection [29]
• Unauthorized IoT devices
detection [36]

K-Means Clustering Various O(m · n · k)[8]

• Ease to use on Unlabelled data
• Produces tighter cluster than hierarchical clustering
• Less e�ective than supervised learning method
• Di�cult on selection optimal K

• Sensor fault detection [78]
• Sybil detection in industrial
WSNs [72]

PCA

Unsupervised

Dimension Reduction Various O(m · n2 + n3)
[8]

• Used for dimensional reduction
• Consequently reduce the complexity of the model
• Should be used with other ML methods

• Real-time detection systems
in IoT environments [15]

• Tra�c anomaly detection [12]

corresponding samples for each cluster). It is an iterative process and the updating will stop until Eq.(4) is minimized
(e.g., lower than a pre-de�ned threshold).

K-means is among the most popular clustering algorithms due to its simplicity. However, using a Euclidean distance
based method is limited to spherical datasets, and �nding the most suitable distance metrics (for di�erent applications/-
datasets) is one of the key issues for improving the performance of K-means algorithm. K-means is widely used for IoT
applications such as sensor fault detection [78], Sybil detection [72], etc.

Principal component analysis (PCA). PCA is another unsupervised learning approach and it is normally used
for dimensionality reduction or feature decorrelation. Covariance matrix S which re�ects the correlation of the
features can be calculated via S = 1

N
∑N
i=1(xi − µ)(xi − µ)T for N d-dimensional training data points {xi }Ni=1 with

µ = 1
N

∑N
i=1 xi . Eigenvalue decomposition can be performed on S such that the leading s(< d) eigenvectors can be

used as a transformation matrix for feature decorrelation or dimensionality reduction. PCA is one of the most popular
feature extraction tools due to its simplicity, and there are many IoT applications such as tra�c anomaly detection [4].

Table 2 summarizes the aforementioned TML, including their advantages, disadvantages and applications in IoT
systems.

Arti�cial Neural Networks (ANN). ANN is a general extension of the aforementioned linear classi�ers. Compared
with Perceptron or LR which linearly project input data to the output, ANN has an additional “hidden layer” (with a
non-linear activation function), which enables ANN to model non-linearity. However, in contrast to linear classi�ers,
this additional hidden layer makes it more di�cult to see the relationship between the input and output data (i.e., low
interpretability). Although in theory, with one hidden layer ANN can model any complex non-linear functions, in



practice it has limited generalization capabilities when facing unseen data. ANN with more layers, also referred to as
deep neural networks, tend to have better modelling capability, which will be introduced in the next subsection.

B.2 Deep Learning (DL) methods

In this section, we detail several deep learning algorithms: Deep Neural Networks (DNN), Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN), etc.

Deep Neural Networks (DNN). As previously mentioned, LR is one of the most popular linear classi�ers, which
means the decision boundary is a line or hyperplane in the feature space. However, most of the data are more complex
and are not linearly separable in real-world scenarios. In this case, directly applying linear classi�ers such as LR on the
raw data would yield unsatis�ed classi�cation performance. One could empirically use hand-crafted features followed
by LR, yet this trial-and-error process can be time-consuming, and it may be challenging to de�ne the high-order
discriminant features where the data can be linearly separable. One alternative is to use data-driven methods, and it is
straightforward to extend LR to DNN (i.e., Multilayer Perceptron MLP).

DNN is built upon LR with a stack of hidden layers. By applying activation functions like sigmoid, tanh, or ReLU on
the hidden layers, raw features can be transformed in a non-linear manner, yielding discriminant (i.e., linearly separable)
features before the output layer. Similar to LR, the training process is to minimise the log loss. However, the parameters
of DNN are the layer-wise connections, which can be learned using the back-propagation approach. DNN performs
end-to-end learning, which means it learns the feature extractors and classi�ers simultaneously.

DNN can be deemed as the simplest form of deep learning model which comprises one input layer, one output layer
as well as multiple hidden layers for more complex feature extraction. It is worth noting that Arti�cial Neural Network
(ANN) is a special case of DNN with only one hidden layer. The layers are organised in a hierarchical manner, with
each layer being a function of the layer that preceded it. For example, the second layer h(2) (i.e., also the �rst hidden
layer) can be expressed as a function of the �rst (i.e., input) layer (e.g., with input vector x ∈ Rd ):

h(2) = д(2)(W(2)T x + b(2)), (5)

where {W(2), b(2)} are the parameters and д(2) is the activation function (e.g., ReLU) for the second layer. We also call
these layers fully connected or dense layers. Similarly, the lth (l > 2) hidden layer can be written as

h(l ) = д(l )(W(l )T h(l−1) + b(l )). (6)

Assuming there are a total number of L layers, then an output layer linearly transforms the previous hidden units
h(L−1), followed by a softmax function for probability scaling:

p(y|h(L−1)) = softmax(W(L)T h(L−1) + b(L)), (7)

Note the model parameters include the layer-wise weight matrices and bias vectors, i.e., θθθ = {W(l ), b(l )}Ll=2, which
needed to be estimated by minimising the loss function (e.g., log loss). DNN has been widely used for various IoT
applications, including wearable-based activity recognition [65], tra�c congestion prediction[11], healthcare[42], etc.

Convolutional Neural Networks (CNNs). Similar to the DNN, CNN also comprises multiple hidden layers. It learns
to map from 2D data (e.g., images) at the input, output the class probabilities at the output. DNN usually contains three
types of hidden layers: convolution layer and pooling layer at each stage and FC/dense layer right before the output
layer. In a convolution layer, local patterns can be extracted by learning several convolutional kernels/�lters (with a
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prede�ned size, such as 3 × 3), each of which has the same shared weights to be estimated (via back-propagation). This
weight-sharing scheme makes CNN e�ective in dealing with high-dimensional data (such as high-resolution images).
After convolution operation with a number of kernels/�lters, the corresponding feature maps can be formed, and then
a pooling layer can be employed for down-sampling these feature maps for more compact representation. In CNN,
normally there are multiple convolution/pooling layers, before FC/dense layers can be applied; Fig. 4 shows an example
architecture of CNN. Since cameras are one of the major parts of the IoT environment, CNN can be a very useful tool
and has been widely used such as in tra�c sign detection on autonomous driving [58].

Recurrent Neural Networks (RNNs). RNN is a type of deep model and it is designed to model and recognise
sequential data (e.g., time-series data). Compared with DNN, a hidden unit of RNN can feed-forward on itself in the next
timestamp and thus can memorise the temporal information for sequential inference. Fig. 5 shows how to extend an
ANN (DNN with one hidden layer) to a three-layer vanilla RNN by modelling the temporal information, we use an arrow
to represent FC/dense layer for better visual e�ects. Compared with ANN, RNN has an additional set of parameters,
i.e., the hidden-to-hidden transformation matrix Whh to be estimated, and the full parameters can be expressed as:
Θ = {Wxh ,Whh ,Who , bo , bh }. For xt , the input vector at the t th timestamp, the feed-forward pass can be written as:

p(y|xt ) = softmax(WT
hoht + bo )

where ht = tanh(
[
Wxh

Whh

]T
[xt , ht−1] + bh ),

(8)

It is clear that the current hidden state ht is calculated based on the previous hidden state ht−1 and the current signal
xt , while the output layer remains the same as DNN (see Eq.(7)). We can see RNN is an end-to-end method where both
the sample-wise features ht and predictions p(y|xt ) can be learned simultaneously.



Encoder Decoder

Fig. 6. The encoder-decoder structure of a three-layer Auto-encoder

For complex time-series data analysis, we need a deeper RNN (i.e., larger window, multiple layers, etc.) to capture the
high-level temporal/contextual information. Yet vanilla RNN has a gradient explosion/vanishing problem owing to its
numerical properties. In the 1990s, a complex hidden unit named long short term memory (LSTM) [24] was proposed for
large-scale recurrent neural network construction, which can preserve the error/gradient that can be back-propagated
e�ectively through time and layers. LSTM includes four di�erent gates organised in a special internal structure, in
contrast to tanh function for activation in vanilla RNN. Accordingly, it also has four sets of speci�c gate parameters to
be estimated.

RNNs achieve great performance in time-series applications, for example machine translation and speech recognition.
In IoT applications, it has shown its great performance in sensor-based power station condition prediction [74],
wearable-based activity recognition [20], etc.

Auto-encoder (AE). An Auto-encoder(AE) is a type of unsupervised neural network, and it can transform the data
into latent code/representation/feature (e.g., in lower-dimensionality), from which the original data can be reconstructed.
AE is widely used for data compression and feature extraction, and a typical AE includes two parts: encoder, and
decoder. Fig. 6 shows a three-layer encoder-decoder structure for AE, and the d-dimensional input vector x can be
transformed into the latent representation h via a linear transformation followed by an activation function д(.), i.e.,
h = д(WT

encoderx + b0). Similarly, decoder can be used to reconstruct the data such that x′ = д(WT
decoderh + b1). Note

Θ = {Wencoder, b0,Wdecoder, b1} are the model parameters that can be estimated via minimising a reconstruction loss

argmin
Θ

L(x − x′). (9)

Note in Eq. (9), L(.) can be very �exible, and some popular ones include mean squared error, log loss (for binary
input), etc. It is worth noting that with small dataset, a popular constraint is to set Wencoder =WT

decoder, which can
limit the degree of freedom of this model with better generalisation capabilities. AE can be used as a powerful tool
for dimensionality reduction. Compared with PCA, the non-linear transformation may extract more discriminant
information for classi�cation. It can also be used for anomaly detection, and the intuition is that the trained AE (based
on normal class) cannot reconstruct the abnormal class well, yielding large reconstruction errors. There are many IoT
applications for AE, such as fault diagnosis in hardware devices [7], and anomaly detection in the performance of
assembly lines [43].



Generative Adversarial Network (GAN). Generative Adversarial Networks (GAN) is a generative model with
adversarial architecture. Fig. 7 shows the basic network architecture of a GAN, which contains a generator and a
discriminator.

Generator

Or iginal Training Data

Generated Data

Discr iminator

Fake

Real

Random noise

Fig. 7. Generative Adversarial Network Architecture

The generator aims at generating indistinguishable samples compared to the real data while the discriminator works
adversarially to distinguish the generated fake samples from the real data. It is an iterative competition process that
will eventually lead to a state where the generated samples are indistinguishable from the real data. The generative
model aims to learn the data distribution and generate data samples for those domains that lack data samples.

The decent idea of applying adversarial structure on deep neural networks brought impressive results related
to content generated, and realistic visual content. Moreover, it can be applied to many applications such as image
restoration, style transfer, sample generation. However, there are three main drawbacks on GAN frameworks. The �rst
one is that the network is hard to train and the training process is destabilized (i.e., “Non-convergence”). The second
drawback is that the generator will tend to produce limited varieties of samples at the end of a training period (i.e.,
“Mode collapse”). The last drawback of GAN is the gradient diminishing problem that occurs when the balance between
generator and discriminator were broken.

GANs have been recently implemented in the IoT environment, mainly on IoT security. For example, a previous
study [76] proposed a GAN based framework for improving open-categorical classi�cation on individual identity
authentication application. Moreover, GAN has been used as a tool to generate large datasets that do not need manual
annotation. For example, a study[75] explored the feasibility of using GAN to generate illegal Unmanned Aerial Vehicles
(UAVs) dataset and obtain a better classi�cation model with better accuracy. As the data generated from sensors may be
unlabelled, GANs may have more potential applications in the IoT environment.

B.3 Reinforcement Learning (RL) methods

The goal of a reinforcement learning agent is to �nd an optimal policy to maximize the expected sum of future rewards
J (θ ) parameterized by θ . At each time step t , reward rt = r (at , st ) is given when an agent takes an action at ∈ A at
state st ∈ S .

argmax
θ

J (θ ) = Et∼pθ (t )[
∑
t
r (st ,at )] (10)

In the equation, pθ (t) represents the interactions between the RL agent and outer environments. The trajectory depends
on two factors: the agent policy and the environment dynamic. Agent takes actions based on its policy πθ (at |st ). The



Table 3. Summary of Deep Machine Learning Models

Method Learning Type Category Input data
Type Characteristics IoT Application

CNNs

Supvervised

Discriminative 2-D (image, sound, etc.)
• Mainly used on image processing
• Less connection compared to DNNs.
• Require large training samples.

• Tra�c sign detection
• Plant disease detection
• Bridge crack detection

RNNs Discriminative Sequential data
• Mainly used to analyze sequential data
• Useful in IoT applications with
time-dependent data

• Identify movement pattern
• Behavior detection
• Human activity recognition
• Mobility prediction

AEs Generative Various

• Mainly used for feature extraction,
and dimensionality reduction

• Optimized by reconstructs input data
• Can be used on unlabeled data

• Emotion recognition
• Machinery fault diagnosis
• Intrusion detection
• Failure detection

GANs

Unsupervised

Generative Various

• Learn data discribution
• Can be used as a data generation tool
• Two part networks:
a generator and a discriminator

• Localization and way �nding
• Image to text

dynamic transition for the environment st × at → st+1 can be expressed as p(st+1 |st ,at ) and is usually unknown.
Overall, the whole trajectory pθ (t) can be represented as:

Pθ (s1,a1...sT ,aT ) = p(s1)
T∏
t=1

πθ (at |st )p(st+1 |st ,at ) (11)

It is clear from the above equation that, if we are smart on the agent policy πθ (at |st ) or the transition dynamic
p(st+1 |st ,at ), we can �nd the best trajectory pθ (t) which maximizes reward at each time step. The RL community has
formalized these two approaches asModel-Free andModel-Based approaches based on the fact that the later one directly
models the system dynamic transitions.

Value 
FunctionPolicy

Policy 
Based

Value 
Based

 Actor 
Cr itic

Model Free

Model 
Free

Model 
based

RL categorization 
Fig. 8. Reinforcement Learning Categorization

Fig. 8 gives a broad view of the reinforcement learning world. The reinforcement learning method can be divided
into Model-free methods and Model-based methods with correlations combining the features of both methods. The
model-free approach can be subdivided into Policy based, Value based and Actor-Critic approaches according to the ways
that the best policy is generated. In this section, we will detail both approaches with simple mathematical expressions
and list the most famous algorithms. We will also cover some works that take advantage of both methods.

Model-Free Methods. They learn a policy and decide the best action to take given a certain state. It can be categorized
as policy-gradient, value-based and actor-critic methods, based on how the policy is generated.

Value-Based methods learn a value function to estimate the “goodness” V (st ) for reaching a certain state st , or the
“goodness” Q(st ,at ) for taking certain action at given the state st . Hereby the “goodness” function estimates the sum
of future rewards from current state st till the end sT (given a �nite trajectory). At each step, the agent chooses the
action with the highest score based on the estimated value function. Value-based approach is deterministic, and may not



be su�cient to solve complex problems. A list of the most prevalent algorithms includes Q-Learning [70], DQN [38],
Prioritised Experience Replay [52], Dueling DQN [69], Double DQN [66] and Retrace [40].

Policy-Gradient methods provide an attractive paradigm by directly maximising J (θ ) (Equa 10) with respect to the
parameters θ of the policy πθ (a |s). The gradient with respect to the parameters θ can be derived as

∇θ J = Eθ [
∑
t

∇θ loдπθ (at |st )(Rt − bt )] (12)

Rt =
∑
t ′=t γ

t ′−t r (st ′ ,at ′) with a discounting factor γ emphasizing the agent more on recent rewards. To reduce the
policy variance given di�erent datasets, a baseline bt that does not depend on future states or actions is subtracted. In
practice, the expected future return is sampled and aggregated within a trajectory. Several works have been proposed
based on this paradigm to either reduce the policy variance [53], increase scalability [22] or reduce sample complexity
[54].

Actor-Critic algorithms [28] are similar to the policy-gradient approach in updating the policy, while an estimated
value function V (st ) is leveraged in place of the constant baseline b in the original equation 12. The term (Rt − bt ) is
thus an estimate of the Advantage de�ned as A(at , st ) = Q(at , st ) −V (st ) where at is the action and st denotes the
current state, with Rt estimating Q(at , st ). Actor-critic methods experience much lower variance with the policy π

and value function V seen as actors and critics respectively. Works utilising this architecture bene�t from both the
policy-gradient and value-based methods, with DDPG [32] combining deep Q-learning for continuous action space,
A3C [37] for concurrent training. Other prevalent works include TD3 [17], Soft-Critic SAC [21].

Model-based Methods. The model-based algorithms di�er from the model-free methods in that the latter cares
less about the environment’s inner working and the rewards are estimated through sampling. On the contrary, a
model-based approach focuses on the model to predict the next state at each time step. Model-based RL achieves
good sample e�ciency by learning the transition dynamics of the environments directly. During learning, sample
trajectories are collected and trained with supervised learning. Several di�erent approaches have been applied to study
the dynamics, Gaussian Process approaches [10][27][2], Time-varying linear models approaches [30][33] or Deep
networks [41][18][9].



C APPENDIX C

Metrics Formula Type Evaluation Focus

Accuracy(acc)
tp+tn

tp+f p+tn+f n Binary
This metric measures the correct percentage of

the total samples∑l
i=1

tpi +tni
tpi +tni +f pi +tni

l
Multi
class

Average accuracy for all classes

Error Rate(err)
f p+f n

tp+f p+tn+f n Binary
This metric measures the miss-classi�cation

percentage over evaluated samples∑l
i=1

f pi +f ni
tpi +tni +f pi +tni

l
Multi
class

Average Error Rate of all classes

Precision(p)
tp

tp+f p Binary
Precision measures correct classi�ed
positive samples in a positive class∑l

i=1
tpi

tpi +f pi
l

Multi
class

Average of precision on each class

Recall(r)
tp

tp+f n Binary
Recall measures the fraction of correct classi�ed

positive samples∑l
i=1

tpi
tpi +tni
l

Multi
class

The average of recall for each class

F1-Score(FS)
2∗p∗r
p+r Binary

This metric measures the harmonic mean
of recall and precision

2∗pM ∗rM
pM+rM

Multi
class

The average F1-Score

Geometric
Mean(GM)

√
tp ∗ tn Binary

This metric is similar to the F1-Score but aims to
maximize the tp rate and tn rate

Table 4. Evaluation Metrics for Classification Problem.
Note: i indicates the class Ci , and M donates the macro-averaging.

Metric Formula Evaluation Focus

Mean Squared Error 1
N

∑N
i=1(yi − ŷ)2

MSE calculates the square residual for every data point,
contribute more to the outlier

Mean Absolute Error 1
N

∑N
i=1 |yi − ŷ |

MAE calculates the absolute residual for every data point,
so that negative and positive residuals do not cancel out

Mean Absolute Percentage Error 1
N

∑N
i=1 |

yi−ŷ
y | Percentage equivalent of MAE

Mean Percentage Error 1
N

∑N
i=1(

yi−ŷ
y )

MPE can help to check whether
the model underestimates or overestimates

Table 5. Evaluation Metrics for Classification Problem. Note: yi indicates the predicted value for ith sample, and ŷ denotes the
ground truth value. N indicates the total number of samples.



D APPENDIX D

In this section, we review the defending methods for the three types of the attacks discussed in the manuscript.

Defending model exploratory attack. The most straightforward defense of this type of attack is to constrain the
API, not returning con�dences and not responding to probing queries. The minimization can be achieved in three
approaches: Rounding con�dence, Di�erential privacy and Ensemble methods

Rounding con�dence is a type of defense that rounds con�dence sources of an application to some �xed precisions
[16]. Notably, some online ML service providers are already working on it. For instance, BigML and Amazon provide
�ve decimal places and 16 signi�cant digits for their con�dence scores respectively when answering queries. Limiting
the precision can decrease the success rate of attacks, this is because the outputs of the model are approximated. In
equation-solving attacks, for example, if the output of an equation-system is rounded, it will increase the di�culty for
attackers to guess the target function.

Di�erential privacy is a class of mechanisms to protect, especially the privacy of training data [68]. A set of Di�erential
privacy methods has been applied to protect regressions [5, 73], SVMs [48], decision trees [25] and neural networks [57].
The main idea of Di�erential privacy is to avoid a query that allows an adversary to distinguish closely neighboring
model parameters.

Ensemble methods returns an aggregated output predicted by a set of models. This prevention method was mentioned
in [64] and may have more resilience against the model exploratory attacks, compared with other methods. Bonawitz
[3] designed a new protocol to compute the sum of a large subset of models supporting a secure federated learning
setting.

Defending data poisoning attack. Compared with other systems, defending data poisoning attacks is more critical
in machine learning systems, because training data coming from the outside world is very easy to poison. Steinhardt et
al. [59] developed an outlier detector for linear classi�ers to generate approximate upper bounds of the training dataset.
The data (poisoned) that exceeds the bounds will be removed from the training dataset, not changing the distribution of
the clean data. The paper [49] aimed to develop a strategy to defend against attacks that attempts to poison the PCA
based anomaly detection models. Since the PCA methods are less sensitive to outliers, an ideal approach against the
variance injection caused by the perturbed data is to �lter the poisoned data with prede�ned threshold. The paper also
proposed two approaches [49] for selecting the threshold: the �rst uses covariance matrix, and the second is to �nd the
maximal scale estimate of the data projection.

Defending evasion attack. Crafting the adversarial samples is a complex optimization process as it is very hard to
build a general tool for defending. Thus, adversarial training which adds the adversarial examples to the training set is a
straightforward way to increase the model robustness [35, 55, 63]. Moreover, Defense-GAN [50] leverages a generative
model to generate more samples similar to the training data, reducing the adversarial perturbation signi�cantly.
Apart from these general defending methods, some defenses use model hardening techniques. [71] proposed a feature
squeezing method to reduce the complexity of representing the data. Less important adversarial perturbations are
�ltered out afterwards. In the following section, we survey the attacks and the defenses in real IoT applications and
then discuss the challenges of building a secure IoT application.
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