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Abstract Network analysis is an essential component of systems biology
approaches toward understanding the molecular and cellular interactions under-
lying biological systems functionalities and their perturbations in disease. Regu-
latory and signalling pathways involve DNA, RNA, proteins and metabolites as
key elements to coordinate most aspects of cellular functioning. Cellular processes
depend on the structure and dynamics of gene regulatory networks and can be
studied by employing a network representation of molecular interactions. This
chapter describes several types of biological networks, how combination of dif-
ferent analytic approaches can be used to study diseases, and provides a list of
selected tools for network visualization and analysis. It also introduces protein–
protein interaction networks, gene regulatory networks, signalling networks and
metabolic networks to illustrate concepts underlying network representation of
cellular processes and molecular interactions. It finally discusses how the level of
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accuracy in inferring functional relationships influences the choice of methods
applied for the analysis of a particular biological network type.
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Abbreviations

APID Agile Protein Interaction DataAnalyzer
AP-MS Affinity purification-mass spectrometry
ATP Adenosine triphosphate
BioGRID Biological General Repository for Interaction Datasets
CCNA2 Cyclin-A2
cMap Connectivity map
CYP3A4 Cytochrome P450 3A4
CTD Comparative Toxicogenomics Database
DIP Database of Interacting Proteins
DNA Deoxyribonucleic acid
GHEN2PHEN(G2P) Genotype-To-Phenotype
GR Glucocorticoid receptor
GRN Gene regulatory Network
GTP Guanosine triphosphate
hERG Human Ether-à-go–go-Related Gene
HPID Human Protein Interaction Database
HPRD Human Protein Reference Database
HTML Hyper Text Markup Language
IMEx International Molecular interaction Exchange consortium
MIMIx Molecular Interaction eXperiment
MINT Molecular INTeraction database
MIPS Mammalian Protein–Protein Interaction Database
My-DTome Myocardial infarction drug-target interactome network
NR Nuclear Receptors
ODEs Ordinary Differential Equations
OMIM Online Mendelian Inheritance in Man
PDEs Partial differential equations
PHARMGKB Pharmacogenomics Knowledge Base
PPI Protein-protein interaction
PSI-MI Proteomics Standards Initiative on Molecular Interactions
RNA Ribonucleic acid
SBML Systems Biology Markup Language
STRING Search Tool for the Retrieval of Interacting Genes/Proteins
XML Extensible Markup Language
Y2H Yeast two-hybrid
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6.1 Introduction: From Pathways to Networks

In a biological pathway of interest, molecular entities such as genes or proteins
very often also interact with other entities involved in distinct pathways. Since
each pathway represents a specific region of a larger network in a given biological
system, network analysis methods can provide additional biological insights that
cannot be obtained from pathway analyses alone.

Biological networks comprise nodes that correspond to genes, proteins,
metabolites or other biological entities, and edges that correspond to molecular
interactions and other functional relationships between the biological entities. In
general, in comparison to random networks (network elements connected by
chance), biological networks of the same size and connectivity exhibit significant
differences in aspects such as: wiring type or presence of topological motifs
(groups of inter-connected nodes with a given structure). This affects (1) modu-
larity i.e. the degree of division of the network into subnetworks that comprise
densely connected nodes but share few edges outside the module, (2) dissort-
ativity, i.e. the tendency of nodes to connect to other nodes in the network that are
associated with different characteristics (e.g. nodes with many connections link to
nodes with few connections), and (3) robustness [1] i.e. the resilience of the
network to the removal of nodes or edges.

One of the most common strategies used to extract new insights from biological
networks is to study the graph topology of a network, i.e. the patterns of
interconnections between nodes and edges, based on a key metric: the degree or
the number of connections of a node with other nodes. This led to the introduction
of the concepts of scale-free networks [2], in which the node degree of connec-
tivity distribution follows a power-law, and of small-world networks [3], in which
the distance between nodes grows proportionally to the logarithm of the network
size. In the latter, only few nodes act as ‘‘highly connected hubs’’ and the majority
of the nodes are of low degree of connectivity (i.e. are engaged in only few
interactions) [4, 5]. This property is believed to confer resistance to random attacks
but makes scale-free network extremely susceptible to targeted perturbations [6].
Most biological networks display scale-free properties typical of small-world
networks much more often than expected by chance, as is also observed for social
networks [7].

These properties make network analysis an interesting approach to study bio-
logical systems in order to explain experimental observations and to formulate new
hypotheses about biological functions at the molecular, cellular and higher levels
of abstraction. Network analysis should however be performed with caution for
two reasons. First, most of the networks are largely incomplete, that is they are
missing many nodes (e.g. molecules, complexes, phenotypes) and edges (i.e.
connections representing reactions, associations or influences). On the other hand,
many false positive elements and interactions tend to be included in networks in
the absence of contextual information on cellular or tissular localization. Second,
the networks have dynamical architectures, i.e. they may change significantly in
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structures during biological or disease processes. There are virtually no examples
where connectivity measurements have been made in a dynamical manner [8].

Despite these limitations networks have proven to be valuable tools to represent
and analyse complex biological knowledge and processes. The first section of this
chapter introduces the basic network types associated with gene regulation, pro-
tein–protein interactions, metabolic reactions and signalling processes. Inference
of a genetic interaction network from gene co-expression data in the absence of
knowledge of the underlying mechanisms, or accurate characterization of chemical
reactions with known stoichiometry and kinetic parameters correspond to widely
different levels of representation and require distinct computational approaches.
The resulting molecular interaction networks need to be integrated with drug and
phenotype networks in order to understand perturbations causing and caused by
disease, and to facilitate the process of development of adequate medical
interventions.

Introduction of network types (Fig. 6.1) is followed by a concise introduction to
the main methods available for network topology analysis and modelling
approaches: discrete and continuous models and how they can be extended to
simulate cell–cell interactions.

In order to understand perturbations causing and caused by disease and to
facilitate the process of development of adequate medical interventions, the

Fig. 6.1 Network types: a gene regulatory network, b protein–protein interaction network,
c diseasome network, d section of an integrative network of disease model
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resulting molecular interaction networks need to be integrated with drug and
phenotype networks. We thus present specific examples where knowledge from
multiple sources has been integrated to construct network of diseases and drug
targets as well as comprehensive disease-focused cellular maps. In the last section
we present a short overview of case studies applying network analysis for disease
mechanism identification as an illustration of the network pharmacology trend that
is now emerging in drug design and development.

6.2 Network Types

Among different types of biological networks, this section introduces the most
studied molecular network types [9–11]. Although all of them can be reduced to
graphs comprising nodes connected by edges, the variety of biological networks
arises from the differences in annotated information or purpose for which partic-
ular biological knowledge is represented as a network. Thus, the majority of
networks discussed here are directed (i.e. an arrow denotes the effect of the source
node on the target node) to stress the order of the process, except the protein–
protein interaction network that only combines non-causative pairwise physical
interactions without implying succession in time and space. Gene regulatory
networks are represented as directed graphs of proteins or small RNA molecules
activating or inhibiting gene expression. Therefore a label on the edge orientation
displays the regulatory effect. Signalling networks are also directed and signed,
and are usually organized to separate processes by cellular localization to better
illustrate mutual relationships of particular pathways. The main highlight of
metabolic networks is the presence of chemical reactions that extend beyond non-
covalent binding. Therefore simple edges need to be complemented with notation
of additional substrates and products as well as links representing modulation e.g.
activation by enzyme. Because of the complexity of mechanistic description,
signalling and metabolic networks are often analysed with fine-tuned continuous
models as opposed to typically simpler binary representation of gene regulatory
networks.

Lastly, this section extends this simple classification of networks by presenting
some examples of disease-related networks.

6.2.1 Gene Regulatory Networks

Construction and analysis of a gene regulatory network (GRN) play an important
role in understanding the mechanisms of diseases. Recent advances in functional
genomics are based on novel experimental and computational approaches that
enhance the ability to comprehensively reconstruct the regulatory networks and
enrich them with newly discovered components and interactions.
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Gene regulatory networks can be reconstructed from the literature [12] or from
experimental data using reverse engineering approaches. These approaches are
based on gene expression co-variation patterns inferred from expression or on
promoter region occupancy information of specific transcription factors derived
from ChIP-Seq or ChIP-Chip experiments [13]. Nevertheless, networks inferred
purely from experimental data and those assembled from the literature have dif-
ferent limitations. In the first case, a wealth of data about interactions previously
described is ignored. On the other hand, literature-based networks are too dis-
connected from experimental data to be able to describe input–output relation-
ships, such as cellular responses under specific biological stimuli or mechanisms
that determine specific expression patterns. To bridge the gap new methods
emerge that combine data from both literature and experiments and provides
biological networks contextualized to certain experimental conditions [14, 15].

A GRN is commonly represented by a graph usually directed and signed
showing interaction (network edges) between components (network nodes) that
regulate each other. Because these regulatory components (transcription factors,
cofactors, enhancers, repressors or miRNAs) have different properties, a GRN
could describe mechanisms of gene regulation at multiple levels (e.g. transcription,
post-transcription). Deciphering GRNs from rapidly growing microarray expres-
sion databases has been shown to be a very promising approach e.g. in cancer
research [16, 17]. Many tools are emerging and have been used for constructing,
inferring and analyzing such GRNs. These tools include Boolean networks,
Bayesian networks and Ordinary Differential Equations (ODEs) into recently
developed web-based applications [18–20]. Considering their complexity, it is
often difficult to evaluate or validate the performance of the available tools. In
biomedical research, GRNs are expected to improve the current understanding of
development and gene interactions in complex systems [21–24].

6.2.2 Protein–Protein Interaction Networks

Protein–protein interactions (PPIs) play a vital role in mediating cellular responses
in all species and interactome mapping has become an elementary aspect in all
areas of systems biology as the scientific community has gathered information on
thousands of protein interactions and is increasingly editing, curating and inte-
grating these data sets.

Two complementary ways to obtain comprehensive PPI information exist. The
first approach relies on high-throughput experimental methods, including yeast
two-hybrid (Y2H) [25, 26], affinity purification followed by mass spectrometry
(AP-MS) [27, 28], and luciferase complementation assays [29]. Although recent
development of these methods aims at overcoming false-positive discoveries,
experimental validation of PPIs by several methods is still crucial. The second
approach is to curate all publications in the literature [30], and consult curated
datasets from publicly available interaction databases [31].
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The International Molecular interaction Exchange consortium (IMEx http://
www.imexconsortium.org) [32] comprises eleven databases sharing data curated
according to the same common standards. Interactions are reported using the
Minimum Information required for reporting a Molecular Interaction eXperiment
(MIMIx) [33]. The exchange of information is supported by one major data
exchange format: the Proteomics Standards Initiative on Molecular Interactions
(PSI-MI) [34] (see Ref. [35] for a complete review) (Table 6.1).

PPI datasets are often visualized as a network. Proteins are represented as
nodes, and interactions as connections between nodes. PPI networks are dynamic:
they change in time and space to adapt or switch to different physiological
conditions.

Various studies have constructed molecular networks with virus proteins to
identify their interactions with host proteins and reveal a host-pathogen hybrid
protein-interaction network. From a systems biology perspective, a viral infection
at the cell level can be viewed as a combination of molecular perturbations
allowing viral components production and assembly while generating minor to
massive cellular dysfunction. Thus, several large-scale studies of interactions
between viral and human proteins have been performed to identify the laws
governing virus-host interactomes [36–40]. Taking into account the analytical
heterogeneity and the size of the interaction datasets, five corresponding virus-
human interactomes were carefully and comprehensively reconstructed from the
literature and uniformly analyzed using graph theory as well as structural and
functional methods [41].

The systems approach to the biology of viral infection is thus beginning to
unravel the global perturbations that lead to viral replication and eventually to
pathogenesis. Furthermore, the list of virus-host interactors represents an invalu-
able resource to derive new molecules, especially for anti-viral therapy.

6.2.3 Signalling and Metabolic Networks

Signalling and metabolic networks may be built using a mechanism-based bottom-
up strategy, with parameters either measured experimentally or assigned arbitrary
values in the physiological range. Different questions may then be asked. For
example, why is the network organized the way it is? Indeed, at first glance some
features in the network may appear paradoxical. However, altering this paradox-
ical feature in the computer model may disclose design principles underlying the
functioning of the network [42]. This approach has for example been successfully
applied to design studies of nuclear receptor signalling.

Nuclear Receptors (NR) are proteins that may be activated by signalling
molecules (ligands, composed of different intra- and extra-cellular metabolites
such as hormones or fatty acids) and then regulate gene expression of their
responsive genes. The glucocorticoid receptor (GR) is a NR with an important
regulatory role in various cellular functions: gluconeogenesis and glucose uptake,
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lipolysis in adipose tissues, proteolysis in muscles, osteoblast differentiation and
apoptosis [43, 44]. Ligands for GR are steroid hormones such as cortisol. GR has a
high rate of nucleo-cytoplasmic shuttling and is predominantly located in the
cytoplasm when unbound to a ligand. Upon ligand binding, GR changes its con-
formation, resulting in its increased affinity to nuclear importins and its decreased
affinity to exportins. This causes translocation of the ligand-GR complex to the
nucleus, where GR binds to its responsive genes and regulates their transcription
[45, 46] thereby transmitting signal for gene expression. This network is also
metabolic, as it involves nucleo-cytoplasmic transport of the receptor driven by
GTP hydrolysis, and ATP and GTP metabolic reactions. Furthermore, concen-
trations of receptors, importins, exportins and ligand itself (e.g. cortisol continu-
ously degraded by CYP3A4 enzyme) are parts of the larger metabolic network.
This is the first paradoxical feature. Why is the receptor not only a receptor? Why
does the receptor continuously shuttle between the nucleus and the cytoplasm? The
study of GR network showed that nucleo-cytoplasmic shuttling of GR also serves
as a smart shuttle for a ligand, which it pumps into the nucleus, thereby increasing
the sensitivity and responsiveness of signalling [42].

This example shows that signalling and metabolic networks should not be ana-
lyzed separately, but instead be integrated together and with regulatory networks.
This integration has recently become an important topic in systems biology [47].

6.2.4 Integrative Approaches Applied to Human Diseases

Disease networks can be viewed as networks of associations between disease-
causing mutations and diseases or as high-resolution interaction maps integrating
metabolic reactions, signalling pathways and gene regulatory networks.

The link between all genetic disorders (the human disease phenome) and the
complete list of disease genes (the disease genome) results in a global view of the
‘‘diseasome’’, i.e. the combined set of all known disease gene associations [11, 48].
Here diseases form a network in which two diseases are connected if they share at
least one gene. In the disease gene network, diseases or genes are represented as
nodes and gene-disorder association as edges. In such a network representation,
obesity, for example, is connected to at least seven other disorders such as dia-
betes, asthma, and insulin resistance because genes associated with these diseases
are known to affect obesity as well [7]. In recent years several disease map projects
have flourished, such as the pioneering work at the Systems Biology Institute
(Okinawa, Japan) that was a hub of collaborative, community-based efforts to
reconstruct a map of tuberculosis [49]. In addition, the Connectivity map (cMap)
[50] developed by the Broad Institute aims to create a map connecting genes,
diseases and drugs using a repository of gene expression profiles to represent
different biological states including gene alterations and disease phenotypes. cMap
is a web tool with preloaded data in which query results can be interpreted by
strong (positive or negative) connection or absence of connection [50].
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These efforts would be not possible without integrating publically available
disease-related knowledge. Online Mendelian Inheritance in Man (OMIM) is a
catalogue of human genes and genetic disorders and traits that has been updated
continuously for several decades [51]. As of May 2012, it contained 2,795 diseases
genes and 4,669 disorders for which the molecular basis is known. Other data-
bases, including the Pharmacogenomics Knowledge Base (PHARMGKB) [52] or
the Comparative Toxicogenomics Database (CTD), focus on different aspects of
phenotype-genotype relationships. GEN2PHEN (G2P) is a European project
aiming at gathering and curating information to build a knowledgebase of geno-
type-phenotype interactions [53]. This project will build a linked database from
existing publicly accessible databases and integrate all available data using high-
performance analytical tools.

The human cancer map project is exploiting the idea that network motifs can
contribute to a network switching from one stable state to another [54]. Analyzing
networks reconstructed from microarray experiments and molecular interaction
maps, authors identified genes participating in bi-stable switches i.e. network motifs
that can exist in two stable states and drive the change of the network states.
Expression states of genes within bi-stable switches were compared between
hepatocellular carcinoma or lung cancer and healthy control samples. In both cases,
bi-stable switches made of differentially expressed genes were proposed to be a
network mechanism for locking in disease states. Such studies have identified two
important hubs: cyclins and albumin. In hepatocellular carcinoma, up-regulation of
CCNA2 (cyclin A2) leads to changes in expression of downstream genes, in
accordance with the general observation that perturbations of oscillations in cyclins
concentrations can have a detrimental effect on cell development. For instance,
ubiquitination of cyclin A1 induces apoptosis via activation of caspase-3 [55] or
cyclin D1 degradation activated by a troglitazone derivative [56]. Also, the lack of
phosphorylation of cyclin E, due to mutations, results in its increased stability, which
has implications for breast cancer [57]. Another important hub is the up-regulated
albumin gene. Albumin is a large transport molecule with an adaptable two-domain
structure that can bind an array of lipids, peptides, metabolites and drugs. Allosteric
modulation of albumin may change its binding and cargo transport properties, and
hence directly affect downstream cellular processes. For example, electron spin
resonance studies of albumin modulation by cancer-related small molecule markers
revealed significant differences in binding of albumin-specific 16-doxyl-stearic acid
probe. During disease progression the albumin pool saturates with cancer cellular
metabolites, thus indicating an affected albumin state [58].

6.3 Network Analysis

Many software tools are available to reconstruct biological networks from
experimental data and then position nodes on a graph according to a topological
placement algorithm. This visual network of interconnected nodes can then be
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transformed into various mathematical models e.g. flux balance models, kinetic
ODE models or space Partial Differential Equations (PDEs) models, which can be
fitted to experimental data and used to simulate the kinetic behaviour of biological
networks. Since each of the many different tools available only performs one of
those tasks, designing an integrated and efficient analysis pipeline is challenging.
Such difficulties prompted the development of a single unified standard language
suitable for the interchange between various tools: the systems biological markup
language (SBML) [59]. SBML is based on the widely used Extensible Mark-up
Language (XML), allows the development of graphical interfaces and analysis
frameworks to display and analyze interaction maps. It is therefore becoming a
standard for the representation and annotation of biological processes. The fol-
lowing chapter discusses several tools and the perspectives of their future
development.

6.3.1 Network Analysis Tools

Among public network management tools that currently exist to visually explore
and analyse biological networks (see review in [60]) such as Arena3D [61],
GEPHI [62], igraph [63] and VisANT [64] (Table 6.2), Cytoscape [65], CellDe-
signer [66] and Copasi [67] are the most powerful and widely used.

Cytoscape (449,030 downloads as on September 2012) is the most popular
software for the visualization and analysis of interaction networks. Its functionality
can be extended using the collection of plugins developed by the expanding
Cytoscape community of users. Recently Cytoscape web [68] became available to
embed interactive networks in an HTML page.

CellDesigner (65,105 downloads as on September 2012) is a structured dia-
gram editor for drawing integrative maps (including gene regulatory and bio-
chemical networks) that define reactions and interactions between various types of
biochemical species (genes, proteins, small molecules) in the context of their
subcellular localization and in relation to the biological or pathological processes
in which they are involved.

Copasi (26,000 downloads as on January 2012) is a stand-alone program that
supports models in the SBML standard and can simulate their behavior using
ODEs or Gillespie’s stochastic simulation algorithm.

The growing popularity of Cell Designer and Copasi stems from their com-
patibility and complementarity. The strength of Cell Designer is its easy-use
interface for the drawing of biochemical networks while that of Copasi is its
convenience for fitting the model to experimental data, metabolic control analysis
and dynamic simulations. The network diagram and mathematical model created
in Cell Designer can be easily transformed into Copasi and vice versa.
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6.3.2 Network Topology Analysis

The discovery that many real-world biological networks exhibit scale-free and
small-world properties [69, 70] has led to a surge of new topological analysis
methods for biological networks. The study of global topological properties
enables a general characterization of a network, e.g. providing information on its
robustness to perturbations. In contrast, analysis of local topological properties can
provide specific insights on single nodes (e.g. on their centrality in the network and
their tendency to form dense clusters with other nodes), which can also be
exploited in high-throughput data analysis applications. A comprehensive and
detailed discussion of network topological properties has been compiled recently
in a book dedicated to this topic [71].

Molecular interaction networks are assembled from public interaction databases
like BioGRID [72], HPRD [73], IntAct [74], MIPS [75], DIP [76], HPID, [77]
MINT [78], or meta-databases such as APID [79]. Several issues affect the quality
of assembled networks and other integration tasks, e.g. false positives in the input
data sources and incomplete lists of interactions. Commonly used pre-processing
methods filter collected interactions using a combined set of criteria, e.g. the
number and type of experiments that were used to verify an interaction and data
source-specific confidence scores. One of the most comprehensive collections of
molecular interaction data for different species is provided by the STRING data-
base [80], which also contains different types of confidence scores for each
interaction to filter the data. Since many network analysis methods require a single
connected component as input, a final pre-processing step often involves removing
small, disconnected components from a graph representation of the assembled
interactions.

Regarding the typical applications for topological analyses, global descriptors
are mainly used for the general characterization of large-scale biological networks.
Since these global network properties have already been studied extensively for
several biological network types and species, the corresponding analyses are only
likely to provide new insights when studying a novel network type. However, new
applications for employing global topological analyses as components of other
algorithms have been proposed recently, e.g. to improve the generation of gene
co-expression networks by analysing the scale-free property for tentative networks
[81]. By contrast, local topological network characteristics have already been
exploited by a wide variety of new data mining approaches recently, including
methods to identify dense communities [82] of nodes [83, 84], methods to compare
mapped gene and protein sets in terms of their network topological properties [85],
and approaches to score distances between nodes for prioritizing disease genes
[86]. Interestingly, recent studies have shown that cancer-associated genes tend to
have outstanding topological characteristics [87], even when accounting for
study-specific biases, and that topological information can facilitate cancer
classification [88].
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In summary, topological characteristics of complete biological networks, sub-
graphs and single nodes provide a valuable information source for the integrated
analysis of functional genomics data. Network topology analyses are often com-
bined with graph-theoretic methods to identify dense communities or clusters of
nodes [83, 84], or to quantify the similarity between single nodes or node sets
using different network-based distance measures [86, 89–91]. However, topolog-
ical properties can also be exploited in other domains, e.g. as features in machine
learning methods for clustering and prediction [92], as part of scoring criteria in de
novo pathway prediction [93], and to evaluate the stability and integrity of bio-
logical networks generated from combined microarray correlation analysis and
literature mining [94].

6.3.3 Network Modeling

Various approaches describe biological networks mathematically. The simplest is
to build a discreet model based on graph theory. In this approach, each node (e.g.
molecule) of the biological network may be present in two (e.g. 0 or 1) or several
fixed states. Each state affects interactions of a node with other nodes differently
and the underlying mechanisms need not be known. In contrast, continuous
modeling offers alternative approaches that account for the subtle gradual changes
in the concentration of species in a biological network. Three main types of
continuous models exist: a continuous ‘microscopic’ model traces every molecule
individually while a ‘mesoscopic’ model uses stochastic simulations with
molecular concentrations described in terms of probability functions; lastly, a
‘macroscopic’ model neglects limitations in the diffusion of molecules on the
reaction rate, considers each species of biomolecules as a single pool described
with a system of ODEs. The latter is a very popular approach to model intracellular
metabolic networks in which the number of molecules is rather high and could be
viewed as a single pool with a certain mean concentration. Another important
question relates to interactions between different cells. This requires special cell–
cell interaction models. In this section we will discuss three main modeling
approaches: discrete modeling, continuous modeling based on ODEs and modeling
of cell–cell interactions.

6.3.3.1 Discrete Models

In the Boolean framework, the state of each node in the network is conceptually
described as being active (represented by ‘1’) or inactive (represented by ‘0’).
Similarly, directed edges in the network are represented as activators or inhibitors.
The state of each node is therefore determined by the states of the nodes that activate
and/or inhibit them, following predefined logic rules inferred from experimental data
and/or expert knowledge. Boolean models provide an abstraction of genetic circuits
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that, despite being simplistic, are able to capture important aspects of cell devel-
opment [95]. Importantly, they enable the study of key dynamical properties such as
steady states, defined as stable states of the network that might be stationary or
oscillatory. In a Boolean model, the consequences in the global system of a given
perturbation (represented as a change in the state of a node) are assessed through
updating the states of the nodes in the network following the logic functions. The
updating process can be done synchronously or asynchronously, depending on
whether all nodes are updated simultaneously or in a step-wise manner, respectively
[96, 97]. Indeed, the steady states reached following these two strategies might be
different, and it is usually recommended to combine their results. Boolean networks
allow integration of qualitative information into the modelling process and have been
successfully applied to many relevant biological systems [6, 96, 98]. Despite being
deterministic, the Boolean framework allows inclusion of stochastic components in
the models, either in the states of nodes [99, 100] or in the logic functions [101].
Together with Boolean models, multiple valued logic models [97, 102] are another
type of discrete logic models that allow considering more than two levels, e.g. low,
medium or high expression, which might be more realistic, but is associated with a
higher computational cost.

Discrete logic models have the fundamental advantage over continuous models
such as ODEs that they can use qualitative data to build a gene regulatory network.
The amount and availability of qualitative information is larger than the quanti-
tative parameters required in ODEs. However, discrete logic approaches cannot
model the evolution in time of the quantitative concentrations of the species in the
system. To bridge the gap between ODEs and discrete logic models, a third
category of approaches has been developed, where the initial discrete logic net-
work is transformed into a system of ODEs, following different strategies with
successful results [98, 103–105].

6.3.3.2 Continuous Models

ODEs are often used for dynamic modelling of regulatory networks of different
levels of complexity from bacteria [106] to eukaryotes [107–110]. Changes in
concentrations of each species in the network of interacting biomolecules may be
expressed through balance equations and rate equations. In this framework, vari-
ations in concentrations of molecules as a function of time may be represented by
differential equations establishing the stoichiometry and the reaction rates of the
transformations and/or transport events [111, 112]. These equations contain the
information about component properties for each molecule. Integrating all ODEs
together enables reconstruction of the emergent behaviour of a whole system, e.g.
simulation of its dynamics in silico.

In order to validate a dynamic model, the simulated systemic behavior is
compared with the behaviour of a real system; this comparison is especially
powerful if both the real object and its model are challenged with a series of
perturbations that were not considered while the model was under construction nor
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used for parameter fitting. In many cases the predicted behaviour does not fit that
of the actual biological system. This may then lead to the discovery of mechanisms
missing or poorly described in the model. For example, the yeast glycolysis model
built by Teusink and co-authors predicted that yeasts would invest too much of
ATP in the first ATP-consuming reactions, and then die from the accumulation of
these compounds and from a deficit of phosphate. The observation that yeasts are
more robust in reality than in silico, provoked re-thinking of the model mecha-
nisms and led to the discovery of an additional negative feedback loop which
regulates the first phosphorylation step of glycolysis and prevents the turbo
explosion in ATP-consuming reactions [113].

Once a model simulates the biological system behaviour adequately, it can be
used for various goals. For example, using a in silico cell model of a metabolic
network, one can design modification of the organism metabolism: e.g. the metab-
olism of Escherichia coli can be modified in such a way that E. coli produces
polylactic acid—a biopolymer analogous to petroleum-based polymers which can be
used in industry [114]; the metabolism of insects can be modified to make insects a
promising source offood to meet the challenge of providing the protein supply to feed
over 9 billion humans in the near future [115]. Cell models have become useful in
differential network-based drug discovery: a kinetic model of the known metabolic
network may help to find proper target enzymes either for correcting malfunctioning
of a human cell or for killing a cancer cell [116] or a parasite [117]. For instance,
comparison between glycolysis in Trypanosoma brucei (parasite causing African
trypanosomiasis in humans), and glycolysis of human erythrocytes was used for the
development of drugs killing T. brucei with reduced side effects [118].

The main drawback of in silico cell models is that they usually require
knowledge of the mechanisms of interactions and estimates of numerous param-
eters for these interactions, which are only available for few systems that are very
well characterized experimentally. However one may anticipate that tremendous
progress in functional genomics, proteomics, metabolomics and bioinformatics
should help to obtain the lacking information in the near future.

6.3.3.3 Cell-Cell Interactions and Multi-Scale Modeling

Intracellular regulatory networks are used for the analysis of a single cell or of a
population of identical cells in the same state. However, different cell types usually
exist in the same tissue while cells of the same type can have different concen-
trations of intracellular proteins due to intrinsic stochastic variations or to different
cellular environments. Their interaction can influence intracellular regulatory
networks e.g. through bistable switches in the network. Hence, local regulation by
cell–cell interaction within the tissue and global regulation through interactions
with other organs should both be taken into account in the analysis of regulatory
networks. Multi-scale modeling therefore includes intracellular and molecular
levels as well as interactions at the levels of cell populations and of other tissues
and organs.
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Intracellular regulation of individual cells and their local and global interactions
can be studied with hybrid models in which cells are considered as individual
objects, intracellular regulatory networks are described by ODEs or by Boolean
networks, and the extracellular matrix together with nutrients, hormones and other
signalling molecules by PDEs. Hybrid models can also account for natural sto-
chastic variations of intracellular concentrations, cell motion, cell proliferation,
differentiation and apoptosis. They are well adapted to the representation and
analysis of various biological systems and biomedical situations. They can include
the pharmacokinetics of medical treatments, prediction and optimization of their
efficacy. However, they require a detailed knowledge of intracellular and extra-
cellular regulations and sophisticated modeling tools [119, 120].

A hybrid model of erythropoiesis and leukemia treatment was described
recently [121]. Erythropoiesis, or red blood cell production, occurs mainly in the
bone marrow in small units called erythroblastic islands. They contain, on average,
several dozens of cells in different phases of cell differentiation: erythroid pro-
genitors, erythroblasts, reticulocytes structured around a macrophage. Normal
functioning of erythropoiesis depends on the balance between proliferation, dif-
ferentiation and apoptosis of erythroid progenitors. The intracellular regulatory
network in erythroid progenitors, described by ODEs, determines cell fate due to
bistability, where one stable equilibrium corresponds to proliferation without
differentiation and another one to differentiation/apoptosis. The choice between
these stable equilibria and, at the next stage, between differentiation and apoptosis
is determined by two factors: local extracellular regulation, e.g. Fas-ligand pro-
duced by more mature cells and growth factors produced by macrophages; and
global regulation by hormones, such as erythropoietin, with concentrations
depending on the total number of erythrocytes produced by erythroblastic islands.
Biochemical substances in the extracellular matrix influence intracellular regula-
tion through the coefficients of the ODE system while their concentration is
described by PDEs. This multi-level modeling simulates erythropoiesis in normal
and stress situations in agreement with experimental data. It also explains the role
of central macrophages in controlling erythroblastic islands. Strong perturbations
of the system caused for example by mutations or dysfunction of regulatory
mechanisms can result in various blood diseases such as anemia or leukemia.

6.3.4 Network Analysis for Systems Biomedicine
and Pharmacology

6.3.4.1 Network Analysis of Disease

Network analysis may be also a valuable approach to study mechanisms under-
lying pathology and disease susceptibility. For instance studies of network
dynamics can shed light on disease-related network states. Different stable steady
states appear to be related to distinct phenotypic states of the cell [122].
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Robustness of biological networks allows maintenance of a certain phenotypic
state over a range of perturbations and may play an important role in controlling
state transitions when such stable states are reached. It has been postulated that
network circuits displaying bi- and multi-stability may drive network state tran-
sitions associated to disease progression and then maintain networks in diseased
states [123]. In particular, bi-stable switches in protein–protein interaction or
regulatory networks allow cells to enter into irreversible paths and assume dif-
ferent fates depending on which genes are expressed or silent [124, 125].

An analysis of pathological response to fat diet [126] or the mechanism of prion
disease [127] using Boolean modelling recently showed the importance of network
motifs in stabilizing the disease-related network state. Indeed circuits regulating
bi-stability do not function in isolation but are assembled as an interconnected core
cluster of genes that regulate one another thereby ensuring the stability of the
network. In addition, differentially expressed genes involved in bi-stable switches
are central to the regulatory network and can thus efficiently propagate perturba-
tions to more distant regions of the network. These concepts are supported by
previous studies focusing on network motifs to show the key role of network
bi-stable feedback loops in cell fate determination and plasticity [128–130], and
the implication of bi-stable circuits in the resilience and progression of human
cancers, where the healthy and cancer states are considered to be the two stable
states [131, 132].

6.3.4.2 Network Pharmacology

In a typical drug development approach, an active compound is optimized to act on
a single protein target and other potential interactions are considered only to
increase specificity of binding to a given receptor subtype while avoiding known
toxic effects. This view has been recently challenged in the field of polypharma-
cology as it is recognized that drugs can effectively act on multiple targets, e.g. the
recent discovery of the simultaneous inhibition of two families of oncogenes
(tyrosine and phosphoinositide kinases) by the same effector [133]. Studies of off-
target effects can lead to successful drug repurposing [134, 135] or to the pre-
vention of adverse side effects. For instance, blocking of the hERG potassium
channel is responsible for many severe drug-induced cardiac arrhythmias and is
therefore included as a part of safety testing in drug development [136].

On the other hand, a single drug is unlikely to be sufficient to target the multiple
facets of pathological processes. Rational drug design is now attempting to define
mixtures of bioactive compounds that constitute drugs often exerting synergistic
therapeutic effects, as in the long tradition of herbal medicine [137].

Systems biology approaches are used to develop tools necessary to understand
complex drug-target relationships. Network pharmacology is integrating infor-
mation on diseases, targets, and drugs with biological data to infer networks of
drug targets, disease-related genes or drug-disease interactions [138–140]. Prop-
erties of such networks may help in understanding individual drug response due to
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changing genetic background [122], or contribute to the discovery of new drug-
gable targets, therapeutic strategies to overcome adverse drug effects. In some
cases, these studies are accompanied with development of resources and tools
tailored for medical applications. My-DTome [141] is an example of a web-based
searchable resource on drug-target interactome networks relevant to myocardial
infarction.

6.4 Conclusions

Network analysis to organize and mine biological knowledge has become an inherent
element of computational systems biology. By focusing on certain aspects of bio-
chemical processes in living cells, the network may represent gene regulatory,
metabolic, signalling processes and connect network elements with functional
associations or, when used without imputing causality, represent physical binding of
molecules. To answer specific biological questions different methodologies should
be considered depending on the completeness of description that is accessible. This
chapter presented an overview of approaches used to derive meaningful conclusions
from graph topology, and develop simulations of network states using discrete and
continuous models. The use of these approaches may be extended to simulate pro-
cesses on higher (cell–cell interactions) levels of organization or combined to rep-
resent multiple levels from molecules to organs. The study of disease-related
networks is increasingly impacting identification of drug targets with limited adverse
effects, triggering the emergence of network pharmacology.
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