
JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.1 (1-19)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Relational structures for concurrent behaviours

Ryszard Janicki a, Jetty Kleijn b, Maciej Koutny c,∗, Łukasz Mikulski d

a Dept. Computing and Software, McMaster University, Hamilton, ON, L8S 4K1, Canada
b LIACS, Leiden University, P.O. Box 9512, 2300 RA Leiden, the Netherlands
c School of Computing, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
d Fac. Math. and Computer Science, Nicolaus Copernicus University, Toruń, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 June 2020
Received in revised form 16 October 2020
Accepted 19 October 2020
Available online xxxx

Keywords:
Relational structure
Causality
Concurrency
Closure
Label-linearity
Combined order structure

Relational structures based on acyclic relations can successfully model fundamental
aspects of concurrent systems behaviour. Examples include Elementary Net systems and
Mazurkiewicz traces. There are however cases where more general relational structures
are needed. In this paper, we present a general model of relational structures which can
be used for a broad class of concurrent behaviours. We demonstrate how this general set-
up works for combined order structures which are based on two relations, viz. an acyclic
‘before’ relation and a possibly cyclic ‘not later than’ relation.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the development of effective design and validation techniques for a wide range of concurrent computing systems, it
is often necessary to capture and analyse intricate relationships between events (occurrences of actions) executed during a
system run. While sequential representations of behaviours are easy to process, without additional information or structur-
ing they cannot convey precise information about important semantical characteristics such as causality and independence
between executed actions. A successful way of addressing this problem is to employ relational structures such as partial or-
ders, where causally related events are ordered, and concurrent (or independent) events are unordered. An example of such
an approach are Mazurkiewicz traces [1,2], where invariant causal dependencies between events, common to all elements of
the trace (a set of related sequential executions), define an acyclic dependence graph which — through its transitive closure
— determines the underlying causality structure of the trace as a (labelled) partial order [3]. As a result, each trace can be
represented by a labelled partial order (see, e.g., [4–6]) identifying independence and unorderedness, and the approach uses
relational structures to represent different aspects of concurrent behaviour: acyclic graphs to represent dependence graphs,
partial orders to represent causality (both direct and indirect), and sets of total orders to represent sequential executions
(records or individual observations of a behaviour). Mazurkiewicz traces are a particularly well fitting behavioural model for
Elementary Net systems, a fundamental class of Petri Nets (see [7]).

In [8,9], a generalisation of the theory of Mazurkiewicz traces is presented for the case that actions could be observed as
occurring simultaneously. Thus executions are sequences of steps, i.e., sets of one or more simultaneously observed actions.

* Corresponding author.
E-mail addresses: janicki@mcmaster.ca (R. Janicki), h.c.m.kleijn@liacs.leidenuniv.nl (J. Kleijn), maciej.koutny@ncl.ac.uk (M. Koutny),

lukasz.mikulski@mat.umk.pl (Ł. Mikulski).
https://doi.org/10.1016/j.tcs.2020.10.019
0304-3975/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.tcs.2020.10.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:janicki@mcmaster.ca
mailto:h.c.m.kleijn@liacs.leidenuniv.nl
mailto:maciej.koutny@ncl.ac.uk
mailto:lukasz.mikulski@mat.umk.pl
https://doi.org/10.1016/j.tcs.2020.10.019
http://creativecommons.org/licenses/by-nc-nd/4.0/

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.2 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
Now, to represent the invariant dependencies including ‘mutually exclusive’ (unordered but not simultaneous) and ‘earlier or
simultaneous’ (not later than) occurrences, requires the introduction of new ordering relations between events. Concurrent
runs can be represented by labelled relational structures which are generalisations of the labelled partial orders used in
the case of Mazurkiewicz traces. They provide two intrinsic relations between elements: mutual exclusion and weak causality.
Other examples where relational structures are used to model concurrent behaviours include, e.g., [10,11], which investigates
relational structures with two component relationships, viz. causality and weak causality. Models of concurrent behaviours
developed by these extensions are powerful enough to describe the concurrent runs of different classes of Elementary Net
systems e.g., Elementary Net systems extended with inhibitor arcs (test for zero) and mutex arcs preventing simultaneous
execution of actions, e.g., [10,12,13]. The initial versions of the relational structures considered in this paper were proposed
in [14,15], and the version of relational structures used in this paper originates from [16].

A common feature of the semantical models mentioned above is that they deal with three kinds of relational structures
aimed at the modelling of different aspects of concurrent behaviours. At the top level one finds dependence structures
describing direct relationships, such as causality or mutual exclusion, between events executed in a concurrent run. Depen-
dence structures are defined, e.g., by taking account of resource dependencies in a concurrent system during a run. There is
no attempt, however, to represent derived relationships. This is done at the middle level, where all relationships stemming
from, e.g., causal chains between events, are added. The resulting structure gives a full account of the invariant relationships
between the events shared by the relational structures at the bottom level. Each relational structure at this level is treated
as representing a system execution which adheres to the dependence structure at the top level and invariant structure at
the middle level, providing a complete description of a single system execution. For example, a concurrent behaviour with
two independent events, e and f , executed on a single processor machine generates two total order executions, ‘e followed
by f ’ and ‘ f followed by e’. One of the advantages of such a three-level view of concurrent behaviours is that one can, e.g.,
deal with a single structure at the invariant level rather than with the (exponentially) many structures at the bottom level.
This property has been exploited by verification techniques such as partial order model checking [17]. The soundness of
the approach we just outlined depends on providing suitable means of relating the three levels of representing concurrent
histories, such as deriving an invariant structure from a dependence structure (e.g., through transitive closure of an acyclic
relation in the case of causal partial orders).

In this paper, we introduce and investigate a generic model based on a class R of (labelled) relational structures, and
all structures we consider are included in R. Relational structures in R are compared w.r.t. the information they convey,
and a relational structure rs is an extension of a relational structure rs′ if the former is obtained from the latter by adding
new relationships. Intuitively, this means that rs is more concrete than rs′ by providing more details about the relations be-
tween events. The maximal relational structures Rmax residing at the bottom level are those which cannot be extended (or
concretised) any further, and sets of relational structures extending a given rs are then regarded as the executions conform-
ing to a more abstract concurrent history. Finally, the middle level relational structures are the closed relational structures
Rclo which can be seen as transitively closed dependence structures. Closed structures are in a one-to-one correspondence
with sets of maximal structures generated by dependence structures. We then discuss the notion of label-linear relational
structures Rlin such that one can attribute a strict execution order to all instances of a given action. Label-linear relational
structures allow one to construct relational spaces where the interpretation of the execution order of events is unambiguous.

The central message conveyed by this paper is that after specifying the set R of relational structures which represent an application
specific class of concurrent behaviours, the development of a complete framework is basically automatic.

The paper is organised as follows. The next section provides basic notions used throughout. Sections 3—7, discuss re-
lational structures as the basis for constructing relational spaces, introducing more relevant assumptions whenever it is
necessary. In particular, we will aim at characterising those relational structures which can be thought of as representations
of individual system executions, and those which can be thought of as representations of sets of closely related system
executions. This leads to a blueprint for developing relational spaces without making any additional assumptions, e.g., about
interpretations of the relationships between events. In Section 9, we show how this blueprint can be applied in the case of
relational structures comprising two relationships, viz. causality and weak causality.

2. Preliminaries

Basic notations Let R, S ⊆ X × X be two binary relations over X . Then: (i) the composition of R and S is the relation R ◦ S =
{〈x, z〉 | ∃y ∈ X : 〈x, y〉 ∈ R ∧〈y, z〉 ∈ S}; (ii) R−1 = {〈y, x〉 | 〈x, y〉 ∈ R} is the inverse of R; (iii) Rsym = R ∪ R−1 is the symmetric
closure of R; (iv) R0 = idX = {〈x, x〉 | x ∈ X} and Rn = Rn−1 ◦ R (n ≥ 1) are the powers of R , where idX = {〈x, x〉 | x ∈ X}; (v)
R+ = R1 ∪ R2 ∪ . . . is the transitive closure of R; (vi) R∗ = R+ ∪ R0 is the reflexive transitive closure of R; (vii) (Rsym)∗ is the
symmetric, reflexive, and transitive closure of R; and (viii) R� = R+ \ R0 is the irreflexive transitive closure of R .

Relational structures In this paper, behaviours of concurrent systems are modelled as structures consisting of a finite
domain, the elements of which represent events labelled by actions, together with binary relations describing the interde-
pendencies between the domain elements. In the literature, structures of this kind have been used (explicitly or implicitly)
to represent concurrent behaviours in, e.g., [11,15,16,18]. It should be stressed that the treatment of relational structures
(a general class of mathematical concepts) in this paper is motivated by their application to modelling concurrent be-
2

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.3 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
haviours. Although the resulting theory is not restricted to concurrency related properties, some of the concepts and results
are tied to the chosen area of application.

Throughout the paper, U denotes a (infinite) universe of all possible domain elements that can be used in the structures
we deal with, A is the set of actions which any hypothetical concurrent system might perform, and E = {a(i) | a ∈A ∧ i ≥ 1}
is the set of events comprising all possible execution instances of these actions. Intuitively, an event a(i) represents the i-th
occurrence of action a in some behaviour of a concurrent system, and it is implicitly assumed that a(i) occurred before a(j)

whenever i < j.
A relational structure is a tuple rs = 〈�, Q 1, . . . , Q n, �〉, where: n ≥ 1 is the arity of rs; � is a finite subset of U called

the domain; the Q i ’s are binary relations over the domain; and � : � → A is the labelling of the domain elements. The
components of rs can be referred to with the subscript rs. Intuitively, rs is a record of an execution of a concurrent system.
The domain lists events that have been recorded, and the labelling associates a specific action with each of these events.
Crucially, the relations state the nature of the relationships between the executed events, such as causality or mutual
exclusion. A concurrent history (cf. [2,14]) consists of records that ‘belong together’, i.e., while they may be formally different,
they are intuitively close [19] and seen as ‘equivalent’ observations of the same execution.

To illustrate the concepts associated with relational structures relevant to this paper, we will use three running examples.
The running examples are based on three sets of relational structures, AO, DAO, and ONE.

Example 2.1. AO consists of relational structures representing concurrent behaviours where the only structural relationship
between events is causality (or precedence). These relational structures have one relation that is assumed to be acyclic (to
exclude ‘causal cycles’). Hence, AO comprises acyclic orders ao = 〈�, ≺, �〉 such that ≺ is an acyclic relation over � (i.e., ≺+
is irreflexive). Moreover, ao belongs to: (i) total orders TO if ≺ ∪ ≺−1= (� ×�) \ id�; (ii) partial orders PO if ≺ is transitive;
(iii) stratified orders SO if ≺ is transitive and (� × �)\ ≺sym is an equivalence relation; and (iv) interval orders if a ≺ c and
b ≺ d implies a ≺ d or b ≺ c, for all a, b, c, d ∈ �.

We denote by �ao the relation {〈x, y〉 ∈ � × � | x �= y ⊀ x}, i.e., x �ao y if x precedes y or if the two elements are
unordered.

In many models, executions are represented by sequences or step sequences of actions, i.e., total or stratified orders
(see, for example, [9,10,20,21]). When standard ‘true concurrency’ is assumed (i.e., if two actions a and b are deemed
independent, then their simultaneous execution and the orders a followed by b and b followed by a are considered
‘equivalent’, i.e., they are seen as records of the same execution), then the acyclic orders AO adequately model concur-
rent behaviours [4,20,21]. It was argued by Wiener in 1914 [22] (and later more formally in [14]) that any execution that
can be observed by a single observer must be an interval order. Generating system runs that are represented by interval
orders directly is problematic for most models of concurrency [18]. Interval orders have however a natural sequence repre-
sentation. In this paper, we do not exclude representing executions by interval orders of events, however we will not discuss
this issue in detail.

Example 2.2. DAO consists of distributed acyclic orders dao = 〈�, ⇀, ⇁, �〉, where ⇀ and ⇁ are disjoint binary relations
over � such that their union is acyclic. One may think of distributed acyclic orders as records of dependencies between
events generated at two different locations of a distributed system.

Although 〈�, ⇀ ∪ ⇁, �〉 is an acyclic order, and so distributed acyclic orders represent the same dependencies between
events as acyclic orders, DAO and AO are not equivalent. In particular, an acyclic order may correspond to many different
distributed acyclic orders. Consider dao = 〈�, {〈x, y〉}, {〈y, z〉}, �〉 modelling a behaviour where x is followed by y in one
subsystem, and the same y is followed by z in the other subsystem. Intuitively, dao is equivalent to the acyclic order
ao = 〈�, {〈x, y〉, 〈y, z〉}, �〉 and also dao′ = 〈�, {〈x, y〉, 〈y, z〉}, ∅, �〉 is a distributed acyclic order equivalent to ao.

Example 2.3. ONE is the set of all relational structures of arity one such that the relations they contain are irreflexive. This
example is not meant to model behaviours of a computational system.

The actions and events of a relational structure rs are respectively given by Ars = �rs(�rs) and Ers = {a(i) | a ∈ Ars ∧ 1 ≤
i ≤ |�−1

rs (a)|}. Intuitively, Ers is the set of all events involved in a concurrent behaviour represented by rs, each of these
events being an instance of an underlying action in Ars .

An extension of a relational structure rs is any relational structure rs′ with the same arity n, the same domain and
labelling, and satisfying Q i

rs ⊆ Q i
rs′ , for every 1 ≤ i ≤ n. This is denoted by rs � rs′ , and rs � rs′ means that rs � rs′ and

rs �= rs′ . The set of extensions of rs is given by ext(rs) = {rs′ | rs � rs′}. We also denote extR(rs) = ext(rs) ∩R.
For all a ∈Ars and 1 ≤ i ≤ n, ��a� = �−1(a), ��a� = �|��a� , (Q i)�a� = Q i

rs|��a�×��a� , and rs�a� = 〈��a�, (Q 1)�a�, . . . , (Q n)�a�,
��a�〉.

The intersection of a nonempty set RS of relational structures with the same domain �, arity n, and labelling � is ⋂
RS = 〈�,

⋂
rs∈RS Q 1

rs, . . . ,
⋂

rs∈RS Q n
rs, �〉.

When in this paper a set of relational structures with the same domain and labelling is considered, it implicitly comprises
relational structures representing behaviours of some hypothetical concurrent system, such as a distributed program or a
3

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.4 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
Petri Net. Moreover, the relational structures in such set are intended to represent behaviours at different levels of abstraction.
The approach we are about to present deals with these different levels using the same kind of relational structures, and the
distinct nature of the abstraction levels will follow solely from their general structural (or order theoretic) properties.

From now until the end of Section 7, R and S are assumed to be nonempty sets of relational structures.
A function f : R → R is non-decreasing if rs � f (rs), for every rs ∈ R, and g : R → S is monotonic if g(rs) � g(rs′), for

all rs, rs′ ∈R satisfying rs � rs′ .
A renaming of a relational structure rs = 〈�, Q 1, . . . , Q n, �〉 is a bijection ψ from � to a subset of U . Applying ψ to rs

yields an isomorphic relational structure ψ(rs) = 〈ψ(�), ψ(Q 1), . . . , ψ(Q n), � ◦ψ−1〉, where ψ(Q i) = {〈ψ(x), ψ(y)〉 | 〈x, y〉 ∈
Q i}, for every 1 ≤ i ≤ n. We call ψ an isomorphism and denote rs ∼ψ rs′ . We say that R is renaming-closed if ψ(rs) ∈ R,
for every rs ∈ R and every renaming ψ of rs. Note that in a renaming-closed R, we can abstract from the identities of the
domain elements of a relational structure and focus on the labellings and the structure as defined through its relations.

3. Maximal relational structures

In general, a relational structure rs in R provides partial information about the relationships between its events, and
it can thus be used to represent a group of system executions. The first kind of relational structures we distinguish are
those which represent individual behaviours (or single executions). By this we mean that all information about the concurrent
behaviour is present in the relational structure, and any additional relationship would be inconsistent with the behaviour
represented (e.g., as it would introduce a cycle to a relation intended to represent causality between executed events).

Definition 3.1 (maximal relational structure). A relational structure rs ∈ R is maximal in R if extR(rs) = {rs}. We denote this
by rs ∈ Rmax . The function maxR : R → 2R

max
returns the maximal extensions of relational structures, i.e., maxR(rs) =

extRmax(rs), for every rs ∈R.

Each relational structure in R has at least one maximal extension in R; extending a relational structure may only
reduce the number of maximal extensions; and the intersection of all the maximal extensions of a relational structure rs is
an extension of rs. Formally:

Proposition 3.2. Let rs, rs′ ∈ R.

(1) maxR(rs) �= ∅.
(2) rs � rs′ implies maxR(rs) ⊇ maxR(rs′).
(3) rs �

⋂
maxR(rs).

(4) maxR(rs) = maxR(
⋂

maxR(rs)), provided that
⋂

maxR(rs) ∈R.

Proof. (1,2,3) Follow directly from the definitions as well as the finiteness of relational structures (in the case of part (1)).
(4) Let rs = ⋂

maxR(rs). By parts (2) and (3), maxR(rs) ⊇ maxR(rs). Suppose that rs′′ ∈ maxR(rs). Then rs � rs′′ . Hence,
by part (2), maxR(rs) ⊇ maxR(rs′′) = {rs′′}. Thus maxR(rs) ⊆ maxR(rs), and so the result holds. �
Example 3.3. The total orders TO are the maximal relational structures in AO and maxAO returns the set of all total order
extensions of an acyclic order, i.e., TO = AOmax . For example, Proposition 3.2(1) means that each acyclic order can be
extended to a total order.

DAOmax comprises all distributed acyclic orders dao such that ⇀dao ∪ ⇁dao is a total order relation. Moreover, ⋂
maxDAO(dao) = dao, for every dao ∈ DAO. This follows from the fact that if 〈�dao, ⇀dao � ⇀′

dao, ⇁dao � ⇁′
dao, �dao〉 is

a maximal extension of dao, then so is 〈�dao, ⇀dao � ⇁′
dao, ⇁dao � ⇀′

dao, �dao〉.
ONEmax comprises all relational structures of the form 〈�, {〈x, y〉 | x �= y ∈ �}, �〉.

Intuitively, a maximal relational structure represents in full all the dependencies between events involved in a single
system execution. No further relationships can be added without moving out of R. (Note also that if maxR(rs) consists of
only one relational structure, then rs does not have to be maximal, as there may be still some implicit dependencies not
included in rs.) With this interpretation of Rmax , the set of maximal extensions maxR(rs) of rs represents all single system
executions (in R) that respect all relations between the events of rs.

When relating two classes of relational structures, we are interested in particular in the relationship between their max-
imal elements since these represent the individual behaviours defined by the class. The following result provides us with a
condition that guarantees a one-to-one correspondence between the maximal relational structures in the two classes. How-
ever, this in itself would not be enough to justify behavioural equivalence between these classes, understood as reflecting
the same concurrent behaviours through a relation between corresponding elements. This issue is addressed in the next
result by showing that corresponding relational structures have corresponding maximal extensions.

Theorem 3.4. Let R
f−−→ S

g−−→ R be monotonic functions such that g ◦ f and f ◦ g are non-decreasing functions.
4

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.5 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
(1) Rmax f−−→ S max g−−→ Rmax are inverse bijections.
(2) maxS ◦ f = f ◦ maxR and maxR ◦g = g ◦ maxS .
(3) maxR = g ◦ maxS ◦ f and maxS = f ◦ maxR ◦g.

Proof. (1) Let rs ∈ Rmax . We first observe that rs = g ◦ f (rs), which follows from rs � g ◦ f (rs) (as g ◦ f is non-decrea-
sing) and rs being maximal. We next observe that f (rs) ∈ S max . Indeed, suppose that f (rs) � rs′ ∈ S max . Then, by the
monotonicity of g , g ◦ f (rs) � g(rs′). Hence, as g ◦ f is non-decreasing, rs � g ◦ f (rs) � g(rs′). Thus, since rs is maximal,
g(rs′) = rs. Hence, as f ◦ g is non-decreasing, rs′ � f ◦ g(rs′) = f (rs). As a result, by rs′ ∈ S max , we have rs′ = f (rs), and so
f (rs) ∈ S max .

We have shown rs = g ◦ f (rs) and f (rs) ∈ S max , for every rs ∈ Rmax . By a symmetric argument, rs′ = f ◦ g(rs′) and
g(rs′) ∈ Rmax , for every rs′ ∈ S max . Hence, part (1) holds.

(2) We only prove the first equality as the second one follows by symmetry.
Suppose that rs ∈ R and rs′ ∈ maxR(rs). Then, by the monotonicity of f , we have f (rs) � f (rs′). Moreover, by part (1),

f (rs′) ∈ S max . Hence f (rs′) ∈ maxS ◦ f (rs), and so maxS ◦ f (rs) ⊇ f ◦ maxR(rs).
Suppose now that rs′ ∈ maxS ◦ f (rs). Then, by the monotonicity of g , we have that g ◦ f (rs) � g(rs′). Moreover, by part

(1) and g ◦ f being non-decreasing, g(rs′) ∈ Rmax and rs � g ◦ f (rs). Hence g(rs′) ∈ maxR(rs). Moreover, by part (1), we
obtain f ◦ g(rs′) = rs′ . Thus rs′ = f ◦ g(rs′) ∈ f ◦ maxR(rs), and so maxS ◦ f (rs) ⊆ f ◦ maxR(rs).

(3) We only prove the first equality as the second one follows by symmetry.
By parts (1) and (2), we have maxR = g ◦ f ◦ maxR = g ◦ maxS ◦ f . �
Theorem 3.4 employs two functions, f and g , intended to relate ‘equivalent’ structures. Requiring f to be monotonic, i.e.,

f (rs) � f (rs′) whenever rs � rs′ , means that f (and also g) preserves structural information in extensions. And, similarly,
the application of the non-decreasing functions g ◦ f and f ◦ g does not lead to loss of information.

As the definition of maximal extensions is based on structure rather than labels, the set of maximal relational structures
in R is renaming-closed if R is renaming-closed.

Theorem 3.5. If R is renaming-closed, then Rmax is renaming-closed. Moreover, if ψ is a renaming of rs ∈ R, then maxR ◦ψ(rs) =
ψ ◦ maxR(rs).

Proof. We first observe that, for all rs, rs′ ∈ R, we have: (i) rs � rs′ implies ψ(rs) � ψ(rs′); and (ii) rs � rs′ implies ψ(rs) �
ψ(rs′).

Let rs ∈ Rmax . As R is renaming-closed, ψ(rs) ∈ R. Suppose that ψ(rs) /∈ Rmax . Then there is rs′ ∈ R such that ψ(rs) �
rs′ . Hence, by (ii) and R being renaming-closed, ψ−1(rs′) ∈ R and rs = ψ−1 ◦ ψ(rs) � ψ−1(rs′). This, however, contradicts
rs ∈Rmax . Hence Rmax is renaming-closed.

Suppose now that rs ∈ R and rs ∈ maxR(rs). Then, by R and Rmax being renaming-closed and (i) and rs � rs, we have
ψ(rs) ∈R and ψ(rs) ∈Rmax and ψ(rs) �ψ(rs). Hence ψ ◦maxR(rs) ⊆ maxR ◦ψ(rs). By a symmetric argument for ψ−1 and
ψ(rs), we have ψ−1 ◦ maxR ◦ψ(rs) ⊆ maxR ◦ψ−1 ◦ψ(rs), and so maxR ◦ψ(rs) = ψ ◦ψ−1 ◦ maxR ◦ψ(rs) ⊆ ψ ◦ maxR ◦ψ−1 ◦
ψ(rs) = ψ ◦ maxR(rs). Hence maxR ◦ψ(rs) = ψ ◦ maxR(rs). �
4. Closed relational structures

In the semantical treatment of concurrent behaviours, a central role is played by relational structures which are inter-
sections of their maximal extensions, such as the causal partial orders in Mazurkiewicz trace theory (with partial orders
being the intersection of their total order extensions), stratified orders in comtrace theory [10] and step trace theory [9],
and interval orders in interval trace theory [18].

The set R is intersection-closed if
⋂

maxR(rs) ∈ R, for every rs ∈ R. Note that, by Proposition 3.2(1), maxR(rs) �= ∅.
Moreover, all relational structures in maxR(rs) have the same domain and labelling. Thus

⋂
maxR(rs) is always a relational

structure.

Example 4.1. AO, DAO, and ONE are all intersection-closed sets of relational structures.

There is a simple sufficient condition for intersection-closedness. We say that R is convex if, for all rs, rs′′ ∈ R and for
every relational structure rs′ , rs � rs′ � rs′′ implies that rs′ ∈R.

Proposition 4.2. If R is convex, then it is intersection-closed.

Proof. Let rs ∈ R, rs′ = ⋂
maxR(rs), and rs′′ ∈ maxR(rs). By Proposition 3.2(3), we have rs � rs′ � rs′′ . Hence, as R is

convex, rs′ ∈R. �

5

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.6 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
Convexity is not a necessary condition for intersection-closedness. Consider, for example, any three relational structures
satisfying rs � rs′ � rs′′ . Then R = {rs, rs′′} is intersection-closed as

⋂
maxR(rs) = ⋂

maxR(rs′′) = ⋂{rs′′} = rs′′ , but not
convex.

Example 4.3. AO, DAO, and ONE are all convex sets of relational structures.

Definition 4.4 (closed relational structure). A relational structure rs ∈ R is closed in R if rs = ⋂
maxR(rs). We denote this by

rs ∈Rclo .

Note that each closed relational structure adheres to the ‘spirit’ of Szpilrajn’s Theorem [23] which states that each partial
order is the intersection of its total order extensions.

Example 4.5. AOclo = PO, DAOclo = DAO, and ONEclo = ONEmax .

The next result captures basic relationships between maximal and closed structures. In particular, one can characterise
all closed relational structures in a rather straightforward and precise way, by showing that each relational structure gives
rise to a closed one through intersecting all its maximal extensions.

Proposition 4.6. Rmax and Rclo are nonempty intersection-closed sets of relational structures satisfying (Rmax)max = (Rmax)clo =
(Rclo)max = Rmax ⊆ Rclo = (Rclo)clo and maxRclo(rs) = maxR(rs), for every rs ∈ Rclo. Moreover, Rclo = {⋂maxR(rs) | rs ∈ R}
whenever R is intersection-closed.

Proof. Clearly, (Rmax)max = Rmax . We then observe that
⋂

maxR(rs) = ⋂
maxRmax(rs) = ⋂{rs} = rs, for every rs ∈ Rmax .

Hence Rmax ⊆ Rclo , (Rmax)clo = Rmax , and Rmax is intersection-closed.
To show (Rclo)max = Rmax , we observe that Rmax ⊆ (Rclo)max as we have Rmax ⊆ Rclo ⊆ R. Suppose that rs ∈

(Rclo)max \Rmax . Then there is rs′ ∈Rmax ⊆Rclo such that rs � rs′ . Thus, rs′ ∈ maxRclo(rs), a contradiction.
We next observe that, by (Rclo)max = Rmax , rs ∈ Rclo implies maxRclo(rs) = maxR(rs). This, in turn, means that

⋂
maxRclo(rs) = ⋂

maxR(rs) = rs, and so Rclo is intersection-closed.
We then observe that, for every rs ∈ R, rs ∈ (Rclo)clo iff rs ∈ Rclo ∧ rs = ⋂

maxRclo(rs) iff rs ∈ Rclo ∧ rs = ⋂
maxR(rs) iff

rs ∈Rclo . Hence (Rclo)clo = Rclo .
We note that Rmax is nonempty by Proposition 3.2(1) and R �=∅. This and Rmax ⊆ Rclo implies that Rclo is nonempty.
Finally, we observe that Rclo = {rs | rs ∈ Rclo} = {⋂maxR(rs) | rs ∈ Rclo} ⊆ {⋂maxR(rs) | rs ∈ R}. To show the reverse

inclusion, suppose that rs ∈ R and rs′ = ⋂
maxR(rs). Then, by Proposition 3.2(4),

⋂
maxR(rs′) = ⋂

maxR(rs) = rs′ , and so
rs′ ∈ Rclo . �
5. Closing relational structures

The discussion in the previous two sections, in particular Proposition 4.6, suggests a way of ‘closing’ the relational
structures belonging to R by using the structure closure function cloR : R → Rclo defined by cloR(rs) = ⋂

maxR(rs) for all
rs ∈R. As an example, recall that AOclo = PO and, indeed, all partial orders can be obtained by intersecting the linearisations
of an acyclic order.

Among the properties listed in the following proposition, we find that closing a closed structure has no effect and that
the maximal extensions of a relational structure are precisely the maximal extensions of the closure of that structure. The
latter property is particularly interesting as it shows that cloR(rs) is the maximal relational structure among all those which
have the same maximal extensions as rs. One may interpret this as saying that cloR(rs) contains all the explicit and implicit
dependencies between events in the system executions consistent with rs.

Proposition 5.1. Let R be intersection-closed, rs, rs′ ∈ R and rs′′ ∈ Rclo.

(1) rs � cloR(rs).
(2) rs � rs′′ implies cloR(rs) � rs′′ .
(3) cloR(rs′′) = rs′′ .
(4) extRclo(rs) = extRclo(cloR(rs)).
(5) maxR(rs) = maxR ◦ cloR(rs).
(6) rs � rs′ implies cloR(rs) � cloR(rs′).
(7) rs′′ � rs implies maxR(rs) �= maxR(rs′′).
(8) maxR(rs) = maxR(rs′) implies cloR(rs) = cloR(rs′) and rs′ � cloR(rs).

Proof. (1) Follows from Proposition 3.2(3).
6

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.7 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
(2) By Proposition 3.2(2), we have maxR(rs′′) ⊆ maxR(rs). Hence, since rs′′ ∈ Rclo , we obtain cloR(rs) = ⋂
maxR(rs) �⋂

maxR(rs′′) = rs′′ .
(3) By part (1), rs′′ � cloR(rs′′). Moreover, by rs′′ � rs′′ and part (2), we obtain cloR(rs′′) � rs′′ . Hence cloR(rs′′) = rs′′ .
(4) Let rs′′′ ∈ Rclo . We then observe that rs � rs′′′ iff cloR(rs) � rs′′′ . Indeed, the right-to-left implication follows from

part (1), and the left-to-right implication from part (2).
(5) Follows from Proposition 3.2(4).
(6) By rs � rs′ and part (1), rs � cloR(rs′). Hence, by part (2), cloR(rs) � cloR(rs′).
(7) Suppose that maxR(rs) = maxR(rs′′). Then, by part (5), we obtain that the following holds: cloR(rs) = ⋂

maxR ◦
cloR(rs) = ⋂

maxR(rs) = ⋂
maxR(rs′′) = rs′′ . On the other hand, by part (1), rs � cloR(rs) = rs′′ � rs. Hence rs � rs, yielding

a contradiction.
(8) We have cloR(rs) = ⋂

maxR(rs) = ⋂
maxR(rs′) = cloR(rs′). Hence, by part (1), rs′ � cloR(rs′) = cloR(rs). �

Example 5.2. The structure closure for the acyclic orders in AO is the transitive closure. For example, Proposition 5.1(5)
means that the total order extensions of an acyclic order are the same as the total order extensions of its transitive closure.

The structure closure for the distributed acyclic orders is the identity function.
cloONE(rs) = 〈�rs, {〈x, y〉 | x �= y ∈ �rs}, �rs〉, for every rs ∈ ONE (see Example 3.3).

The next result employs a pair of functions, f and g , as in Theorem 3.4. It can be used to demonstrate a one-to-one
correspondence between the closed structures in different sets of relational structures, and also shows that the closure of a
relational structure can be derived from a corresponding relational structure in another class of relational structures.

Theorem 5.3. Let R and S be intersection-closed and R
f−−→ S

g−−→ R be monotonic functions such that g ◦ f and f ◦ g are
non-decreasing functions.

(1) Rclo f−−→ S clo g−−→Rclo are inverse bijections.
(2) cloR = g ◦ cloS ◦ f and cloS = f ◦ cloR ◦g.

Proof. (1) Let rs ∈ Rclo . By Theorem 3.4(3,2), we have maxR(rs) = g ◦ maxS ◦ f (rs) = maxR ◦g ◦ f (rs). Hence g ◦ f (rs) �⋂
maxR ◦g ◦ f (rs) = ⋂

maxR(rs) = rs, by Proposition 3.2(3) and rs ∈ Rclo . Moreover, rs � g ◦ f (rs), as g ◦ f is non-decrea-
sing. Hence g ◦ f (rs) = rs (*).

By a symmetric argument, for every rs′ ∈ S clo , f ◦ g(rs′) = rs′ (**).
We next show that f (rs) ∈ S clo . Let rs = ⋂

maxS ◦ f (rs). By Propositions 3.2(3) and 4.6, we have f (rs) � rs and
rs ∈ S clo . Hence, by the monotonicity of g and (*), rs = g ◦ f (rs) � g(rs). Moreover, by Theorem 3.4(2,3) and Proposi-
tion 3.2(4), we have maxR(rs) = g ◦ maxS ◦ f (rs) = g ◦ maxS (

⋂
maxS ◦ f (rs)) = g ◦ maxS (rs) = maxR ◦g(rs). Hence, by

Proposition 3.2(3) and rs ∈Rclo , g(rs) �
⋂

maxR ◦g(rs) = ⋂
maxR(rs) = rs. As a result, we obtained g(rs) = rs. Thus, by (**),

f (rs) = f ◦ g(rs) = rs ∈ S clo .
We have shown rs = g ◦ f (rs) and f (rs) ∈ S clo , for every rs ∈ Rclo . By a symmetric argument, rs′ = f ◦ g(rs′) and

g(rs′) ∈ Rclo , for every rs′ ∈ S clo . Hence the result holds.
(2) We only prove the first equality as the second one follows by symmetry.
Let rs ∈ R and rs′ = g ◦ cloS ◦ f (rs). By Proposition 4.6 and part (1), we obtain rs′ ∈ Rclo . Moreover, by Theorem 3.4(2)

and Proposition 5.1(5), and Theorem 3.4(3), we have maxR(rs′) = maxR ◦g ◦ cloS ◦ f (rs) = g ◦ maxS ◦ cloS ◦ f (rs) = g ◦
maxS ◦ f (rs) = maxR(rs). Hence, cloR(rs) = ⋂

maxR(rs) = ⋂
maxR(rs′) = rs′ = g ◦ cloS ◦ f (rs). �

As with maximal extensions, closure is defined on basis of structure rather than labelling. And so, similar to Theorem 3.5,
the class of closed relational structures is renaming-closed, if R is renaming-closed. Moreover, and also similar to Theo-
rem 3.5, computing the closure of the renamings of rs ∈R, can be done by computing the closure of a single representative
of the isomorphism class and then applying the renaming.

Theorem 5.4. If R is intersection-closed and renaming-closed, then Rclo is renaming-closed. Moreover, if ψ is a renaming of rs ∈ R,
then cloR ◦ψ(rs) = ψ ◦ cloR(rs).

Proof. Suppose that rs ∈ R. Then, by Theorem 3.5, the second part holds as we have cloR ◦ψ(rs) = ⋂
maxR ◦ψ(rs) =⋂

ψ ◦ maxR(rs) = ψ(
⋂

maxR(rs)) = ψ ◦ cloR(rs).
To show the first part, suppose that rs ∈ Rclo . Then rs = ⋂

maxR(rs) and ψ(rs) ∈ R (as R is renaming-closed). Hence,
by the second part, cloR ◦ψ(rs) = ψ(

⋂
maxR(rs)) = ψ(rs). Thus ψ(rs) ∈Rclo , and so Rclo is renaming-closed. �

Intuitively, the next two results demonstrate that structure closure and closed structure rely on maximal relational struc-
tures. In what follows, the set R is upward-closed in S if R⊆ S and rs � rs′ implies rs′ ∈R, for all rs ∈R and rs′ ∈ S .
7

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.8 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
Proposition 5.5. Let R and S be intersection-closed such that R ⊆ S and one of the following holds: (i) maxR(rs) = maxS (rs),
for every rs ∈ R; or (ii) Rmax ⊆ S max. Then Rclo = S clo ∩R and cloR(rs) = cloS (rs), for every rs ∈ R.

Proof. Suppose that (i) holds. We first observe that cloR(rs) = cloS (rs), for every rs ∈ R. Indeed, we have cloR(rs) =⋂
maxR(rs) = ⋂

maxS (rs) = cloS (rs). We then observe that rs ∈ Rclo ⇐⇒ rs ∈ R ∧ rs = ⋂
maxR(rs) ⇐⇒ rs ∈ R ∧ rs =⋂

maxS (rs) ⇐⇒ rs ∈R∧ rs ∈ S clo , and so Rclo = S clo ∩R. We finally observe that (ii) implies (i). �
Proposition 5.6. Let S be intersection-closed and R⊆ S be upward-closed in S .

(1) R is intersection-closed.
(2) Rmax = S max ∩R and maxR(rs) = maxS (rs), for every rs ∈R.
(3) Rclo = S clo ∩R and cloR(rs) = cloS (rs), for every rs ∈ R.

Proof. (2) Follows from R being upward-closed in S .
(1) Let rs ∈ R and rs′ = ⋂

maxR(rs). Then, by the already shown part (2) and S being intersection-closed, rs′ =⋂
maxR(rs) = ⋂

maxS (rs) ∈ S . Hence, since rs � rs′ by Proposition 3.2(3), we have rs′ ∈R.
(3) By parts (1) and (2), we can apply Proposition 5.5. �
As in the case of closed relational structures, the intersection-based definition of structure closure is both inconvenient

for algorithmic purposes and hardly useful from the point of view of gaining insight into causal dependencies between
events involved in concurrent histories. The next result addresses both points by providing sufficient conditions for showing
that a given function and a given set of relational structures are, respectively, the structure closure and the set of closed
relational structures. Recall that Q i

rs denotes the i-th relation in the relational structure rs.

Proposition 5.7. Let S ⊆R and let f : R→ S be a monotonic and non-decreasing function. Moreover, (i) for all rs ∈ S , f (rs) � rs;
and (ii) for all rs ∈ S and all x �= y ∈ �rs: if 〈x, y〉 /∈ Q i

rs, then there is rs′ ∈ extR(rs) satisfying 〈x, y〉 /∈ Q i⋂
maxR(rs′) . Then f is the

structure closure of R, i.e., S =Rclo and f (rs) = cloR(rs), for every rs ∈R.

Proof. We first observe that, for every rs ∈ Rmax ∪ S , f (rs) = rs (*). Indeed, if rs ∈ Rmax then, by f being non-decreasing,
we have rs � f (rs), and so rs = f (rs). If rs ∈ S then, by (i) and f being non-decreasing, we have rs � f (rs) � rs, and so
rs = f (rs).

Let rs ∈ R. Since f is non-decreasing, rs � f (rs), and so the domain of rs and f (rs) is the same, and the arity n of rs
and f (rs) is the same. Below we show that f (rs) = cloR(rs).

By the monotonicity of f , f (rs) � f (rs′), for every rs′ ∈ maxR(rs). Hence, by (*), f (rs) �
⋂

f ◦ maxR(rs) = ⋂
maxR(rs) =

cloR(rs), and so f (rs) � cloR(rs).
To show cloR(rs) � f (rs), suppose that x �= y ∈ � f (rs) and 1 ≤ i ≤ n satisfy 〈x, y〉 /∈ Q i

f (rs) . (If such x �= y and i do not
exist, cloR(rs) � f (rs) holds trivially.) Then, by f (rs) ∈ S and (ii), there is rs′ ∈ extR(f (rs)) satisfying 〈x, y〉 /∈ Q i⋂

maxR(rs′) .
By f (rs) � rs′ , we have 〈x, y〉 /∈ Q i⋂

maxR ◦ f (rs) . Therefore, from f being non-decreasing, it follows that 〈x, y〉 /∈ Q i⋂
maxR(rs) =

Q i
cloR(rs) . Consequently, cloR(rs) � f (rs), and so f (rs) = cloR(rs).

We demonstrated that f (rs) = cloR(rs), for every rs ∈R. All we need to show now is that S =Rclo . By Proposition 4.6,
Rclo = cloR(R). This means that Rclo = f (R) ⊆ S . Moreover, by (*) and S ⊆ R, S = f (S) ⊆ f (R) = Rclo . Hence
S = Rclo . �

The assumptions of Proposition 5.7 are satisfied in the case of transitive closure of acyclic orders. In particular, if po
is a partial order and x �= y are two domain elements such that x ⊀po y, then either y ≺po x and in (ii) we take rs′ = rs,
or y ⊀po x and po extended with the relationship 〈y, x〉 can be taken as the acyclic order rs′ . In any case, no total order
extending such an rs′ contains the relationship 〈x, y〉 as this would violate its acyclicity.

6. Relational spaces

When dealing with sequences or step sequences only, one does not need any explicit enumeration of the actions, i.e.,
the set E. When a sequence of actions ababac represents some execution, it implicitly indicates that a occurred three times
(as the first, the third and the fifth event), b occurred twice (as the second and the fourth event), and c occurred only
once (as the sixth event). However, when we want to represent this sequence as a total order, we need to make all action
occurrences explicitly different, and the most natural (or canonical) total order representation seems to be a(1) ≺ b(1) ≺
a(2) ≺ b(2) ≺ a(3) ≺ c(1) , where the elements of E are used to denote events (i.e., action occurrences). In general, one aims
at representing concurrent behaviours using relational structures which are more expressive than total orders, and our next
definition introduces a necessary condition for such a representation to be sound. In the approach adopted in this paper
8

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.9 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
E
a(1),a(2), . . .

b(1),b(2), . . .

R
u −→ v −→ w x −→ y −→ z

A
a b

�rs �rs′

ϕrs ϕrs′
ψ

Fig. 1. Relations between the relational space R, and the sets of events E and actions A. The factors are defined by: ϕrs(u) = ϕrs′ (x) = a(1) , ϕrs(v) =
ϕrs′ (y) = b(1) , and ϕrs(w) = ϕrs′ (z) = a(2) .

it is implicitly assumed that in any concurrent run occurrences of the same action are always ordered (and so cannot be
simultaneous), excluding what is usually referred to as auto-concurrency.

A relational space is a pair 〈R, �〉 comprising a nonempty renaming-closed set R of relational structures, and a set
of bijections � = {ϕrs : �rs → Ers | rs ∈ R} called factors and indexed by the relational structures in R such that, for all
rs, rs′ ∈R and x ∈ �rs with ϕrs(x) = a(i):

�rs(x) = a and (rs ∼ψ rs′ =⇒ ψ = ϕ−1
rs′ ◦ ϕrs) . (1)

Intuitively, and as illustrated in Fig. 1, R is a set of relational structures modelling behaviours of concurrent systems,
with each relational structure rs ∈ R specifying causal or temporal relationships between the observed events (recorded as
domain elements �rs). It is intended that, for any x ∈ �rs , one can state — by only looking at the relationships between
domain elements — whether it is the record of the first, or the second, or the third, etc, occurrence of the corresponding
action, recorded as �rs(x). Such information is conveyed by the function ϕrs , e.g., ϕrs(x) = a(12) indicates that x was the
twelfth occurrence of action a. Given all that, the first part of Eq. (1) simply requires consistency between the two ways
of identifying the action corresponding to an event: one using the labelling �rs , and the other using the function ϕrs .
Furthermore, as it is desirable (and indeed expected in a definition based on structural properties) to equate isomorphic
relational structures, it is natural to require that action occurrences associated with two corresponding recorded events in
isomorphic relational structures are identical. That is, if rs′ = ψ(rs), for some renaming ψ , then one would expect that
ϕrs′ (y) = ϕrs(x) whenever y = ψ(x). In other words, that ϕrs′ ◦ ψ = ϕrs should hold. Hence, as all three functions are
bijections, this implies that ψ can be factored into ϕ−1

rs′ and ϕrs , ψ = ϕ−1
rs′ ◦ ϕrs . We have therefore provided a ‘proof’

justifying the inclusion of the second part of Eq. (1) in the definition of a relational space, and also calling each ϕrs ∈ � the
factor of rs ∈ R. The choice of factors for a set of relational structures is not necessarily unique. However, in the areas of
application with which this paper is concerned, it will be determined by a well-motivated notion of event precedence (that
is, if ϕrs(x) = a(i) and ϕrs(y) = a(j) , then i < j whenever x ‘precedes’ y in rs).

As the next example shows, not every relational structure can belong to a relational space, and the factors of relational
structures need to be chosen with care.

Example 6.1. Note: Fig. 2 depicts the relational structures considered below.

(1) rs0 = 〈{x, y}, ∅, {x �→ a, y �→ a}〉 cannot belong to any relational space. Indeed, suppose that this is not the case and,
without loss of generality, ϕrs0 = {x �→ a(1), y �→ a(2)}. Then rs0 ∼ψ0 rs0, where ψ0 = {x �→ y, y �→ x}, but the second part
of Eq. (1) is not satisfied as we have ϕ−1

rs0
◦ ϕrs0 = {x �→ x, y �→ y} �= ψ0.

(2) ϕrs1 = {x �→ a(1), y �→ a(2)} and ϕrs2 = {z �→ a(1), w �→ a(2)} are not suitable factors for the relational structures rs1 =
〈{x, y}, {〈x, y〉}, {x �→ a, y �→ a}〉 where, intuitively, x precedes y, and rs2 = 〈{w, z}, {〈w, z〉}, {w �→ a, z �→ a}〉 with w
preceding z. Indeed, rs1 ∼ψ1 rs2, where ψ1 = {x �→ w, y �→ z}, but the second part of Eq. (1) is not satisfied as we have
ϕ−1

rs2
◦ ϕrs1 = {x �→ z, y �→ w} �= ψ1. However, ϕrs1 = {x �→ a(1), y �→ a(2)} and ϕrs2 = {w �→ a(1), z �→ a(2)} are suitable

factors as they are both consistent with the structure of rs1 and rs2.
(3) The choice of factors for relational structures in R = {rsvu | v �= u ∈ U}, where, for all v �= u ∈ U , rsvu =

〈{v, u}, {〈v, u〉}, {v �→ a, u �→ a}〉, can be made in exactly two ways:
9

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.10 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
rs0
a

x

a

y

rs1
a

x

a

y

rs2
a

w

a

z

rsvu
a

v

a

u

Fig. 2. Relational structures in Example 6.1.

� = {ϕrsvu = {v �→ a(1), u �→ a(2)} | v �= u ∈U}
�′ = {ϕrsvu = {v �→ a(2), u �→ a(1)} | v �= u ∈U} .

However, if one interprets the relationship 〈v, u〉 as stating that v precedes u in the observation recorded by rsvu , then
only the first option would be semantically justifiable.

We then consider the running examples.

Example 6.2. Example 6.1(1) means that AO cannot possibly be turned into a relational space. However, its subset AO′
comprising all acyclic orders ao such that x ≺+

ao y, for all domain elements x and y with the same label, can be equipped
with suitable factors. This can be seen by defining factor ϕao as follows. For each a ∈ Aao , we can line up in a unique
way all the elements labelled by a in a chain x1 ≺+

ao x2 ≺+
ao · · · ≺+

ao xm , and then define ϕao(xi) = a(i) , for every 1 ≤ i ≤ m.
Interestingly, one could also define factors by setting ϕao(xi) = a(m+1−i) , for every 1 ≤ i ≤ m. However, the latter version
would not be suitable for concurrent system applications.

Like AO, neither DAO nor ONE can be turned into a relational space. However, all distributed acyclic orders dao such
that x(⇁dao ∪ ⇀dao)

+ y, for all domain elements x and y with the same label, can be equipped with suitable factors. And,
similarly, AO′ ⊆ ONE.

It is important to point out that each isomorphism class RS of relational structures belonging to a relational space has
a unique (canonical) representative canRS whose factor is an identity function (clearly, �canRS = Ers and canRS = ϕrs(rs),
for every rs ∈ RS). This allows, for instance, to establish a one-to-one correspondence between sequences of actions and
canonical total orders. A detailed discussion of such a correspondence and its generalisations is outside the scope of this
paper.

We end this section with an example showing that relational spaces can be formed on the basis of structural properties
other than precedence.

Example 6.3. Consider again the first running example AO and, for all ao ∈ AO and x ∈ �rs , denote by outrs(x) the outdegree
of x in rs. Let AO′′ be the set of all acyclic orders such that, for all a ∈ Ars , outrs(�

�a�
rs) = {1, . . . , |��a�

rs |}. We can then
define ϕrs(x) = a(i) , where a = �rs(x) and i = outrs(x). In other words, the structural property of the outdegree, rather than
the structural property of the number of predecessors labelled by the same action, can be used to ‘calculate’ the sequence
numbers.

7. Label-linear relational structures

In this section, we introduce a property of relational structures reflecting an ordering of domain elements with the same
label. We demonstrate how with relational structures that satisfy this property, a factor can be associated, which thus leads
to a relational space. In the case of acyclic orders, the notion which allows us to attribute a strict execution order to all
instances of a given action is ‘label-linearity’ defined directly on the basis of the transitive closure of acyclic orders. In
the general case, however, such a direct definition is difficult to formalise as it is not clear what might be a satisfactory
notion of transitive closure. We will therefore introduce label-linearity indirectly, using the maximal extensions of relational
structures to ‘discover’ orderings of domain elements labelled with the same label. The rationale behind such an approach
comes from the view that any ordering of this kind should be preserved by extensions, i.e., if rs � rs′ and x occurred before
y in rs, then x should also occur before y in rs′ , as all information about relative ordering between x and y present in rs
is also present in rs′ . Therefore, all the maximal extensions of a label-linear relational structure rs should share with rs the
orderings of domain elements labelled with the same label.

Recall that a relational structure is a tuple 〈�, Q 1, . . . , Q n, �〉, where n ≥ 1 is the arity of the relational structure, i.e.,
the number of binary relations associated with rs. Although in the examples in this paper, the arity of the reaction systems
involved is not more than two, our results are valid for reaction systems which specify any number of relevant relations
between pairs of actions. At this point, we assume without loss of generality (see also below) that the last relation of a
relational structure can be used to identify the ordering of events.

In what follows, Q last
rs denotes the last component relation Q n

rs of a relational structure rs of arity n, and truncrs de-
notes the relational structure 〈�rs, Q last

rs , �rs〉 obtained from rs by truncating all but the last component relation. Then the
fingerprint of rs is the set of relational structures fngprrs = {trunc�a�

rs | a ∈ A}, comprising projections of the last component
relation of rs onto sets of domain elements labelled by the same action.
10

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.11 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
Definition 7.1 (label-linear relational structure). A relational structure rs ∈R is label-linear in R if there is a set of total orders
totalfngprrs such that totalfngprrs = fngprrs , for every rs ∈ maxR(rs). We denote this by rs ∈ Rlin .

The definition is sound as, by Proposition 3.2(1), maxR(rs) is nonempty. Note that Rlin includes all relational structures
in R with injective labellings.

For every action a of a label-linear relational structure rs, totalars denotes the unique total order in totalfngprrs with the
domain ��a�

rs . Note that totalars is nonempty iff a ∈Ars . Intuitively, totalars represents a linear ordering according to which all
occurrences of action a were executed in the concurrent behaviour represented by rs. In other words, totalars describes the
behaviour represented by rs restricted to the action a and it can be obtained from any maximal extension of rs by restricting
it to occurrences of a only. Label-linearity is therefore very much linked to the idea of representing sets of ‘equivalent’
executions by a single relational structure, and so inevitably less general than other notions concerning relational structures
discussed thus far.

Example 7.2. AOlin is the set of all acyclic orders ao such that, for all x �= y ∈ �ao labelled by the same action, either x ≺+
ao y

or y ≺+
ao x.

DAOlin is the set of all distributed acyclic orders dao such that, for all x �= y ∈ �dao labelled by the same action, either
x ⇁+

dao y or y ⇁+
dao x.

ONElin is the set of all relational structures in ONE with injective labellings.

Choosing Q last
rs as the component relation from which the ordering of occurrences of the same action is derived, does

not in practical terms limit the applicability of label-linearity. Suppose, e.g., that the information about such an ordering
can only be derived from all the relations Q i

rs through a binary relation f (Q 1
rs, . . . , Q n

rs) Then, one can extend rs by another
relation Q n+1

rs = f (Q 1
rs, . . . , Q n

rs), and use the above notion of label-linearity.

Example 7.3. According to Example 7.2, 〈{x, y}, {〈x, y〉}, ∅, {x �→ a, y �→ a}〉 ∈ DAO is not a label-linear distributed acyclic
order even though it corresponds to the label-linear total order 〈{x, y}, {〈x, y〉}, {x �→ a, y �→ a}〉. The reason is that only the
second ordering relation is taken into account in Definition 7.1. However, the introduction of a third component relation de-
fined as the union of the two original orderings solves the problem. Indeed, we then obtain 〈{x, y}, {〈x, y〉}, ∅, {〈x, y〉}, {x �→
a, y �→ a}〉 which is a label-linear relational structure.

As stated in the next result, the total order relations used in the definition of label-linearity are unique, and label-linearity
is preserved by extensions.

Proposition 7.4. Let R be renaming- and intersection-closed, rs ∈Rlin, and rs′ ∈ R.

(1) maxR(rs′) ⊆ maxR(rs) implies rs′ ∈Rlin and totalfngprrs′ = totalfngprrs.
(2) fngprrs ⊆ AO.
(3) fngprrs ⊆ TO implies fngprrs = totalfngprrs.
(4) Rlin and (Rlin)max are renaming-closed.
(5) Rlin is intersection-closed.
(6) (Rlin)max = Rlin ∩Rmax = (Rmax)lin and maxRlin(rs) = maxR(rs).

Proof. (1) Follows directly from the definitions.
(2) Follows from the fact that only acyclic orders can have total order extensions.
(3) Follows from the fact that total orders do not have proper total order extensions.
(4) By Theorem 3.5, it suffices to show that Rlin is renaming-closed. Let ψ be a renaming of rs. By R being renaming-

closed, we have ψ(rs) ∈ R. Below, for every a ∈A, ψa denotes the bijection obtained by restricting ψ to the domain ��a�
rs

and codomain ��a�
ψ(rs) .

To show ψ(rs) ∈ Rlin , it suffices to observe that if Z = {ψa(totalars) | totalars ∈ totalfngprrs} and rs ∈ maxR ◦ψ(rs), then
Z = fngprrs . Indeed, by Theorem 3.5, ψ−1(rs) ∈ maxR(rs). Hence, by rs ∈ Rlin , we have ψa(totalars) = ψa(trunc�a�

ψ−1(rs)
) =

ψa ◦ ψ−1
a (trunc�a�

rs) = trunc�a�
rs .

(5,6) By Proposition 3.2(2) and part (1), Rlin is upward-closed in R which is intersection-closed. Hence, Proposi-
tion 5.6(1,2) implies parts (5) and (6), except for the equality Rlin ∩Rmax = (Rmax)lin . We show the latter as follows. Since
(Rmax)lin ⊆ Rmax it suffices to consider rs ∈Rmax . Then we observe that from maxR(rs) = maxRmax(rs) = {rs} it follows that
rs is label-linear in R iff rs is label-linear in Rmax . �

The next result gathers together properties involving closed relational structures.
11

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.12 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
Proposition 7.5. Let R be renaming- and intersection-closed, rs ∈Rlin, and rs′ ∈ R.

(1) rs ∈Rclo implies totalfngprrs = fngprrs.
(2) rs′ ∈ Rlin if and only if cloR(rs′) ∈Rlin.
(3) (Rlin)clo is renaming-closed.
(4) (Rlin)clo = Rlin ∩Rclo = (Rclo)lin and cloRlin (rs) = cloR(rs).

Proof. (1) Follows directly from the definitions.
(2) Follows from Proposition 5.1(5).
(3) Follows from Proposition 7.4(4) and Theorem 5.4.
(4) Propositions 3.2(2), 7.4(1), and 5.6(3) imply part (4), except for the equality Rlin ∩ Rclo = (Rclo)lin . We show the

latter as follows. Since (Rclo)lin ⊆ Rclo it suffices to consider rs ∈ Rclo . We observe that maxR(rs) = maxRclo(rs). Indeed, by
Proposition 4.6, maxR(rs) ⊆ maxRclo(rs). Suppose that rs′′ ∈ maxRclo(rs). Then there is rs′′′ ∈ maxRmax(rs′′) ∈ Rmax ⊆ Rclo .
Hence rs′′ = rs′′′ . We therefore have maxR(rs) = maxRclo(rs), and so rs is label-linear in R iff rs is label-linear in Rclo . �

At the beginning of this section we mentioned that it is not clear what might be a general notion of transitivity leading
to a satisfactory notion of label-linearity. For example, being inspired by Proposition 7.5(2), one might define a closure-based
label-linearity of a relational structure rs ∈ R by requiring fngprcloR(rs) ⊆ TO. Such a definition coincides, e.g., with label-
linearity for acyclic orders. However, as the next example shows, it would not provide a fully satisfactory notion, as the set
of closure-based label-linear relational structures is not always upward closed in R (see also the discussion at the beginning
of this section).

Example 7.6. Let TWO be the set of all relational structures two ∈ ONE such that |Q last
two| ≤ 2. Then TWOclo = TWO and

TWOmax = {two ∈ TWO | |Q last
two| = 2}. Consider a pair of closed relational structures in TWOclo , two = 〈{x, y, z}, {〈x, y〉}, {x �→

a, y �→ a, z �→ b}〉 and two′ = 〈{x, y, z}, {〈x, y〉, 〈y, x〉}, {x �→ a, y �→ a, z �→ b}〉. Clearly, two is closure-based label-linear and
two � two′ , but two′ is not closure-based label-linear.

Since each totalars is a total order, we can define a bijection ϕrs : �rs → Ers associating the events of a label-linear
relational structure rs ∈ Rlin with the domain elements:

ϕrs(x) = a(i), where a = �rs(x) and i = 1 + |{y ∈ �
�a�
rs | y ≺totalars

x}| . (2)

The bijection ϕrs will be called a factor of rs in view of results proved later on. Moreover, in the rest of this section it will
be fixed.

It follows from Proposition 7.4(3) that if fngprrs ⊆ TO, then Eq. (2) can be simplified, in the following way:

ϕrs(x) = a(i), where a = �rs(x) and i = 1 + |{y ∈ �
�a�
rs | 〈y, x〉 ∈ Q last

rs }| . (3)

Also, by Proposition 7.5(1), we can derive the same factor of a label-linear relational structure rs ∈ Rlin using the last
component relation in its closure, as follows:

ϕrs(x) = a(i), where a = �rs(x) and i = 1 + |{y ∈ �
�a�
rs | 〈y, x〉 ∈ Q last

cloR(rs)}| . (4)

The function ϕrs introduced in Eq. (2) is not the only way to define factors of label-linear relational structures. For
example, one could use the formula i = 1 + |{y ∈ �

�a�
rs | x ≺totalars

y}| (see also Example 6.2). However, the function ϕrs in
Eq. (2) reflects an intuitive meaning of label-linearity in the modelling of system behaviours, assuming that each total order
totalars represents the order of executions of all the instances of action a. Such a view is fully consistent with the fact that
x ≺totalars

y if and only if i < j, for all x, y ∈ �rs with ϕrs(x) = a(i) and ϕrs(y) = a(j) .
Each isomorphism between two label-linear relational structures can be factored onto the bijections defined in Eq. (2),

justifying the usefulness of the notion of label-linearity proposed in this section.

Proposition 7.7. Let R be intersection-closed and renaming-closed, and rs, rs′ ∈Rlin be such that rs ∼ψ rs′ . Then ψ = (ϕrs′)−1 ◦ ϕrs,
where the factors are defined as in Eq. (2) or Eq. (4).

Proof. For every a ∈A, let � = �
�a�
rs , �′ = �

�a�
rs′ , and ψa = ψ |�→�′ . By Proposition 3.2(1), we can take rs ∈ maxR(rs). Then,

by Theorem 3.5, ψ(rs) ∈ maxR(rs′). Consider a ∈A. We have ψa(totalars) = ψa(trunc�a�
rs) = trunc�a�

ψ(rs) = totalaψ(rs) = totalars′ , and
so totalars ∼ψa totalars′ . Hence, since totalars, totalars′ ∈ TO, we obtain ψa = (ϕrs′ |�′)−1 ◦ ϕrs|� . As a result, ψ = (ϕrs′)−1 ◦ ϕrs . �

We end this section with an example showing that, in general, there is no real hope to define a unique ‘reasonable’
notion of label-linearity.
12

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.13 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
Example 7.8. Consider all the finite sets of points in R2 with two relations, ‘being to the left’ and ‘being under’. A relational
space would then contain tuples rs = 〈�, ≺h, ≺v , �〉, where � ⊆ R2, � is such that two points with a common coordinate
never get the same label, 〈x, y〉 ≺h 〈x′, y′〉 if x < x′ , and 〈x, y〉 ≺v 〈x′, y′〉 if y < y′ . One could then use either ≺h or ≺v to
define label-linearity. Clearly, the resulting total order relations and factors would be completely different.

8. Constructing relational spaces

We will now take advantage of the results presented so far in this paper, by providing what may be seen as a blueprint
for constructing relational spaces. We start by showing that the approach based on label-linearity leads to three different
kinds of relational spaces.

Theorem 8.1. Let R be a nonempty renaming- and intersection-closed set of relational structures.

(1) Rlin forms a relational space with the factors defined as in Eq. (2) or Eq. (4).
(2) (Rlin)max = Rlin ∩Rmax = (Rmax)lin forms a relational space with the factors defined as in Eq. (3).
(3) (Rlin)clo = Rlin ∩Rclo = (Rclo)lin forms a relational space with the factors defined as in Eq. (3).

Proof. (1) Rlin is renaming-closed by Proposition 7.4(4). Conditions involving the factors follow from Proposition 7.7, Eq. (2),
and Eq. (4).

(2) The equalities follow from Proposition 7.4(6). (Rlin)max is renaming-closed by Proposition 7.4(4). Conditions involving
the factors follow from Propositions 7.4(3) and 7.7, and Eq. (3).

(3) The equalities follow from Proposition 7.5(4). (Rlin)clo is renaming-closed by Proposition 7.5(3). Conditions involving
the factors follow from (Rlin)clo = Rlin ∩Rclo , Propositions 7.5(1) and 7.7, and Eq. (3). �

There is a subtle difference between the two ways of deriving the factors in Theorem 8.1(1). Basically, using Eq. (2) would
normally require one to maximally extend a relational structure, whereas using Eq. (4) would normally require to close it.
And the size of the closure is never greater than that of a maximal extension. On the other hand, deriving the closure may
require more computational effort than deriving a maximal extension.

In addition to being relational spaces, the calculation of maximal extensions and closures in Rlin can be carried out in
the same way as in R.

Theorem 8.2. Let R be a nonempty renaming- and intersection-closed set of relational structures.

(1) Rlin maxR−−→ 2R
lin∩Rmax

is the maximal extension function for Rlin.

(2) Rlin cloR−−→Rlin ∩Rclo is the closure function for Rlin.

Proof. (1) RlinmaxRlin−−→ 2R
lin∩Rmax

is the maximal extension function for Rlin . Hence the result holds by Proposition 7.4(6).

(2) We first observe that Rlin is intersection-closed by Propositions 7.4(5). Hence, Rlin cloRlin−−→ Rlin ∩ Rclo is well-defined
as the closure function for Rlin . Thus, the result holds by Proposition 7.5(4). �

It is worth emphasising the generic nature of the results obtained so far. First, if one is given a nonempty set of relational
structures which fit a specific area of application, then not only the notions of maximal and closed relational structures are
determined, but also the notion of closure. Thus, for each nonempty set of relational structures R there is a unique subset
Rclo of precisely those structures which can be represented by their maximal extensions. Second, in the specific area of
application to concurrent systems’ executions, after defining a suitable notion of label-linearity, one automatically obtains
three different types of relational spaces with maximal extension and closure functions as in R.

9. Combined order structures

Combined order structures employ two relationships, viz. causality (≺) and weak causality (�), admitting a limited kind
of cycles. A relational structure 〈�, ≺, �, �〉 is weakly cyclic if there is no sequence x1, . . . , xn (n ≥ 2) of domain elements
such that xn ≺ x1 and 〈xi, xi+1〉 ∈ (≺ ∪ �), for every 1 ≤ i < n. In other words, all cycles in the graph of the relation ≺ ∪ �
are cycles of �.

Weak cyclicity has a straightforward interpretation in operational terms. More precisely, it means that in a given system
run there are no events x1, x2, . . . , xn such that each xi ‘happened before or simultaneously’ with xi+1, while xn ‘happened
(strictly) before’ x1. Thus, only weak causality cycles are possible. Intuitively, each such cycle involves a set of simultaneous
events.
13

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.14 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
rs1:

x

rs2:

x y

rs3:

x z y

rs4:

x y
�:

≺:

Fig. 3. Relational structures demonstrating the minimality of axioms lc:1–4.

Definition 9.1 (combined order structure). A combined order structure (or co-structure) is a weakly cyclic relational structure
cos = 〈�, ≺, �, �〉 such that � is irreflexive. We denote this by cos ∈ COS.

In what follows, we denote precos(Q , R) = (Q ∪ R)∗ ◦ Q ◦ (Q ∪ R)∗ , for any relations Q and R . It is straightforward to
check that:

Q ⊆ Q ′ ∧ R ⊆ R ′ =⇒ precos(Q , R) ⊆ precos(Q ′, R ′) (5)

〈�,≺,�, �〉 is weakly cyclic ⇐⇒ precos(≺,�) is irreflexive . (6)

Proposition 9.2. COS is intersection-closed, renaming-closed, and convex.

Proof. The first part follows from Eq. (5) and Eq. (6), and the fact that a subset of an irreflexive relation is also an irreflexive
relation. The second part follows from the fact that removing relationships cannot create new cycles, nor make an irreflexive
relation reflexive. The third part follows directly from the definitions, and the last from the second. �

We will now provide a direct characterisation of both maximal and closed co-structures, as well as a direct definition of
the closure of co-structures. Crucially, we will not intersect sets of maximal extensions of co-structures in the characterisa-
tions of the latter two notions. We start by introducing an axiomatisation of maximal co-structures.

Definition 9.3 (lc-structure). A layered concurrent structure (or lc-structure) is a relational structure lcs = 〈�, ≺, �, �〉 such
that, for all x, y, z ∈ �:

(lc:1) x �� x (lc:2) x ≺ y =⇒ (x � y ∧ y �� x)
(lc:3) x ≺ y =⇒ (x ≺ z ∨ z ≺ y) (lc:4) x �= y =⇒ (x � y � x ∨ x ≺sym y).

We denote this by lcs ∈ LCS.

Examples of relational structures rs1, . . . , rs4 /∈ LCS in Fig. 3 demonstrate that the set of axioms is minimal, as each rsi
satisfies all the axioms in Definition 9.3 except for lc:i.

lc-structures are not only maximal, but also are closely related to stratified orders, which provides a justification for
some of the terminology used in this section.

Proposition 9.4. LCS = COSmax = {〈�so, ≺so, �so, �so〉 | 〈�so, ≺so, �so〉 = so ∈ SO}, where �so= (�2
so \ id�so)\ ≺−1

so .

Proof. One can show that a partial order ao is a stratified order if and only if, for all x, y, z ∈ �, x ≺ y =⇒ x ≺ z ∨ z ≺ y
(*).

Below we denote RS = {〈�so, ≺so, �so, �so〉 | so ∈ SO}. Recall that x �so y iff y ⊀so x, for all x �= y ∈ �so (**).
(LCS ⊆ COSmax) Let lcs = 〈�, ≺, �, �〉 ∈ LCS.
We first observe that LCS ⊆ COS. Indeed, suppose that lcs = 〈�, ≺, �, �〉 ∈ LCS \ COS. Then, since � is irreflexive by

lc:1, it must be the case that lcs is not weakly cyclic. This and the first part of lc:2 means that there is a shortest sequence
x1, . . . , xn of distinct domain elements such that x1 � . . . � xn ≺ x1. Since ≺ is irreflexive (by lc:1/2), n ≥ 2. In fact, n ≥ 3 as
for n = 2 we would have a contradiction with the second part of lc:2. We then observe that, by lc:3 and xn ≺ x1, we have
xn ≺ x2 (contradicting the minimality of n) or x2 ≺ x1 (contradicting the second part of lc:2).

Hence LCS ⊆ COS, and so, in view of Proposition 9.2, to show lcs ∈ COSmax , it suffices to observe that adding any new
relationship between x �= y ∈ � would result in a relational structure outside COS (due to violating weak cyclicity). This
follows since, by lc:4 and the first part of lc:2, we have: (i) x � y � x; or (ii) x ≺ y ∧ x � y; or (iii) y ≺ x ∧ y � x (this case
14

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.15 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
rs1:

x

rs2:

x y

rs3:

x y z

rs4:

x y z �:

≺:

Fig. 4. Relational structures demonstrating the minimality of axioms so:1–4.

is symmetric to (ii)). If (i) holds, then adding 〈x, y〉 or 〈y, x〉 to ≺ would contradict the second part of lc:2. If (ii) holds, then
adding 〈y, x〉 to ≺ or � would contradict the second part of lc:2.

(COSmax ⊆ RS) Let rs = 〈�, ≺, �, �〉 ∈ COSmax and so = 〈�, ≺, �〉. We begin by showing that so ∈ SO.
We first observe that so ∈ PO. Indeed, as rs ∈ COS, ≺ is irreflexive, and so suppose that x ≺ y ≺ z. By lc:1/2, we have

x �= y �= z. Moreover, x = z would imply x ≺ y ≺ x and so x � y ≺ x (by the first part of lc:2), contradicting the second part
of lc:2. Thus x �= y �= z �= x. If x ⊀ z then, since rs is maximal, adding 〈x, z〉 to ≺ invalidates weak cyclicity. Hence, as x �= z,
we must have 〈z, x〉 ∈ (≺ ∪ �)+ . But this and x ≺ y ≺ z contradicts the weak cyclicity of rs. Thus so ∈ PO.

Suppose that so /∈ SO. Then, by (*), there are distinct x, y, z ∈ � such that x ≺ y and x ⊀ z ⊀ y. Hence, as x �= z and rs is
maximal, 〈z, x〉 ∈ (≺ ∪ �)+ and 〈y, z〉 ∈ (≺ ∪ �)+ . Therefore 〈y, x〉 ∈ (≺ ∪ �)+ which, together with x ≺ y, contradicts the
weak cyclicity of rs. Thus so ∈ SO.

To conclude this part of the proof, we show that x � y iff x �so y, for all x �= y ∈ �. This, by (**) is equivalent to x � y
iff y ⊀ x, for all x �= y ∈ �. Suppose that x � y and y ≺ x. Then we obtain a contradiction with the second part of lc:2.
Suppose next that y ⊀ x and x �� y. Then, since rs is maximal, we obtain 〈x, y〉 ∈ (≺ ∪ �)+ and 〈y, x〉 ∈ precos(≺, �). Hence
〈x, x〉 ∈ precos(≺, �) and so, by Eq. (6), rs is not weakly cyclic, yielding a contradiction. As a result, rs ∈ RS.

(RS ⊆ LCS) Let so = 〈�, ≺, �〉 ∈ SO and rs = 〈�, ≺, �, �〉, where � = �so . We observe that lc:1/2 follow from so ∈ PO and
the definition of �so . lc:3 follows from (*) and so ∈ SO. To show lc:4, suppose x �= y ∈ � and y ⊀ x ⊀ y. Then y �so x �so y,
and so y � x � y. �

Therefore, lc-structures can be seen as faithful representations of stratified orders.
For each co-structure, the lc-structures extending it are given by the function cos2LCS : COS → 2LCS such that

cos2LCS(cos) = extLCS(cos), for every cos ∈ COS. By Propositions 3.2(1) and 9.4, cos2LCS returns nonempty sets of lc-struc-
tures, and it is the maxCOS function in the terminology of Section 3. We then introduce an axiomatisation of the closed
co-structures.

Definition 9.5 (so-structure). A stratified order structure1 (or so-structure) is a relational structure sos = 〈�, ≺, �, �〉 such that,
for all x, y, z ∈ �:

(so:1) x �� x (so:2) x ≺ y =⇒ x � y
(so:3) (x �= z ∧ x � y � z) =⇒ x � z (so:4) (x � y ≺ z ∨ x ≺ y � z) =⇒ x ≺ z.

We denote this by sos ∈ SOS.

Examples of relational structures rs1, . . . , rs4 /∈ SOS in Fig. 4 show that the set of axioms in the last result is minimal, as
each rsi satisfies all the axioms in Proposition 9.5 except for so:i.

The next result shows that the so-structures are precisely all the closed co-structures. Moreover, the closure of co-struc-
tures can be expressed directly by adding all the implied causalities and weak causalities.

Theorem 9.6. The structure closure of COS is cos2sos : COS → SOS such that we have cos2sos(cos) = 〈�, (≺ ∪ �)∗◦ ≺ ◦ (≺
∪ �)∗, (≺ ∪ �)�, �〉, for every cos = 〈�, ≺, �, �〉 ∈ COS.

Proof. Let cos = 〈�, ≺, �, �〉 ∈ COS. We first observe that cos2sos is well-defined since cos2sos(cos) satisfies so:1–4. Indeed,
so:1 clearly holds, and so:2 follows from precos(≺, �) ⊆ (≺ ∪ �)� and the weak cyclicity of cos. Moreover, so:3/4 respectively
follow from:

1 Stratified order structures were first independently proposed in [24] and [25]. In [10] they were successfully used to model concurrent behaviours with
‘not later than’ relationship between events. They were extended to deal with the mutex (mutual exclusion) relationship between events in [9] and [16].
15

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.16 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
((≺ ∪ �)� ◦ (≺ ∪ �)�) \ id� ⊆ (≺ ∪ �)� and
((≺ ∪ �)� ◦ precos(≺, �)) ∪ (precos(≺, �) ◦ (≺ ∪ �)�) ⊆ precos(≺, �).

To show that COS
cos2sos−−−−→ SOS is the structure closure of COS, it suffices to check the assumptions of Proposition 5.7.

To start with, we observe that SOS ⊆ COS. Indeed, suppose that sos = 〈�, ≺, �, �〉 ∈ SOS. The irreflexivity of � follows
from so:1. Suppose that sos is not weakly cyclic. Hence, by so:1/2, there is a sequence x1, . . . , xn (n ≥ 2) of distinct domain
elements such that x1 � . . . � xn ≺ x1. Thus, by applying so:4 n−1 times, we can obtain x1 ≺ x1. Hence, by so:2, we have
x1 � x1, contradicting so:1.

Thus SOS ⊆ COS and cos2sos is clearly monotonic (see, in particular, Eq. (5)). To show that cos2sos is non-decreasing,
we observe that ≺ ⊆ precos(≺, �). Moreover, since � is irreflexive, � ⊆ �+ \ id� ⊆ (≺ ∪ �)� .

Let sos = 〈�, ≺, �, �〉 ∈ SOS. To show Proposition 5.7(i), suppose that 〈x, y〉 ∈ precos(≺, �). Then there are distinct x =
x1, . . . , xm, xm+1, . . . , xn = y (n ≥ 2) such that x1 � . . . � xm ≺ xm+1 � . . . � xn . Hence, by repetitive application of so:2–4, we
can obtain x1 ≺ xn , and so x ≺ y. Suppose next that 〈x, y〉 ∈ (≺ ∪ �)� . Then there are distinct x = x1, . . . , xn = y (n ≥ 2) such
that 〈xi, xi+1〉 ∈ (≺ ∪ �), for every 1 ≤ i ≤ n. Hence, by so:2, we obtain x1 � . . . � xn . Thus, by repetitive application of so:3,
we obtain x1 � xn , and so x � y. As a result, cos2sos(sos) � sos.

To show Proposition 5.7(ii), we take x �= y ∈ � and consider two cases.
Case 1: x ⊀ y. Then rs = 〈�, ≺, � ∪ {〈y, x〉}, �〉 ∈ COS. Indeed, otherwise is not weakly cyclic, and so 〈x, y〉 ∈ precos(≺, �).

Hence, by so:2–4, we have x ≺ y, yielding a contradiction. Moreover, x ⊀lcs y, for every lcs ∈ cos2LCS(rs), as y �lcs x and
lcs ∈ COS. Hence, we have 〈x, y〉 /∈≺⋂

cos2LCS(rs) .
Case 2: x �� y. Then rs = 〈�, ≺ ∪ {〈y, x〉}, �, �〉 ∈ COS. Indeed, otherwise rs is not weakly cyclic, and so 〈x, y〉 ∈ (� ∪ ≺)+ .

Hence, by so:2, x �+ y. Thus, by so:3, we have x � y, yielding a contradiction. Moreover, x ��lcs y, for every lcs ∈ cos2LCS(rs),
as y ≺lcs x and lcs ∈ COS. Hence 〈x, y〉 /∈�⋂

cos2LCS(rs) . �

From the point of view of applying co-structures to the modelling of concurrent behaviours, not all co-structures are
relevant. What we need is to identify those which can be used to form relational spaces. The first part of this paper prepared
us for this task through the introduction of the notions of label-linearity in the general setting. We will now take advantage
of the results obtained there in the specific setting of co-structures.

We start by providing a full characterisation of label-linear co-structures.

Proposition 9.7. The following are equivalent, for every co-structure cos = 〈�, ≺, �, �〉 and its closure sos = cos2sos(cos).

(1) cos belongs to COSlin.
(2) sos belongs to COSlin.
(3) 〈x, y〉 belongs to ≺sym

sos , for all x �= y ∈ � with the same label.
(4) 〈x, y〉 belongs to precos(≺, �)sym, for all x �= y ∈ � with the same label.

Proof. (1) ⇐⇒ (2) Follows from Proposition 7.5(2).
(3) ⇐⇒ (4) Follows from Theorem 9.6.
(2) =⇒ (3) Suppose that x �= y ∈ � satisfy �(x) = �(y) = a. We observe that if x ⊀sos y then rs = 〈�, ≺sos, �sos

∪ {〈y, x〉}, �〉 ∈ COS. Indeed, otherwise rs would not be weakly cyclic, and so 〈x, y〉 ∈ precos(≺sos, �sos). Hence, by so:2–4,
we would have x ≺sos y, yielding a contradiction. Hence y ≺totalasos

x as we have y �lcs x, for every lcs ∈ cos2LCS(rs) ⊆
cos2LCS(sos). By a symmetric argument, y ⊀sos x implies x ≺totalasos

y. Therefore, if x ≺sym
sos y does not hold, then totalasos is not

a total order, yielding a contradiction.
(3) =⇒ (2) Let a ∈ A and totala = 〈�sos, ≺sos, �sos〉�a� . It suffices to observe that totala ∈ TO and totala = trunc�a�

lcs , for
every lcs ∈ cos2LCS(sos). Indeed, by so:1/2/4, we have totala ∈ PO and so, by the assumption made, totala ∈ TO. We also have
totala � trunc�a�

lcs as, by so:2, we have ≺sos⊆�sos . Hence, by totala ∈ TO and lc:1/2, we have totala = trunc�a�
lcs . �

Note that one cannot replace x ≺sym y by x �sym y in Proposition 9.7(3). A counterexample is provided by the following
so-structure and one of its maximal extensions:

sos = 〈{x, y},∅, {〈x, y〉}, {x �→ a, y �→ a}〉 ∈ SOS
lcs = 〈{x, y},∅, {〈x, y〉, 〈y, x〉}, {x �→ a, y �→ a}〉 ∈ cos2LCS(sos) .

We conclude with a construction of relational spaces based on different sets of co-structures, and the corresponding
maximal extension and closure functions.
16

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.17 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
Theorem 9.8.

(1) COSlin forms a relational space with the factor of each co-structure cos being defined so that, for every x ∈ �cos with �cos(x) = a:

ϕcos(x) = a(i) where i = 1 + |{y ∈ �
�a�
cos | y �+

cos x}| .
(2) LCSlin and SOSlin form relational spaces with the factor of each co-structure cos being defined so that, for every x ∈ �cos with

�cos(x) = a:

ϕcos(x) = a(i) where i = 1 + |{y ∈ �
�a�
cos | y �cos x}| .

(3) COSlin cos2LCS−−−−−−−→ 2COSlin∩LCS is the maximal extension function for COSlin.

(4) COSlin cos2sos−−−−−−−→ COSlin ∩ SOS is the closure function for COSlin.

Proof. Follows from Theorems 8.1, 8.2, and 9.6. �
Combined order structures provide a model for dealing with the behaviours of safe Petri Nets with activator arcs operating

under the step sequence semantics. An activator arc (sometimes called a read arc) from a place p to a transition t means
that t can only be executed if p contains a token, but the execution itself does not affect that token. This models testing for
the presence of tokens and, in particular, several transitions can do this simultaneously. The following example illustrates
how co-structures are applied to reflect this.

Example 9.9. Fig. 5(a) depicts a Petri Net N modelling a concurrent system consisting of a producer, a buffer of capacity
one, and a consumer, together with the (initial) marking M = {p2, p3, p6}. The producer can execute two actions: m (making
an item), and a (adding a new item to the buffer). The consumer can execute three actions: g (getting an item from the
buffer), u (using the acquired item), and f (finishing the work). Positioned in-between the producer and consumer, the
buffer can cyclically execute the a and g actions. Intuitively, the three components progress independently but any action
shared by two components can be executed only if both of them do so. This behaviour is further constrained by an activator
arc (indicated by an arrow ending with a black arrowhead) from place p1 to transition u which indicates that u can only
be executed if p1 contains a token. It is also important that the testing for the presence of this token does not prevent
transition a from simultaneously consuming it. The semantical model of N we assume is that of step sequence semantics,
where a set of (simultaneous) transitions can be executed at any computational move.

A possible execution of N is the step sequence σ = {m}{u}{g}{u}{a} comprising singleton steps. Using the standard net
unfolding technique, σ generates an occurrence net with activator arcs ON shown in Fig. 5(b). From this occurrence net
ON, one can derive in a purely structural way the co-structure cos depicted in Fig. 5(c). It shows both direct causality and
direct weak causality relationships between the events involved in ON (one can show that such a co-structure is always
label-linear). The co-structure cos can be closed and the resulting so-structure sos = cos2sos(cos) underlying ON is shown
in Fig. 5(d). In particular, the indirect causality relationship e2 ≺sos e4 can be derived from one of two chains of direct
relationships: e2 ≺cos e3 ≺cos e4 and e2 ≺cos e3 ≺cos e5 �cos e4. Finally, there are exactly two lc-structures extending sos, viz.
lcs in Fig. 5(e) and lcs′ in Fig. 5(f). The former corresponds to σ and the latter to the step sequence σ ′ = {m}{u}{g}{u, a},
where u and a are executed simultaneously.

10. Conclusions

In this paper, we introduced a generic framework for constructing relational spaces that can be used for the formal
modelling of the behaviours of concurrent systems. In the process of developing this framework, we highlighted the funda-
mental role played by maximal and closed relational structures. We introduced a general notion of label-linearity which is
instrumental in defining relational spaces. We also included results showing that monotonic and non-decreasing functions
can provide a useful tool when comparing expressiveness of different classes of relational structures.

Relational structures as understood in this paper have been introduced and studied in the last 15 years of the last cen-
tury [14,15,24–26], and recently they have been substantially revised and generalized [9,16]. Much of the earlier research
has been focused on the modelling of concurrent behaviours emphasising assumptions about executions (are they total,
stratified or interval orders), concrete relationships between events (e.g., mutex), and the potential to model phenomena
like ‘not later than’. The approach used in this paper is different. While still being motivated by the modelling of concur-
rent system behaviours, we started out from a fairly general mathematical definition of relational structures from which
we then directly derived relevant properties. As a consequence, the results of this paper are more general and could be
applied to new, more sophisticated models of concurrency. For example, the maximal relational structures, that correspond
to observations of system executions, are not necessarily derived from partial orders (in disguise).

The combined order structures of Section 9 are based on two possible relationships between domain elements (causality
and weak causality). The order structures from [16,9] on the other hand are based on weak causality and a mutex relation.
Whereas causality and weak causality can be seen as ordering relations, the mutex relation expresses only that two events
17

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.18 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
(a)

p1

p2

p3

p4

p5

p6

m a g uf

(b)

p2

p3

p6

p1

p5
p4

p6

p2

p3

p5

m

e1

u

e2

g

e3

a

e4

u

e5

(c)

m

e1

u

e2

g

e3

a

e4

u

e5

m

e1

u

e2

g

e3

a

e4

u

e5

(d)

(e)

m

e1

u

e2

g

e3

a

e4

u

e5

m

e1

u

e2

g

e3

a

e4

u

e5

(f)

Fig. 5. A Petri Net with activator arcs N modelling a producer/consumer system (a); an occurrence net with activator arcs ON modelling the execution of
step sequence σ = {m}{u}{g}{u}{a} by N (b); structurally derived co-structure cos involving the events which occurred in the behaviour captured by ON
(c); the so-structure sos = cos2sos(cos) underlying ON (d); and the only two lc-structures extending sos: lcs in (e) corresponding to the step sequence σ
of N , and lcs′ in (f) corresponding to the step sequence σ ′ = {m}{u}{g}{u, a} of N (i.e., cos2LCS(sos) = cos2LCS(cos) = {lcs, lcs′}). Note that in (d, e, f) a
solid arc implies a dashed arc.

did not occur simultaneously. This allows one to express precedence (causality) through weak causality (‘not later than’) and
mutex (‘not together’). Moreover, the mutex relation makes it possible to express ‘interleaving’ (two events can be observed
in any order) without the implication of simultaneity. So, order structures are strictly more expressive than combined order
structures. However, combined order structures turn out to be equivalent to order structures that have the property that
their mutex relation is included in the transitive closure of their weak causality relation. To establish this equivalence one
can take advantage of two results of this paper, viz. Theorems 3.4 and 5.3.

The assumption that relational structures have only binary relations between events stems from the intuition that in
a system’s execution, the occurrence of an action relates to other individual occurrences of actions and that dependencies
between two or more events can be fully expressed through binary relations — as is the case e.g., in Elementary Net systems
(see [7]) and Mazurkiewicz traces ([1,2]) where these relations are derived from a fixed, global, independence relation
between actions. Relaxing this assumption would lead to a new line of research comparable to the effort of lifting the
concept of Mazurkiewicz traces with their global binary independence relation to more general traces that could describe
the behaviour of non-safe Petri Nets using a local non-binary independence relation (see e.g., [27]). Another extension
would be to allow relational structures with infinite domains. Also this would require a significant effort, e.g., it would be
necessary to extend the work on ‘initial finiteness’ of relational structures investigated in [15]. We leave these topics for
future research.
18

JID:TCS AID:12674 /FLA Doctopic: Theory of natural computing [m3G; v1.297] P.19 (1-19)

R. Janicki, J. Kleijn, M. Koutny et al. Theoretical Computer Science ••• (••••) •••–•••
Currently, we are interested in adding to the existing framework different notions of conflict between executed events as
well as in experimenting with relationships between events captured by relations involving sets or tuples of events rather
than only pairs of events. We also plan to use our set-up to further investigate the case of interval orders representing
system executions with mutex.

Declaration of competing interest

There is no conflict of interest to declare.

Acknowledgements

We are grateful to the anonymous reviewers for their careful reading and suggestions which have helped us to improve
the presentation and to clarify our ideas. The research in this paper was partially supported by The Polish National Agency
for Academic Exchange under Grant No. PPI/APM/2018/1/00036/U/001, by the Polish NCN Grant No. 2017/27/B/ST6/02093,
and by the Canadian NSERC Discovery Grant No. 2020-05715.

References

[1] A. Mazurkiewicz, Concurrent program schemes and their interpretations, DAIMI Rep. PB 78, Aarhus University, 1977.
[2] A. Mazurkiewicz, Basic notions of trace theory, in: J.W. de Bakker, W.P. de Roever, G. Rozenberg (Eds.), REX Workshop, in: Lecture Notes in Computer

Science, vol. 354, Springer, 1988, pp. 285–363.
[3] V. Pratt, Modeling concurrency with partial orders, Int. J. Parallel Program. 15 (1) (1986) 33–71.
[4] V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, 1995.
[5] H.J. Hoogeboom, G. Rozenberg, Dependence graphs, in: V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, 1995, pp. 43–67.
[6] J. Kleijn, M. Koutny, Formal languages and concurrent behaviours, in: G.B. Enguix, M.D. Jiménez-López, C. Martín-Vide (Eds.), New Developments in

Formal Languages and Applications, in: Studies in Computational Intelligence, vol. 113, Springer, 2008, pp. 125–182.
[7] G. Rozenberg, J. Engelfriet, Elementary net systems, in: Lectures on Petri Nets I: Basic Models, in: Lecture Notes in Computer Science, vol. 1491,

Springer, 1998, pp. 12–121.
[8] R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski, Order structures for subclasses of generalised traces, in: A. Dediu, E. Formenti, C. Martín-Vide, B. Truthe

(Eds.), Language and Automata Theory and Applications - 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings, in:
Lecture Notes in Computer Science, vol. 8977, Springer, 2015, pp. 689–700.

[9] R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski, Step traces, Acta Inform. 53 (1) (2016) 35–65.
[10] R. Janicki, M. Koutny, Semantics of inhibitor nets, Inf. Comput. 123 (1) (1995) 1–16.
[11] R. Janicki, D.T.M. Le, Modelling concurrency with comtraces and generalized comtraces, Inf. Comput. 209 (11) (2011) 1355–1389.
[12] R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski, Generalising traces, TR-CS 1436, Newcastle University, 2014.
[13] J. Kleijn, M. Koutny, Mutex causality in processes and traces of general elementary nets, Fundam. Inform. 122 (1–2) (2013) 119–146.
[14] R. Janicki, M. Koutny, Structure of concurrency, Theor. Comput. Sci. 112 (1) (1993) 5–52.
[15] R. Janicki, M. Koutny, Fundamentals of modelling concurrency using discrete relational structures, Acta Inform. 34 (1997) 364–388.
[16] R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski, Characterising concurrent histories, Fundam. Inform. 139 (2015) 21–42.
[17] K.L. McMillan, A technique of state space search based on unfolding, Form. Methods Syst. Des. 6 (1) (1995) 45–65.
[18] R. Janicki, X. Yin, Modeling concurrency with interval traces, Inf. Comput. 253 (2017) 78–108.
[19] P. Degano, U. Montanari, Concurrent histories: a basis for observing distributed systems, J. Comput. Syst. Sci. 34 (2–3) (1987) 422–461.
[20] P. Baldan, N. Busi, A. Corradini, G.M. Pinna, Domain and event structure semantics for Petri nets with read and inhibitor arcs, Inf. Comput. 323 (2004)

129–189.
[21] W. Vogler, A generalisation of traces, Inform. Théor. Appl. 25 (2) (1991) 147–156.
[22] N. Wiener, A contribution to the theory of relative position, Proc. Camb. Philos. Soc. 17 (1914) 441–449.
[23] E. Szpilrajn, Sur l’extension de l’ordre partiel, Fundam. Math. 16 (1930) 386–389.
[24] H. Gaifman, V. Pratt, Partial order models of concurrency and the computation of function, in: Logic in Computer Science, 1987, pp. 72–85.
[25] R. Janicki, M. Koutny, Invariants and paradigms of concurrency theory, in: PARLE 1991, in: Lecture Notes in Computer Science, vol. 506, Springer, 1991,

pp. 59–74.
[26] L. Lamport, The mutual exclusion problem: part I - a theory of interprocess communication, J. ACM 33 (2) (1986) 313–326.
[27] P.W. Hoogers, H.C.M. Kleijn, P.S. Thiagarajan, A trace semantics for Petri nets, Inf. Comput. 117 (1) (1995) 98–114.
19

http://refhub.elsevier.com/S0304-3975(20)30602-2/bibC4A0AE7E00B0746AFDE2E4CABAC2FB9Bs1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibBA77F1128553F5EF05A8A9F14B3E8B3As1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibBA77F1128553F5EF05A8A9F14B3E8B3As1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib817BEA17513C027CAA3E25E35DB03F0Es1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibDC4F0A89AE84A9E72D50D5427935F62As1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib0E93EDF7FB6CF93EA652C283E5AEF70Es1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib9CEBE4D56D319759626991C540A5336Es1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib9CEBE4D56D319759626991C540A5336Es1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib6D53DE4DF106DBA882E91AE7087E20FBs1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib6D53DE4DF106DBA882E91AE7087E20FBs1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibC189D3912C07AFC3B17F186CD09A5CFBs1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibC189D3912C07AFC3B17F186CD09A5CFBs1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibC189D3912C07AFC3B17F186CD09A5CFBs1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibF945A4F3E2138D77BDED4B7B1FE403FCs1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib52CD00387227AB783C25DC3B63CEEE4Fs1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib1A8ADAD5596C23F6E8F69E81378BDC10s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibE97B3C469278FF81145EA525813F4C2Ds1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib47771F5DFED03A42F862F52704A60736s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib14546B2848A79EF456212370B1886E39s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibA2406AB33382728FA164E77CCE67AF44s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibA2386A3DAB6CAC214733469234F55CDCs1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib35FD72AC5C915DC27955C2A7C8BF424Fs1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib70C705C81E50A7828DD71C29D02CD0EDs1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibF550EA83EB39D81F08A03C8234EBC124s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib07B6494B633EDCA0B0E7AA7669EA8462s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib07B6494B633EDCA0B0E7AA7669EA8462s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib69EF41B837C3332645E69DDD3D1D42E6s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib671DB4A95ABD606D42A9A8BD331034C4s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibF5959EF5A9D5C3F9A6BF748D4FD3B908s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib2249D3C6370FFB5B4216BACA6207B756s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibA04CE45FEA679855013D98F0E475DBE3s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bibA04CE45FEA679855013D98F0E475DBE3s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib6491F479BF898F4031375E84AEA048E4s1
http://refhub.elsevier.com/S0304-3975(20)30602-2/bib10563AD7DB10F14821A4CDF6FC1EDA2Ds1

	Relational structures for concurrent behaviours
	1 Introduction
	2 Preliminaries
	3 Maximal relational structures
	4 Closed relational structures
	5 Closing relational structures
	6 Relational spaces
	7 Label-linear relational structures
	8 Constructing relational spaces
	9 Combined order structures
	10 Conclusions
	Declaration of competing interest
	Acknowledgements
	References

