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ABSTRACT
Android developers heavily use reflection in their apps for
legitimate reasons, but also significantly for hiding malicious
actions. Unfortunately, current state-of-the-art static anal-
ysis tools for Android are challenged by the presence of re-
flective calls which they usually ignore. Thus, the results of
their security analysis, e.g., for private data leaks, are incon-
sistent given the measures taken by malware writers to elude
static detection. We propose the DroidRA instrumentation-
based approach to address this issue in a non-invasive way.
With DroidRA, we reduce the resolution of reflective calls
to a composite constant propagation problem. We leverage
the COAL solver to infer the values of reflection targets and
app, and we eventually instrument this app to include the
corresponding traditional Java call for each reflective call.
Our approach allows to boost an app so that it can be im-
mediately analyzable, including by such static analyzers that
were not reflection-aware. We evaluate DroidRA on bench-
mark apps as well as on real-world apps, and demonstrate
that it can allow state-of-the-art tools to provide more sound
and complete analysis results.

CCS Concepts
•Software and its engineering → Software notations
and tools;
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1. INTRODUCTION
Reflection is a property that, in some modern program-

ming languages, enables a running program to examine itself
and its software environment, and to change what it does de-
pending on what it finds [1]. In Java, reflection is used as
a convenient means to handle genericity or to process Java
annotations inside classes. Along with many Java features,
Android has inherited the Java Reflection APIs which are

packaged and included in the Android SDK for developers
to use. Because of the fragmentation of the Android ecosys-
tem, where many different versions of Android are concur-
rently active on various devices, reflection is essential as it
allows developers, with the same application package, to tar-
get devices running different versions of Android. Indeed,
developers may use reflection techniques to determine, at
runtime, if a specific class or method is available before pro-
ceeding to use it. This allows the developer to leverage, in
the same application, new APIs where available while still
maintaining backward compatibility for older devices. Re-
flection is also used by developers to exploit Android hidden
and private APIs, as these APIs are not exposed in the de-
veloper SDK and consequently cannot be invoked through
traditional Java method calls.

Unfortunately, recent studies on Android malware have
shown that malware writers are using reflection as a power-
ful technique to hide malicious operation [2,3]. In particular,
reflection can be used to hide the real purpose, e.g., by in-
voking a method at runtime to escape static scanning, or
simply to deliver malicious code [4]. We have conducted a
quick review of recent contributions on static analysis-based
approaches for Android, and have found that over 90% of
around 90 publications [5] from top conferences (including
ICSE and ISSTA) do not tackle reflection. Indeed, most
state-of-the-art approaches and tools for static analysis of
Android simply ignore the use of reflection [6, 7] or may
treat it partially [8, 9]. By doing so, the literature has pro-
duced tools that provide analysis results which are incom-
plete, since some parts of the program may not be included
in the app call graph, and unsound, since the analysis does
not take into account some hidden method invocations or po-
tential writes to object fields. In this regard, a recent study
by Rastogi et al. [10] has shown that reflection has made
most of the current static analysis tools perform poorly on
malware detection.

Tackling reflection is however challenging for static anal-
ysis tools. There exist ad-hoc implementations (e.g., in [9])
for dealing with specific cases of reflections patterns. Such
approaches cannot unfortunately be re-exploited in other
static analysis tools. However, there is a nascent commit-
ment in the Android research community to propose solu-
tions for improving the analysis of reflection. For example,
in a recent work [11], Barros et al. propose an approach
for resolving reflective calls in their Checker static analysis
framework [12]. Their approach however 1) requires appli-
cation source code (which is not available for most Android
apps), 2) targets specific check analyses based on developer
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annotations (which thus needs additional developer efforts,
e.g., learn the target framework, find the right place to anno-
tate, etc.) and 3) does not provide a way to directly benefit
existing static analyzers, i.e., to support them in performing
reflection-aware analyses.

Our aim is to deal with reflection in a non-invasive way
so that state-of-the-art analysis tools can benefit from this
work to better analyze application packages from app mar-
kets. To that end, we present in this paper the DroidRA
instrumentation-based approach for automatically taming
reflection in Android apps. In DroidRA, the targets of reflec-
tive calls are determined after running a constraint solver to
output a regular expression satisfying the constraints gen-
erated by an inter-procedural, context-sensitive and flow-
sensitive static analysis. A Booster module is then imple-
mented to augment reflective calls with their correspond-
ing explicit standard Java calls. Because some code can be
loaded dynamically, before our reflection analysis, we also
use heuristics to extract any would-be dynamically-loaded
code (e.g., a jar file with classes.dex inside) into our work-
ing space. Indeed, our reflection taming approach hinges on
the assumption that all the code that exist in the app pack-
age may be loaded at runtime and thus should be considered
for analysis.

This paper makes the following contributions:

• We provide insights on the use of reflection in Android
apps, based on an analysis of 500 apps randomly se-
lected from a repository of apps collected from Google
Play, third-party markets, as well as malware sam-
ples [13]. Our findings show that 1) a large portion
of Android apps relies on reflective calls and that 2)
reflective calls are usually used with some common pat-
terns. We further show that reflective calls can be dis-
criminated between malicious and benign apps.

• We designed and implemented DroidRA – an approach
that aims at boosting existing state-of-the-art static
analysis for Android by taming reflection in Android
apps. DroidRA models the use of reflection with
COAL [14] and is able to resolve the targets of reflec-
tive calls through a constraint solving mechanism. By
instrumenting Android apps to augment reflective calls
with their corresponding explicit standard Java calls,
DroidRA complements existing analysis approaches.

• We evaluated DroidRA on a set of real applications
and report on the coverage of reflection methods that
DroidRA identifies and inspects. We further rely on
well-known benchmarks to investigate the impact that
DroidRA has on improving the performance of state-
of-the-art static analyzers. In particular, we show how
DroidRA is useful in uncovering dangerous code (e.g.,
sensitive API calls, sensitive data leaks [15,16]) which
was not visible to existing analyzers.

• We release DroidRA and the associated benchmarks as
open source [17], not only to foster research in this di-
rection, but also to support practitioners in their anal-
ysis needs.

2. MOTIVATION
Millions of Android apps are spread in different markets

with more and more security and privacy alerts from anti-
virus vendors. A recent report from Symantec shows that in

1 TelephonyManager telephonyManager = // default;
2 String imei = telephonyManager.getDeviceId ();
3 Class c =

Class.forName("de.ecspride.ReflectiveClass");
4 Object o = c.newInstance ();
5 Method m = c.getMethod("setIme" + "i",

String.class);
6 m.invoke(o, imei);
7 Method m2 = c.getMethod("getImei");
8 String s = (String) m2.invoke(o);
9 SmsManager sms = SmsManager.getDefault ();

10 sms.sendTextMessage("+49 1234", null , s, null ,
null);

Listing 1: Code excerpt of de.ecspride.MainActivity from
DroidBench’s Reflection3.apk.

2014 they classified about 1 million of Android apps as mal-
ware [18] on a total of 6.3 millions of apps analyzed. These
facts urge for practical and scalable approaches and tools
targeting the security analysis of large sets of Android apps.
As example of such approaches, static taint analyzers aim at
tracking data across control-flow paths to detect potential
privacy leaks.

Let us consider the FlowDroid [15] state-of-the-art ap-
proach as a concrete example. FlowDroid is used to detect
private data leaks from sensitive sources, such as contact
information or device identification numbers, to sensitive
sinks, such as sending HTTP posts or short messages. Flow-
Droid has demonstrated promising results, however, they
suffer from limitations inherent to the challenges of static
analysis in Android for taking into account reflection, class
loading or native code support. In this paper, we focus on
taming reflection in Android apps to allow state-of-the-art
tools such as FlowDroid to significantly improve their re-
sults. Reflection breaks the traditional call graph construc-
tion mechanism in static analysis, resulting in an incomplete
control-flow graph (CFG) and consequently leading to insuf-
ficient results. Dealing with reflection in static analysis tools
is however challenging. Even the Soot Java optimization
framework, on top of which most state-of-the-art approaches
are built, does not address the case of reflective calls in its
analyses. Thus, overall, taming reflection at the app level
will enable better analysis by state-of-the-art analysis tools
to detect security issues for app users.

We consider the case of an app included in the Droid-
Bench benchmark [15, 19]. The Reflection3 benchmark app
is known to be improperly analyzed by many tools, includ-
ing FlowDroid, because it makes use of reflective calls. In
this example app (Listing 1), class ReflectiveClass is first
retrieved (line 3) and initialized (line 4). Then, two meth-
ods (setImei() and getImei()) from this class are reflectively
shipped and invoked (lines 5-8). setImei(), which is matched
by concatenating two strings, will store the device ID, which
was obtained at line 2, into field imei of class Reflective-

Class (line 6). getImei(), similarly, gets back the device ID
into the current context so that it can be sent outside the
device via SMS to a hard-coded (i.e., not provided by user)
phone number (line 10).

The operation implemented in this code sample is mali-
cious since the device ID is taken as sensitive private in-
formation. The purpose of the reflective calls, which ap-
pear between the obtaining of the device ID and its leakage
outside the device, is to elude any taint tracking by con-
fusing the traditional flow. Thus, statically detecting such
leaks becomes non trivial. For example, analyzing string
patterns can be challenged intentionally by developers, as
it was done in line 5. Furthermore, simple string analysis



1 // Example (1): providing genericity
2 Class collectionClass;
3 Object collectionData;
4 public XmlToCollectionProcessor(Str s, Class c) {
5 collectionClass = c;
6 Class c1 = Class.forName("java.util.List");
7 if (c1 == c) {
8 this.collectionData = new ArrayList ();
9 }

10 Class c2 = Class.forName("java.util.Set");
11 if (c2 == c){
12 this.collectionData = new HashSet ();
13 }}
14
15 // Example (2): maintaining backward compatibility
16 try {
17 Class.forName("android.speech.tts.TextToSpeech");
18 } catch (Exception ex) {
19 //Deal with exception
20 }
21
22 // Example (3): accessing hidden/internal API
23 // android.os.ServiceManager is a hidden class.
24 Class c =

Class.forName("android.os.ServiceManager");
25 Method m = c.getMethod("getService", new Class[]

{String.class});
26 Object o = m.invoke($obj , new String [] {"phone"});
27 IBinder binder = (IBinder) o;
28 // ITelephony is an internal class.
29 //The original code is called through reflection.
30 ITelephony.Stub.asInterface(binder);

Listing 2: Reflection usage in real Android apps.

is not enough to resolve reflective calls, because not only
the method name (e.g., getImei for method m2) but also
the method’s declaring class name (e.g., ReflectiveClass for
m2) are needed. These values must therefore be matched
and tracked together: this is known as a composite constant
propagation problem.

3. REFLECTION IN ANDROID APPS
We now investigate whether reflection is a noteworthy

problem in the Android ecosystem. To this end, we mainly
investigate why and to what extent reflection is used. More
specifically, in Section 3.1, we first report on the common (le-
gitimate) reasons that developers have to use reflection tech-
niques in their code. Then, we investigate, in Section 3.2,
the extent of the usage of reflection in real-world applica-
tions.

3.1 (Legitimate) Uses of Reflection
We have parsed Android developer blogs and reviewed

some apps to understand when developers need to inspect
and determine program characteristics at runtime leveraging
the Java reflection feature.

Providing genericity. Just like in any Java-based soft-
ware, Android developers can write apps by leveraging re-
flection to implement generic functionality. Example (1) in
Listing 2) shows how a real-world Android app implements
genericity with reflection. In this example, a fiction reader
app, sunkay.BookXueshanfeihu (4226F81), uses reflection to
produce the initialization of Collection List and Set.

Maintaining backward compatibility. In an exam-
ple case, app com.allen.cc (44B232, an app for cell phone
bill management) exploits reflection techniques to check at
runtime the targetSdkVersion of a device, and, based on its
value, to realize different behaviors. A similar use scenario

1In this paper, we represent an app with the last six letters
of its sha256 code.

consists in checking whether a specific class exists or not,
in order to enable the use of advanced functionality when-
ever possible. For example, the code snippet (Example (2)
in Listing 2), extracted from app com.gp.monolith (61BF01,
a 3D game app), relies on reflection to verify whether the
running Android version, includes the text-to-speech mod-
ule. Such uses are widespread in the Android community as
they represent the recommended way [20] of ensuring back-
ward compatibility for different devices, and SDK versions.

Reinforcing app security. In order to prevent sim-
ple reverse engineering, developers separate their app’s core
functionality into an independent library and load it dynam-
ically (through reflection) when the app is launched: this is
a common means to obfuscate app code. As an example, de-
velopers usually dynamically load code containing premium
features that must be shipped after a separate purchase.

Accessing hidden/internal API. In development phase,
Android developers write apps that use the android.jar li-
brary package containing the SDK API exposed to apps.
Interestingly, in production, when apps are running on a
device, the used library is actually different, i.e., richer. In-
deed, some APIs (e.g., getService() of class ServiceManager)
are only available in the platform SDK as they might still be
unstable or were designed only for system apps. However,
by using reflection, such previously hidden APIs can be ex-
ploited at runtime. Example (3), found in a wireless man-
agement app –com.wirelessnow (314D51)–, illustrates how a
hidden API can be targeted by a reflective call.

3.2 Adoption of Reflection in Android
To investigate the use of reflection in real Android apps,

we consider a large research repository of over 2 millions
apps crawled from Google Play, third-party markets and
known malware samples [13]. We randomly select 500 apps
from this repository and parse the bytecode of each app,
searching for reflective calls. The strategy used consists in
considering any call to a method implemented by the four
reflection-related classes2 as a reflective call, except such
methods that are overridden from java.lang.Object.

3.2.1 Overall usage of reflection
Our analysis shows that reflection usage is widespread in

Android apps, with 87.6% (438/500) of apps making reflec-
tive calls. On average, each of the flagged apps uses 138
reflective calls. Table 1 summarizes the top 10 methods
used in reflective calls.
Table 1: Top 10 used reflection methods and their argument type:
either (C): Class, (M): Method or (F): Field.

Method (belonging class) # of Calls # of Apps
getName (C) 12,588 283 (56.6%)
getSimpleName (C) 5,956 87 (17.4%)
isAssignableFrom (C) 4,886 164 (32.8%)
invoke (M) 3,026 223 (44.6%)
getClassLoader (C) 2,218 163 (32.6%)
forName (C) 2,141 227 (45.4%)
getMethod (C) 1,715 135 (27.0%)
desiredAssertionStatus (C) 1,218 202 (40.4%)
get (F) 1,139 177 (35.4%)
getCanonicalName (C) 1,115 388 (77.6%)
Others 24,708 4 (8%)
Total 60,710 438 (87.6%)

We perform another study to check whether most reflec-
tive calls are only contributed by common advertizement

2java.lang.reflect.Field, java.lang.reflect.Method,
java.lang.Class, and java.lang.reflect.Constructor.



libraries. We thus exclude reflective calls that are invoked
by common ad libraries3. Our results show that there are
still 382 (76.4%) apps whose non-ad code include reflective
calls, suggesting the use of reflection in primary app code.

3.2.2 Patterns of reflective calls
In order to have a clear picture of how one can spot and

deal with reflection, we further investigate the sequences of
reflective calls and summarize the patterns used by devel-
opers to implement Android program behaviour with reflec-
tion. We consider all method calls within the 500 apps and
focus on the reflection-related sequences that are extracted
following a simple, thus fast, approach considering the nat-
ural order in which the bytecode statements are yielded
by Soot4. We find 34,957 such sequences (including 1 or
more reflective call). An isolated reflective call is relatively
straightforward to resolve as its parameter is usually a String
value (e.g., name of class to instantiate). However, e.g.,
when a method in the instantiated class must be invoked,
other reflective calls may be necessary (e.g., to get the mes-
sage name in object of class), which may complicate the
reflection target resolution. We found 45 distinct patterns
of sequences containing at least three reflective calls. Ta-
ble 2 details the top five sequences: in most cases, reflection
is used to access methods and fields of a given class which
may be identified or loaded at runtime. This confirms the
fundamental functionality of reflective calls which is to ac-
cess methods/fields.

Table 2: Top 5 patterns of reflective calls sequences.

Sequence pattern Occurences
Class.forName() → getMethod() → invoke() 133
getName() → getName() → getName() 120
getDeclaredMethod() → setAccessible() → invoke() 110
getName() → isAssignableFrom() → getName() 92
getFields() → getAnnotation() → set() → ... 88

We further investigate the 45 distinct patterns to focus on
reflective calls that are potentially dangerous as they may
change program state. Thus we mainly focus on sequences
that include a method invocation (sequences 1 and 3 in Ta-
ble 2) or access a field value in the code (sequence 5). Tak-
ing into account all the relevant patterns, including 976 se-
quences, we infer the common pattern which is represented
in Figure 1. This pattern illustrates how the reflection mech-
anism allows to obtain methods/fields dynamically. These
methods and fields can be used directly when they are stati-
cally declared (solid arrows in figure 1); they may otherwise
require initializing an object of the class, e.g., also through
a reflective call to the corresponding constructor (dotted ar-
rows). With this common pattern, we can model most typ-
ical usages of reflection which can hinder state-of-the-art
static analysis approaches.

The model yielded allows to consider different cases in re-
flective call resolution: In some simple cases, a string anal-
ysis is sufficient to extract the value of the call parameter;
In other cases however, where class objects are manipulated
to point to methods indicated in field values, simple string
analysis cannot be used to help mapping the flow of a ma-
licious operation. Finally, in some cases, there is a need

3We take into account 12 common libraries, which are pub-
lished by [21] and are also used by [22]. We believe that a
bigger library set like the one provided by Li et al. [23] could
further improve our results.
4One of the most popular open-source framework that sup-
ports static analysis of Java/Android apps.

to track back to the initialization of an object by another
reflective call to resolve the target.

Obtain Class

Initialize 
Class

Obtain Methods/
Fields from Class

Class c = Class.forName(str);
Class c = loadClass(str);

c.newInstance();
c.getConstructor(Class[]).
   newInstance(obj[]); Access the Class's 

Methods/Fields

Method m = c.getMethod();
Field f = c.getDeclaredField();

m.invoke(obj, obj[]);
f.get(obj);
f.set(obj, obj);

Figure 1: Abstract pattern of reflection usage and some possible
examples.

4. TAMING REFLECTION
Our work is directed towards a twofold aim: (1) to re-

solve reflective call targets in order to expose all program
behaviours, especially for analyses that must track private
data; (2) to unbreak app control-flow in the presence of re-
flective calls in order to allow static analyzers to produce
more precise results.

Figure 2 presents an overview of the architecture of the
DroidRA approach involving three modules. (1) The first
module named JPM prepares the Android app to be prop-
erly inspected. (2) The second module named RAM spots
reflective calls and retrieves the values of their associated
parameters (i.e., class/method/field names). All resolved re-
flection target values are made available to the analysts for
use in their own tools and approaches. (3) Leveraging the
information yielded by the RAM module, the BOM module
instruments the app and transforms it in a new app where
reflective calls are augmented with standard java calls. The
objective of BOM is to produce an equivalent app whose
analysis by state-of-the-art tools will yield more precise re-
sults [24,25].

JPM
Preprocessing

RAM
Reflection analysis

BOM
App boosting

Reflection Analysis 
Results

 - reflective calls 
   identification
   and values retrieval

 - decompilation
 - entry point construction
 - heuristic for class loading 

 - instrumentation

DroidRA

Boosted Android 
App

Figure 2: Overview of DroidRA.

4.1 JPM – Jimple Preprocessing Module
Android programming presents specific characteristics that

require app code to be preprocessed before Java standard
analysis tools can be used on it. First, an Android app is
distributed as an apk file in which the code is presented in
the form of Dalvik bytecode, a specific format for Android
apps. Our analysis and code instrumentation will however
manipulate code in Jimple, the intermediate representation
required by Soot [26], a Java optimization framework. As a
result, in a first step JPM leverages the Dexpler [27] trans-
lator to decompile the apk and output Jimple code.

Second, similarly to any other static approaches for An-
droid, DroidRA needs to start analysis from a single entry-



point. Unfortunately, Android apps do not have a well-
defined entry-point, e.g., main() in Java applications. But
instead, they have multiple entry-points since each compo-
nent that declares Intent Filters (which defines the capa-
bilities of a component) is a possible entry-point. To address
this challenge, we use the same approach as in the Flow-
Droid [15] state-of-the-art work on Android analysis, that
is, to artificially assemble a dummy main method, taking
into account all possible components including their lifecy-
cle methods (e.g., onCreate() and onStop()) and all possible
callback methods (e.g., onClick()). This enables the static
analyzer to build an inter-procedural control-flow graph and
consequently to traverse all the app code.

Third, we aim to analyze the entire available app code,
including such code that is dynamically loaded (e.g., at run-
time). Dynamic Code Loading (DCL), however, is yet an-
other challenge for static analysis, as some would-be loaded
classes, which would be added at runtime (e.g., downloaded
from a remote server), may not exist at all at static analysis
time. In this work, we focus on dynamically loaded code that
is included in the apk file (although in a separated archive
file) and which can then be accessed statically. We assume
that this way of storing locally the code to be dynamically
is the most widespread. In any case, Google Play policy
explicitly states that an app downloaded from Google Play
may not modify, replace or update its own APK binary code
using any method other than Google Play’s update mecha-
nism [28].

In practice, our DCL analysis is performed through heuris-
tics: Given an app a, we first unzip5 it and then traverse all
its embedded files, noted as set F . For each file f ∈ F , if it is
a Java archive format (the file extension could vary from dat,
bin to db), then we recursively look into it, to check whether
it contains a dex file through its magic number (035 ). All
retrieved dex (usually come with classes.dex) files are then
taken into consideration for any further analysis of the app.

We tested this heuristics-based process for finding DCL
code by analyzing 1,000 malicious apps randomly selected
from our data set. We found that 348 (34.8%) apps contain
additional code, which could be dynamically loaded at run-
time. Among the 348 apps, we collect 1,014 archives that
contain an extra classes.dex file, giving an average of 2.9
“archives with code” per app. We also found that the 1,014
archives are redundant in many apps: there are actually only
74 distinct archive names. For example, library bootablemod-
ule.jar (which contains a classes.dex file) has been used by
115 apps. This library package was recently studied in a
dynamic approach [29].

4.2 RAM – Reflection Analysis Module
The Reflection Analysis Module identifies reflective calls

in a given app and maps their target string/object values.
For instance, considering the motivating example from the
DroidBench app presented in Listing 1, the aim with RAM
is to extract not only the method name in the m2.invoke(o)

reflective call (line 8 in Listing 1), but also the class name
that m2 belongs to. In other words, we have to associate m2
with getImei, but also o with de.ecspride.ReflectiveClass.
To that end, based on the motivation example and our
study of reflective call patterns, we observe that the re-
flection problem can be modeled as a constant propagation

5The format of an apk is actually a compressed ZIP archive.

problem within an Android Inter-procedural Control-Flow
Graph. Indeed, mapping a reflective call eventually con-
sists in resolving the value of its parameters (i.e., name and
type) through a context-sensitive and flow-sensitive inter-
procedural data-flow analysis. The purpose is to obtain
highly precise results, which are very important since the
app will be automatically instrumented without any man-
ual check of the results. Let us consider the resolution of the
value of m2 in line 8 (‘String s = (String) m2.invoke(o)’ in
Listing 1) as an example: if we cannot precisely extract the
class name that m2 belongs to, say, our RAM tells that m2
belongs to class TelephonyManager, rather than the right
class ReflectiveClass, then, during instrumentation, we will
write code calling m2 as a member of TelephonyManager,
which would yield an exception at runtime (e.g., no such
method error), and consequently fail the static analysis.

To build a mapping from reflective calls to their target
string/object values, our static analysis adopts an inter-
procedural, context-sensitive, flow-sensitive analysis approach
leveraging the composite COnstant propAgation Language
(COAL) [14] for specifying the reflection problem. In or-
der to use COAL, the first step is to model the reflection
analysis problem independently from any app using the ab-
stract pattern of reflective call inferred in Section 3.2.2. This
generic model is specified by composite objects, e.g., a re-
flective method is being specified as an object (in COAL)
with two fields: the method name and its declaring class
name. Once reflection analysis has been modeled, we build
on top of the COAL solver to implement a specific analyzer
for reflection. This analyzer then performs composite con-
stant propagation to solve the previously defined composite
objects and thereby to infer the reflective call target values.

COAL-based Reflection Analysis. We now illustrate
a simple example shown in Listing 3 to better explain the
constant propagation of reflection-related values for class
Method. Specifications for all other reflection-related classes
are defined similarly. All specifications will be open-sourced
eventually. Based on the specification shown in Listing 3,
the COAL solver generates the semilattice that represents
the analysis domain. In this case, the Method has two string
fields, where Class types (strings of characters) are mod-
eled as fully qualified class names. In the COAL abstrac-
tion, each value on an execution path is represented by a
tuple, in which each tuple element is a field value. More
formally, let S be the set of all strings in the program and
let B = (S ∪ {ω}) × (S ∪ {ω}), where ω represents an un-
known value. Then the analysis domain is the semilattice
L = (2B ,⊆), where for any set X, 2X is the power set of
X, and elements in 2B represent the set of values of Method
variables across all execution paths. Semilattice L has a
bottom element ⊥ = ∅ and its top element is the set of all
elements in B. For example, the following equation models
the value of object m at line 10 of Listing 3:

{(first.Type, method1), (second.Type, method2)} (1)

The first tuple in Equation (1) represents the value of Method
object m contributed by the first branch of the if statement.
The second tuple, on the other hand, models the value on
the fall-through branch.

In order to generate transfer functions for the calls to
getMethod, the COAL solver relies on the specification pre-
sented in lines 15-17 of Listing 3. The modifier mod state-
ment specifies the signature of the getMethod method and it



1 //Java/Android code
2 Class c; Method m;
3 if (b) {
4 c = first.Type.class;
5 m = c.getMethod("method1");
6 } else {
7 c = second.Type.class;
8 m = c.getMethod("method2");
9 }

10 m.invoke(someArguments);
11 // Simplified COAL specification (partial)
12 class Method {
13 Class declaringClass_method;
14 String name_method;
15 mod gen <Class: Method

getMethod(String ,Class []) >{
16 -1: replace declaringClass_method;
17 0: replace name_method; }
18 query <Method: Object invoke(Object ,Object []) >{
19 -1: type java.lang.reflect.Method; }
20 }

Listing 3: Example of COAL-based reflection analysis for
class Method. Similar specifications apply for all other
reflection classes

describes how the method modifies the state of the program.
The gen keyword specifies that the method generates a new
object of type Method (i.e., it is a factory function). State-
ment -1: replace declaringClass_method indicates that
the name of the Class object on which the method is called
(e.g., first.Type at line 4) is used as the field declaring-

Class_method of the generated object. Note that in this
statement the special -1 index indicates a reference to the in-
stance on which the method call is made, for example object
c at line 5. Finally, statement 0: replace name_method in-
dicates that the first argument (as indicated by index 0) of
the method is used as the name_method field of the generated
object.

At the start of the propagation performed by the COAL
solver, all values are associated with ⊥. Then the COAL
solver generates transfer functions that model the influence
of program statements on the values associated with reflec-
tion. Following the formalism from [14], for any v ∈ L,
we define function initv such that initv(⊥) = v. By us-
ing the specification at lines 15-17, the COAL solver gen-
erates function init{(first.Type,method1)} for the statement at
line 5. The function that summarizes the statement at line
8 is defined in a similar manner as init{(second.Type,method2)}.
Thus, when taking the join of init{(first.Type,method1)}(⊥) with
init{(second.Type,method2)}(⊥), we obtain the value given by Equa-
tion (1).

The COAL specification in Listing 3 includes a query

statement at lines 18-19. This causes the COAL solver to
compute the values of objects of interest at specific program
points. In our example, the query statement includes the
signature for the invoke method. The -1: type Method

statement specifies that objects on which the invoke method
is called have type Method. Thus using this specification the
COAL solver will compute the possible values of object m at
line 10 of Listing 3.

Improvements to the COAL Solver. In the process
of this work, we have contributed to several improvements of
the COAL solver that now enables it to perform efficiently
for resolving targets of reflective calls. At first, we extended
both the COAL language and the solver to be able to query
the values of objects on which instance calls are made. For
example, this allowed us to query the value of object m in
statement m.invoke(obj, args). Second, we added limited
support for arrays of objects such that the values of object

1 Object [] objs = new Object [2];
2 objs [0] = "ISSTA";
3 objs [1] = 2016;
4 m.invoke(null , objs);
5 //m(String ,int)

Listing 4: Example of use of a varargs parameter.

arrays can be propagated to array elements. More specifi-
cally, if an array a is associated with values v1, v2, ..., vn,
for any i array element a[i], we mark it as potentially con-
taining all the values (from v1 to vn). While this may not be
precise in theory, in the case of reflection analysis, the arrays
of constructors, returned by method getConstructors(), that
we consider typically only have a few elements. Thus, this
improvement, which ensures that the propagation of con-
structors is done, is precise enough in practice. Finally, we
performed various optimizations to improve overall perfor-
mance of the COAL solver6.

We now detail an example of difficulty that we have en-
countered to retrieve the string/object values. The diffi-
culty is due to the fact that some reflection calls such as
m.invoke(Object, Object[]) take as parameter a varargs [30].
The problem here is that the object array is not the real
parameter of the method m. Indeed, the parameters are
instead the elements of the array. This keeps us from ex-
tracting the appropriate method for instrumentation.

Let us consider the example code snippet in Listing 4. By
only looking in line 4, we would infer that the parameter
of the method m is objs. Whereas actually m has two pa-
rameters: a String and an int (as showed in line 5). To
solve this problem and infer the correct list of parameters,
we perform a backward analysis for each object array. For
example, from objs in line 4, we go back to consider both
line 2 and line 3, and infer that 1) the first parameter of m
is a String whose value is ISSTA, 2) the second parameter
is an int whose value is 2016.

4.3 BOM – Booster Module
The Booster Module considers as input an Android app

represented by its Jimple instructions and the reflection anal-
ysis results yielded by the RAM module. The output of
BOM is a new reflection-aware analysis-friendly app where
instrumentation has conservatively augmented reflective calls
with the appropriate standard Java calls: reflective calls will
remain in the app code to conserve its initial behaviour for
runtime execution, while standard calls are included in the
call graph to allow only static exploration of once-hidden
paths. For example, in the case of Listing 1, the aim is to
augment “m.invoke(o, imei)” with “o.setImei(imei)” where
o is a concrete instance of class de.ecspride.ReflectiveClass
(i.e. explicitly instantiated with the new operator). Boost-
ing approaches have been successful in the past in state-
of-the-art frameworks for improving analysis of specific soft-
ware by reducing the cause of analysis failures. TamiFlex [31]
deals with reflection in standard Java software in this way,
while IccTA [16] explicitly connects components, to improve
Inter-Component Communication analysis.

Let us consider again our motivation example presented in
Listing 1 to better illustrate the instrumentation proposed
by BOM. Listing 5 presents the boosting results of Listing 1.
Our instrumentation tactic is straightforward: for instance
if a reflection call initializes a class, we explicitly represent
the statement with the Java standard new operator (line 4

6https://github.com/siis/coal.git



1 Class c =
Class.forName("de.ecspride.ReflectiveClass");

2 Object o = c.newInstance ();
3 + if (1 == BoM.check())
4 + o = new ReflectiveClass ();
5 m.invoke(o, imei);
6 + if (1 == BoM.check())
7 + o.setImei(imei);
8 String s = (String) m2.invoke(o);
9 + if (1 == BoM.check())

10 + s = (String) o.getImei ();

Listing 5: The boosting results of our motivating example.

in Listing 5). If a method is reflectively invoked (lines 5
and 8), we explicitly call it as well (lines 7 and 10). This
instrumentation is possible thanks to the mapping of reflec-
tive call targets yielded by the RAM module. The target
resolution in RAM indeed exposes that (1) object c is ac-
tually an instance of class ReflectiveClass; (2) object m
represents method setImei of class ReflectiveClass with
a String parameter imei; (3) object m2 represents method
getImei of class ReflectiveClass.

This example illustrates why reflection target resolution
is not a simple string analysis problem. In this case, the
support of composite object-analysis in RAM is warranted:
In line 1 of Listing 5, c is actually an object, yet the boosting
logic requires information that this represents class name
“ReflectiveClass”.

Observant readers may have noticed that the new injected
code is always guarded by a conditional to add a path for
the traditional calls. The check() method is declared in an
interface whose implementation is not included for static
analysis (otherwise a precise analyzer could have computed
its constant return value). However for runtime execution,
check() always returns false, preventing paths added by
BOM from ever being executed. Thus, The opaque predicate
keeps the new injected code from changing the app behavior,
while all sound static analysis can safely assume that the
path can be executed.

Additional Instrumentations. BOM performs addi-
tional instrumentations that are not directly related to the
Reflection problem. Nevertheless, these instrumentations
are useful to improve the completeness of other static anal-
yses. We remind that the goal of our approach is to enable
existing analyzers such as FlowDroid to perform reflection-
aware static analysis in a way that improves their security
results. For instance FlowDroid aims at detecting data leaks
with taint-flow static analysis. In the presence of dynamic
class loading, FlowDroid stops its analysis when a class has
to be loaded. We already explained how DroidRA tack-
les this problem with the JPM module (cf. Section 4.1).
However, not all the classes which have to be loaded are
accessible. One of the reasons is that some files are en-
crypted, which prevents the analysis from statically access-
ing them. For example, app com.ivan.oneuninstall contains
an archive file called Grid Red Attract.apk, which contains
another archive file called tu.zip that has been encrypted.
Because it is unrealistic to implement a brute-force tech-
nique to the password, we simply exclude such apps from
our analysis. However, to allow tools such as FlowDroid
to continue their analyses, we propose an instrumentation
that conservatively solves this problem: we explicitly mock
all the classes, methods and fields that are reported by the
RAM module7 but are not existing in the current class path

7This means that we only take into account reflective calls.

(i.e. they are neither present in the initial code of the apk,
nor in the code “extracted” by the JPM module).

Let us take an example to illustrate our instrumentation.
Consider the instruction “result=o.inc(a_1, a_2)” where
the method inc is not accessible and where a1 is tainted.
Without any modification of this code, a standard analyzer
would stop its analysis. Our instrumentation consists in
creating the method inc (and the associated class if re-
quired) in a way that the taints of a1 and a2 can be propa-
gated. Concretely, the instrumented method inc will contain
the following instruction: return (Object) (a1.toString() +
a2.toString()), assuming that the type of result is Object.

5. EVALUATION
Overall, our goal was to enable existing state-of-the-art

Android analyzers to perform reflection-aware static analy-
sis, thus improving the soundness and completeness of their
approaches. The evaluation of DroidRA thus investigates
whether this objective is fulfilled. To that end, we consider
answering the following research questions:

RQ1 What is the coverage of reflection calls that DroidRA
identifies and inspects?

RQ2 How does DroidRA compare with state-of-the-art ap-
proaches for resolving reflective call targets in Android?

RQ3 Does DroidRA support existing static analyzers to
build sounder call graphs of Android apps?

RQ4 Does DroidRA support existing static analyzers to
yield reflection-aware results?

All the experiments investigated in this section are con-
ducted on a server with 24 processors and 100GB memory.
For such tools that are running on top of Java VM, we exe-
cute them with 24GB heap size.

5.1 RQ1: Coverage of Reflective Calls
The goal of our reflection analysis is to provide necessary

information for analysts (or other approaches) to better un-
derstand how reflections are used by Android apps. Thus,
instead of considering all reflection-related methods, in this
experiment, we select such methods that are most interest-
ing for analysts. These include: 1) methods that acquire
Method, Constructor and Field objects. Those method call
sequences are falling in our common pattern (cf. Figure 1)
and are critical as they can be used, e.g., to exchange data
between normal explicit code and reflectively hidden code
parts. For these calls, we perform a composite analysis and
inspect the related class names and method/field names if
applicable; and 2) methods that contain at least one string
parameter. For these methods, we explore their string pa-
rameter’s possible values.

We use the corpus of 500 apps selected in Section 3.2, to
investigate the coverage of reflection calls. From each app
with reflective calls we extract two information:

1. Reached: The total number of reflective calls that are
identified by our RAM reflection analysis module.

2. Resolved: The number of reflective calls that are
successfully resolved (i.e., the values of relevant class,
method and field names can be extracted) by our re-
flection analysis.



Our experimental results are shown in Figure 3, which
illustrates with boxplots the performance of DroidRA in
reaching reflective calls from the dummy main, and in resolv-
ing their targets. Compared to the total number of reached
reflective calls, in average, DroidRA is able to correctly re-
solve 81.2% of the targets.

These off-targets are mainly explained by 1) the limi-
tations of static analysis, where runtime values (e.g., user
configuration or user inputs) cannot be solved statically at
compile time; 2) the limitations of our COAL solver, e.g.
currently it is not able to fully propagate arrays of objects,
although we have provided a limited improvement on this.
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Figure 3: Results of the coverage of reflection methods.

5.2 RQ2: Comparison with Checker
The approach proposed by Barros et al. [11] is the closest

work to ours. Their recent publication presents an approach,
hereon referred to as Checker, to address reflection in the In-
formation Checker Framework (IFC) [12]. We thus compare
both approaches using their evaluation dataset which con-
sists of 10 apps from the F-Droid open-source apps reposi-
tory [32]. Table 3 lists the 10 apps and provides comparative
results between Checker and DroidRA. Checker has been
evaluated by providing statistics on methods and construc-
tors related to reflective invocations. We thus consider the
same settings for the comparison. Moreover, note that we
apply DroidRA directly on the bytecode of the apps while
Checker is applied on source code. Additionally, our ap-
proach does not need extra developer efforts while Checker
needs manual annotations, e.g., one has to pinpoint good
places to put appropriate annotations.

Overall, as shown in Table 3, DroidRA resolves 9 more
method/constructors than Checker. Now we give more de-
tails on these results. For app RemoteKeyboard, DroidRA
missed one method and Checker reports that it is not able to
resolve it as well. Our further investigation shows that it is
impossible for static approaches to resolve the reflective call
in this case as the reflection target is a runtime user input
(a class name for a shell implementation). For app Vim-
Touch, DroidRA refuses to report a reflective call, namely
method Service.stopForeground, because its caller method
ServiceForegroundCompat.stopForeground is not invoked at
all by other methods, letting it becomes unreachable from
our entry method.

For app ComicsReader, DroidRA has resolved one more
reflective method than Checker. We manually verify in the
source code that the additional reflective call is a True Pos-
itives of DroidRA. However, with ComicsReader, DroidRA
missed one method8, although it resolved two additional re-
flective calls that Checker missed. This missed method is
actually located in a UI-gadget class which is not an An-
droid component (e.g., Activity). Since our dummy main
only considers Android components of an app as potential

8View.setSystemUiVisibility().

entry-points, DroidRA further failed to reach this method
from its dummy main.

Last but not the least, we have found 10 more constructors
located in libraries embedded in the studied apps. Because
Checker only checks the source code of apps, it could not
reach and resolve them.
Table 3: The comparison results between DroidRA and Checker,
where cons means the number of resolved constructors.

App
Checker DroidRA

methods cons methods cons
AbstractArt 1 0 1 0
arXiv 14 0 14 0
Bluez IME 4 2 4 2
ComicsReader 6 0 7 0
MultiPicture 1 0 1 0
PrimitiveFTP 2 0 2 7
RemoteKeyboard 1α 0 0 3
SuperGenPass 1 0 1 0

VimTouch 3β 0 2 0
VLCRemote 1 0 1 0

α Reached but not resolved.
β One from dead code.

5.3 RQ3: Call graph construction
An essential step of performing precise and sound static

analysis is to build at least a complete program’s method
call graph (CG), which will be used by static analyzers to
visit all the reachable code, and thus perform a sound analy-
sis. Indeed, methods that are not included in the CG would
never be analyzed since these methods are unreachable from
the analyzer’s point of view. We investigate whether our
DroidRA is able to enrich an app’s CG. To that end we
build the CG of each of the apps before and after they are
instrumented by BOM. Our CG construction experiments
are performed with the popular Soot framework [26]: we
consider the CHA [33] algorithm, which is the default al-
gorithm for CG construction in Soot, and the more recent
Spark [34] algorithm which was demonstrated to improve
over CHA. Spark was demonstrated to be more precise than
CHA, and thus producing fewer edges in its constructed CG.

On average, in our study dataset of 500 apps, for each app,
DroidRA improves by 3.8% and 0.6% the number of edges
in the CG constructed with Spark and CHA respectively.
Since CHA is less precise than Spark, CHA yields far more
CG edges, and thus the proportion of edges added thanks
to DroidRA is smaller than for Spark.

We highlight the case of three real-world apps from our
study dataset in Table 4. The CG edges added (i.e., Diff
column) vary between apps. We have further analyzed the
added edges to check whether they reach sensitive API meth-
ods9 (e.g., ActivityManager.getRunningTasks(int)) which
are protected by a system permission (e.g., GET_TASKS). The
recorded number of such newly reachable APIs (see Perm
column in Table 4) further demonstrates how taming reflec-
tion can allow static analysis to check the suspicious call
sequences that are hidden by reflective calls. We confirmed
that this app is flagged as malicious by 24 anti-virus prod-
ucts from VirusTotal.

Case Study: org.bl.cadone. We consider the example
of app org.bl.cadone to further highlight the improvement in
CG construction. We have computed the call graph (CG)
of this app with CHA and, for the benefit of presentation
clarity, we have simplified it into a class dependency graph

9The list of sensitive API methods are collected from
PScout [35].



Table 4: The call graph results of three apps we highlight for
our evaluation. Perm column means the number of call graph
edges that are actually empowered by DroidRA and are accessing
permission protected APIs.

Package Algo Original DroidRA Diff Perm

com.boyaa.bildf
Spark 714 22,867 22,153 3
CHA 172,476 190,436 17,960 51

org.bl.cadone
Spark 694 951 257 0
CHA 172,415 187,079 14,664 16

com.audi.light
Spark 6,028 6,246 218 0
CHA 174,007 174,060 53 0

(CDG) where all CG edges between methods of two classes
are transformed into a single CDG edge where all nodes
representing methods from a single class are merged into a
single node representing this class.

Figure 4 presents the CDG with 14,664 new edges added
after applying DroidRA. Black edges represent nodes and
edges that were available in the original version of the app.
The new edges (and nodes) have been represented in green.
Some of them however reach sensitive APIs, and are high-
lighted in red. We found that, among the 8 permissions that
protect the 16 sensitive APIs (included in 8 classes) that are
now reachable, 6 (i.e., 75%) are of the dangerous level [36],
which further suggests that the corresponding reflective calls
were meant to hide dangerous actions.

Figure 4: The class dependency graph (simplified call graph) of
app org.bl.cadone (based on CHA algorithm). Black color shows
the originally edges/nodes, green color shows edges/nodes that
are introduced by DroidRA while red color shows new edges that
are further protected by permissions.

5.4 RQ4: Improvement of Static Analysis
We consider the state-of-the-art tool FlowDroid and its

ICC-based extension called IccTA for assessing to what ex-
tent DroidRA can support static analyzers in yielding reflection-
aware results. Our experiments are based on benchmark
apps, for which the ground truth of reflective calls is known,
and on real-world apps. Finally, on the real-word apps, we
check whether the runtime performance of DroidRA will not
prevent its use in complement to other static analyzers.

DroidRA on benchmark apps. We assess the efficacy
of DroidRA on 13 test case apps for reflection-based sensi-
tive data leaks. 4 of these apps are from the Droidbench
benchmark where they allowed to show the limitations of
FlowDroid and IccTA. We further consider 9 other test cases
to include other reflective call patterns (e.g., the top used se-
quences , cf. Table 2). Since the test cases are handcrafted,
the data leak (e.g., leak of device id via SMS), are known
in advance. In 12 of the apps, the leak is intra-component,
while in the 11th it is inter-component.

Table 5 provides details on the reflective calls and whether
the associated data-leak is identified by the static analysis

of IccTA and/or DroidRA-supported IccTA. Expectedly, Ic-
cTA alone only succeeds on the first test case, Reflection1 in
DroidBench, where the reflective calls are not in the data-
leak path, thus not requiring a reflective call resolution for
the taint analysis to detect the leak. However, IccTA fails on
all other 12 test cases. This was expected since IccTA is not
a reflection-aware approach. When reflection is tamed in the
test cases by DroidRA, IccTA gains the ability to detect a
leak on 11 out of 12 test cases. In test case 13, the reflective
call is not resolved because the reflection method getFields()
returns an array of fields that the current implementation
of constant propagation cannot manage to resolve. Indeed,
we have enhanced COAL with limited support to propagate
array elements, complex field arrays are not addressed. Nev-
ertheless, constructor arrays can now be resolved, allowing
DroidRA to tame reflection in test case 6.

DroidRA on real-world apps. To investigate the im-
pact of DroidRA on the static analysis results of real-word
apps, we consider a random set of 100 real-world apps that
contain reflective calls and at least one sensitive data leak
(discovered by IccTA). Comparing to using IccTA on origi-
nal apps, the instrumentation by DroidRA impacts the final
results by allowing IccTA to report on average (median) 1
more leak in a reflection-aware setting.

Runtime performance of DroidRA. We investigate
the time performance of DroidRA to check whether time
overhead of DroidRA app will not be an obstacle to practi-
cal usage in complement with state-of-the-art static analyz-
ers. On the previous set of 91 apps, we measure the time
performance of the three modules of DroidRA. The median
value for JPM, RAM, BOM on the apps are 24 seconds, 21
seconds and 8 seconds respectively leading to a total median
value of 53 seconds for DroidRA. This value is reasonable
in comparison with the execution of tools such as IccTA or
FlowDroid which can run for several minutes and even hours
on a given app.

6. THREATS TO VALIDITY
The main threats to validity of DroidRA is carried from

the COAL solver: at the moment, the composite constant
propagation cannot fully track objects inside an array. We
have provided limited support in our improved version of
the COAL solver and we plan to address this further in fu-
ture work. Besides, the conservative setting, where a string
is represented by a regular expression (“*”) if COAL can-
not statically infer its value, which could be taken as ev-
erything and thus may also introduce false positives. Ap-
plying a probabilistic model could potentially mitigate this
threat [37]. Another threat is related to Dynamic Class
Loading. Although we have used heuristics to include exter-
nal classes, some other would-be dynamically loaded code
(e.g., downloaded at runtime) can be missed during the
reflective call resolution step. However, our objective in
this paper was not to solve the DCL problem. Other ap-
proaches [29,38] can be used to complement our work.

The single entry-point method (the dummy main method)
that we build may not cover all the reflective calls, which
means that some reflective calls may not be reachable from
the call graph of RAM. Finally, the call graph built by RAM
is leveraging the implementation of the Spark algorithm in
Soot, which also comes with specific limitation [39].

Finally, DroidRA handles neither native code, nor multi-
threads. These are challenges that most current Android



Table 5: The 13 test cases we use in our in-the-lab experiments. These 13 cases follow the common pattern of Figure 1 and each case
contains exactly one sensitive data leak.

Case Source Reflection Usage IccTA DroidRA+IccTA
1 DroidBench forName() → newInstance() 3 3
2 DroidBench forName() → newInstance() 7 3
3 DroidBench forName() → newInstance() → m.invoke() → m.invoke() 7 3
4 DroidBench forName() → newInstance() 7 3
5 New forName() → getConstructor() → newInstance() 7 3
6 New forName() → getConstructors() → newInstance() 7 3
7 New forName() → getConstructor() → newInstance() → m.invoke() → m.invoke() 7 3
8 New loadClass() → newInstance() 7 3
9 New loadClass() → newInstance() → f.set() → m.invoke() 7 3
10 New forName() → getConstructor() → newInstance() → f.get() 7 3
11 New startActivity() → forName() → newInstance() → m.invoke() → m.invoke() 7 3
12 New forName() → getConstructor() → newInstance() → f.set() → f.get() 7 3
13 New forName() → getConstructor() → newInstance() → getFields() → f.set() → f.get() 7 7

static analysis approaches ignore, but are out of the scope
of this paper.

7. RELATED WORK
Research on static analysis of Android apps presents strong

limitations related to reflection handling [40–43]. Authors
of recent approaches explicitly acknowledge such limitations,
indicating that they ignore reflection in their approaches [14,
16, 44] or failing to state whether reflective calls are han-
dled [45] in their approach.

The closest work to ours was concurrently proposed by
Barros et al. [11] within their Checker framework. Their
work differs from ours in several ways: first, the design
of their approach focus on helping developers checking the
information-flow in their own apps, using annotations in the
source code; this limits the potential use of their approach
by security analysts in large markets of Android apps such
as GooglePlay or AppChina. Second, they build on intra-
procedural type inference system to resolve reflective calls,
while we build on an inter-procedural precise and context-
sensitive analysis. Third, our approach is non-invasive for
existing analysis tools who can now be boosted when pre-
sented with apps where reflection is tamed.

Reflection, by itself, has been investigated in several works
for Java applications. Most notably, Bodden et al. [31] have
presented TamiFlex for aiding static analysis in the pres-
ence of reflections in Java programs. Similarly to our ap-
proach, TamiFlex is implemented on top of Soot and in-
cludes a Booster module, which enriches Java programs by
“materializing”reflection methods into traditional Java calls.
However, DroidRA manipulates Jimple code directly while
TamiFlex works on Java bytecode. Furthermore, DroidRA
is a pure static approach while TamiFlex needs to execute
programs after creating logging points for reflection meth-
ods to extract reflection values. Finally, although Android
apps are written in Java, TamiFlex cannot even be applied
to Android apps as it uses a special Java API that is not
available in Android [29].

Another work that tackles reflection for Java has been
done by Livshits et al. [46], in which points-to analysis is
leveraged to approximate the targets of reflection calls. Un-
like our approach, their approach needs users to provide an
per-app specification in order to resolve reflections, which is
difficult to apply for a large scale analysis. Similarly, Braux
et al. [47] propose a static approach to optimize reflection
calls at compile time, for the purpose of increasing time per-
formance.

Regarding Dynamic Code Loading in Android, Poeplau
et al. [38] have proposed a systematic review on how and

why Android apps load additional code dynamically. In
their work, they adopt an approach that attempts to build
a super CFG by replacing any invoke() call with the tar-
get method’s entry point. This approach however fails to
take into account the newInstance() reflective method call,
which initializes objects, resulting in a context-insensitive
approach, potentially leading to more false positives. Sta-
DynA [29] was proposed to address the problem of dynamic
code loading in Android apps at runtime. This approach
requires a modified version of the Android framework to log
all triggering actions of reflective calls. StaDynA is thus not
market-scalable, and present a coverage issue in dynamic ex-
ecution. Our approach, DroidRA, provides a better solution
for reflective method calls, can be leveraged to compliment
these approaches, so as to enhance them to conduct better
analysis.

Instrumenting Android apps to strengthen static analy-
sis is not new [48]. For example, IccTA [16], a state-of-
the-art ICC leaks analyzer, instruments apps to bridge ICC
gaps and eventually enable inter-component static analy-
sis. AppSealer [49] instruments Android apps for generating
vulnerability-specific patches, which prevent component hi-
jacking attacks at runtime. Other approaches [50,51] apply
the same idea, which injects shadow code into Android apps,
to perform privacy leaks prevention.

8. CONCLUSION
This paper addresses a long time challenge that is to per-

form reflection-aware static analysis on Android apps. We
have presented DroidRA, an open source tool, to perform re-
flection analysis, which models the identification of reflective
calls as a composite constant propagation problem through
the COAL declarative language, and leverages the COAL
solver to automatically infer reflection-based values. We re-
mind the reader that these reflective-based values can be
directly used as basis for many whole-program analyses of
Android apps. We further illustrate this point by providing a
booster module, which is based on the previously inferred re-
sults to augment apps with traditional Java calls, leading to
a non-invasive way of supporting existing static analyzers in
performing reflection-aware analysis, without any modifica-
tion or configuration. Through various evaluations we have
demonstrated the benefits and performance of DroidRA.
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from the Checker [11] team, for sharing detailed results of
their approach to deal with reflection. This work was sup-
ported by the Fonds National de la Recherche (FNR), Lux-
embourg, under the project AndroMap C13/IS/5921289.



10. REFERENCES
[1] Ira R. Forman and Nate Forman. Java Reflection in

Action (In Action Series). Manning Publications Co.,
Greenwich, CT, USA, 2004.

[2] Mikhail Kazdagli, Ling Huang, Vijay Reddi, and
Mohit Tiwari. Morpheus: Benchmarking
computational diversity in mobile malware. In
Proceedings of the Third Workshop on Hardware and
Architectural Support for Security and Privacy, HASP
’14, pages 3:1–3:8, New York, NY, USA, 2014. ACM.

[3] Martina Lindorfer, Matthias Neugschw, Lukas
Weichselbaum, Yanick Fratantonio, Victor Van Der
Veen, and Christian Platzer. Andrubis- 1,000,000 apps
later: A view on current android malware behaviors.

[4] Axelle Apvrille and Ruchna Nigam. Obfuscation in
android malware, and how to fight back. Virus
Bulletin, 2014.
https://www.virusbtn.com/virusbulletin/archive/
2014/07/vb201407-Android-obfuscation.
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[11] Paulo Barros, René Just, Suzanne Millstein, Paul
Vines, Werner Dietl, Marcelo d’Armorim, and
Michael D. Ernst. Static analysis of implicit control
flow: Resolving java reflection and android intents. In
Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE,
Lincoln, Nebraska, 2015.

[12] Michael D. Ernst, René Just, Suzanne Millstein,
Werner Dietl, Stuart Pernsteiner, Franziska Roesner,
Karl Koscher, Paulo Barros, Ravi Bhoraskar,
Seungyeop Han, Paul Vines, and Edward X. Wu.

Collaborative verification of information flow for a
high-assurance app store. In CCS, pages 1092–1104,
Scottsdale, AZ, USA, November 4–6, 2014.

[13] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein,
and Yves Le Traon. AndroZoo: Collecting Millions of
Android Apps for the Research Community. In The
13th International Conference on Mining Software
Repositories, Data Showcase track, 2016.

[14] Damien Octeau, Daniel Luchaup, Matthew Dering,
Somesh Jha, and Patrick McDaniel. Composite
constant propagation: Application to android
inter-component communication analysis. In
Proceedings of the 37th International Conference on
Software Engineering (ICSE), 2015.

[15] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric
Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th annual ACM SIGPLAN
conference on Programming Language Design and
Implementation (PLDI 2014), 2014.

[16] Li Li, Alexandre Bartel, Tegawendé F Bissyandé,
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Tegawendé F Bissyandé, and Jacques Klein. Potential
Component Leaks in Android Apps: An Investigation
into a new Feature Set for Malware Detection. In
QRS, 2015.
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