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Abstract— This note addresses identification of the A-matrix
in continuous time linear dynamical systems on state-space
form. If this matrix is partially known or known to have a
sparse structure, such knowledge can be used to simplify the
identification. We begin by introducing some general conditions
for solvability of the inverse problems for matrix exponential.
Next, we introduce “system aliasing” as an issue in the identifi-
cation of slow sampled systems. Such aliasing give rise to non-
unique matrix logarithms. As we show, by imposing additional
conditions on and prior knowledge about the A-matrix, the
issue of system aliasing can, at least partially, be overcome.
Under conditions on the sparsity and the norm of the A-matrix,
it is identifiable up to a finite equivalence class.

I. INTRODUCTION

Time-series models in engineering, economics and biology
can often be represented by state-space models. In the exam-
ple of gene regulatory networks (evolving close to equilibria),
the structure of the right-hand side defines pathways, from
which conclusions can be drawn about possible diseases. For
continuous-time linear dynamics, the state-space form has an
A-matrix, which reveals the direct connections between the
states. In many dynamical systems, as the aforementioned
ones, the structure of this matrix is either partially known
or known to be sparse. This paper investigates what such
criteria can be used to identify the A-matrix.

Estimating continuous-time systems from discrete-time
measured data is an important part of the field of systems
identification, see e.g. [1]–[3]. However, with low sampling
rates, the identification of continuous-time systems becomes
particularly challenging, manifested in the lack of compre-
hensive studies. In the presence of “system aliasing”, the
discrete-time signals do not contain certain information about
the continuous-time signals. As a result, even though the
discrete-time system can be identified, the selection of the
continuous-time model may be ambiguous. This note sheds
light on how this issue of system aliasing complicates the
identification.

Before addressing the issues related to system aliasing,
we first recall some results on matrix logarithms and ex-
ponentials – the questions of existence and uniqueness are
addressed. The results are given as algebraic conditions for
obtaining a unique A-matrix within a set. In contrast to these
results, the note proceeds by first providing the minimal
sampling frequency such that system aliasing is avoided.
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Then we consider the issue of system aliasing. When know
that the A-matrix is sparse, we observe that allowing for
“aliased” representations might lead to A-matrices that are
more sparse among the aliased solutions, thus exposing
more structures in the state generation. This note gives a
mathematical definition of “system aliases”, and study how
to select the sparest one among the aliases of the underlying
systems. Refer to [4] for more preliminaries and all proofs.

II. PRELIMINARIES

Let

A = Ā+ E and D ∈ Rp×n
2

,

where Ā ∈ Rn×n and E ∈ S ⊆ Rn×n. This note addresses
properties that must hold for (A,D,S ) or (Ā, E,D,S )
in order to guarantee that E can be determined from
Dvec(exp(A)). In the following cited definitions and the-
orems, we adopt the notations in [5].

A. Principal logarithm

Theorem 1 (principal logarithm [5, Thm. 1.31]). Let P ∈
Cn×n have no eigenvalues on R−. There is a unique log-
arithm X of P all of whose eigenvalues lie in the strip
{z : −π < im(z) < π}. We refer to X as the principal
logarithm of P and write X = Log(P ). If P is real then its
principal logarithm is real.

Let G(h) = {z ∈ C : −π/h < im(z) < π/h, h ∈ R}. We
denote the set of real matrices in Rn×n whose eigenvalues
lie in the strip G(1) by A (n). By restricting the set for which
Ā and E belong to A (n), it follows that

E = Log(exp(A))− Ā,

is one-to-one. Throughout the text, the notations exp(·) and
e(·) are used interchangeably. We use log(·) for general pri-
mary matrix logarithms and Log(·) for principal logarithms.

Theorem 2 (Gantmacher [5, Thm. 1.27]). Let P ∈ Cn×n
be nonsingular with the Jordan canonical form

Z−1PZ = J = diag(J1, J2, ..., Jp) (1a)

Jk = Jk(λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk .

(1b)

Then all solutions to eA = P are given by

A = ZU diag(Lj11 , L
j2
2 , ..., L

jp
p )U−1Z−1, (2)
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where
Ljkk = log(Jk(λk)) + 2jkπiImk

; (3)
log(Jk(λk)) denotes

f(Jk) :=


f(λk) f ′(λk) · · · f(mk−1)(λk)

(mk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)


with f the principal branch of the logarithm, defined by
Im(log(z)) ∈ (−π, π]; jk is an arbitrary integer; and U
is an arbitrary nonsingular matrix that commutes with J .

Theorem 3 (classification of logarithms [5, Thm. 1.28]). Let
the nonsingular matrix P ∈ Cn×n have the Jordan canonical
form (1) with p Jordan blocks, and let s ≤ p be the number
of distinct eigenvalues of A. Then eA = P has a countable
infinity of solutions that are primary functions of P , given
by

Aj = Z diag(Lj11 , L
(j2)
2 , ..., L(jp)

p )Z−1, (4)

where Ljkk is defined in (3), corresponding to all possible
choices of the integers j1, ..., jp, subject to the constraint
that ji = jk whenever λi = λk.

B. Fréchet Derivatives
Definition 1 ( [5]). The Fréchet derivative of the matrix
function f : Cn×n → Cn×n at a point X ∈ Cn×n is a linear
map

Cn×n L−→ Cn×n
E 7−→ L(X,E)

such that for all E ∈ Cn×n

f(X + E)− f(X)− L(X,E) = o(‖E‖).
The Fréchet derivative exists for matrix functions exp and

Log (principal logarithm) and it is unique. It holds that [5,
p. 238]

Lexp(X,E) =

∫ 1

0

eX(1−s)EeXsds,

LLog(X,E) =

∫ 1

0

(t(X − I) + I)−1E(t(X − I) + I)−1)dt.

C. Fréchet derivatives for the vector representation
The vector representation of the Fréchet derivatives

Lexp(X,E) and LLog(X,E) have the structure of being
given as a matrix multiplied by vec(E).

vec(Lexp(X,E)) = K(X, 0)vec(E), (5)

vec(LLog(X,E)) = K(X, 0)−1vec(E), (6)

K(X,E) =
(
I ⊗ exp(X)

)
ψ
(
(X + E)T ⊕ (−X))

)
. (7)

Here K(X,E) can be seen as an extension of the object
K(X) defined in [5, Thm. 10.13]. The vector representation
of eA = eĀ+E can be written as

vec(eĀ+E) = vec(eĀ) +K(Ā, E)E. (8)

Moreover, let us define the maps fĀ : Rn×n → Rn2

and gĀ :
Rn×n → Rn2

by

fĀ(E) = K(Ā, E)vec(E) and gĀ(E) = K(Ā, 0)vec(E).

III. PROBLEM FORMULATIONS

A. General notation

Definition 2.

E (A,D, h,S ) =
{
A∗ ∈ Rn×n : D ∈ Rn

2×n2

, h ∈ R,

A∗ = arg min
Ã∈S

‖Dvec(exp(hA))−Dvec(exp(hÃ))‖2
}
,

where S ⊆ Rn×n contains A.

This set will be used to define the important concept of
system aliasing in continuous-time linear system identifica-
tion. Considering the special case of the set S ⊆ A (n), we
introduce the following set.

Definition 3.

EL(Ā, E,D,S ) =
{
E∗ : Ā+ E∗ ∈ A (n), D ∈ Rn

2×n2

,

E∗ = arg min
Ẽ∈S

‖Dvec(exp(Ā+ E))−Dvec(exp(Ā+ Ẽ))‖2
}

where S ⊆ Rn×n contains E.

If E is “sufficiently” small in norm, there is an approxi-
mated problem that we could investigate, where we can use
Fréchet derivatives to approximate exp(Ā + E) at Ā in the
direction of E.

Definition 4.

ES(Ā, E,D,S ) =
{
E∗ : Ā+ E∗ ∈ A (n), D ∈ Rn

2×n2

,

E∗ = arg min
Ẽ∈S

‖DK(Ā, 0)
(

vec(E)− vec(Ẽ)
)
‖2
}
,

where S ⊆ Rn×n is a linear subspace containing E.

Here we use the first order approximation of the expo-
nential matrix. Then we assume that S is a linear subspace
and we want to find out in what directions in this space the
first order approximation is good. To be more precise, the
question is for what (Ā, E,D,S ) it holds that(

sup
E′∈ES(Ā,tE,D,S )

‖E′ − tE‖

)
|t|

→ 0 ast→ 0. (9)

B. Continuous-time linear system identification

Consider the linear dynamical system{
ẋ(t) = Ax(t),

y(t) = Cx(t),
(10)

where A = Ā+E; C ∈ Rp×n has full rank, x(t) ∈ Rn and
y(t) ∈ Rp.

With the general notation given in Section III-A, we
can give a definition on system aliasing only using the A-
matrix and the sampling period h, which does not necessarily
depend on specific identification methods.

Definition 5 (System aliasing). Given A ∈ S and h ∈
R+, if there exists Â 6= A ∈ E (A, I, h,S ), then Â is



called a system alias of A with respect to S . By default,
choose S (A) :=

{
Ã ∈ Rn×n : max{im(eig(Ã))} ≤

max{im(eig(A))}
}

.

We are particularly interested in E (A, I, h,S ) = {A},
i.e. there is system aliasing. Note that the concept of system
aliasing does not depend on specific data. It only depends on
system dynamics (e.g. the A-matrix in (10)) and sampling
frequencies. If the D matrix is specifically constructed by
data instead of I , E (A,D, h,S ) = {A}, where A denotes
the ground truth. This tells us that the underlying system
is identifiable from the given data (see Section IV-B). Ob-
viously, if we have system aliasing for the system with a
specific sampling frequency, without extra prior information
on A (see Section V), the system is not identifiable.

IV. NO SYSTEM ALIASING

A. The minimal sampling frequency
Provided with the definition of system aliasing, a question

is: for what (A, h) does it hold that E (A, I, h,S (A)) =
{A}.

To make principal matrix logarithm Log(·) well-defined,
assume that exp(hA) has no negative real eigenvalues.
According to Theorem 1 and 2, it always holds that
Log(exp(hA))/h ∈ E (A, I, h,S (A)). To avoid system
aliasing, we have to force Log(exp(hA))/h = A to be
satisfied. It is equivalent to eig(hA) ∈ G(1).

Given no other information on the system, consider the
identification problem of A using full-state measurement.
The only way to find the unique estimation is to decrease the
sampling period h until the ground truth falls into the strip
of G(h), and then use the principal logarithm. Otherwise,
we would be bothered by system aliases of A and unable to
make a decision, unless we know extra prior information on
A. For full-state measurement, identifiability is guaranteed
by selecting appropriate h such that there is no system
aliases. For the general case of identification using output
measurement, the issue is studied in Section IV-B.

Theorem 4 (Nyquist-Shannon-like sampling theorem). To
uniquely obtain A from Ad by taking the principal matrix
logarithm, where Ad is identified from sampled data, the
sampling frequency ω (rad/s) must satisfy

ω ≥ 2 max {| im (λi(A)) |, i = 1, . . . , n} .

Equivalently, the sampling period h should satisfy

h ≤ min {π/| im (λi(A)) |, i = 1, . . . , n} .
B. Partial information

Suppose all A’s in A (n), which implies there is no system
aliasing, i.e. the case in Definition 3. Now consider the
identifiability problem of (10) from data with low sampling
frequency 2π/h. To be precise, it is to find out for what
(Ā, E,D,S ), it holds that EL(Ā, E,D,S ) = {E}.

Lemma 5. For Ā, E, D, S 3 E, if there is linear subspace
L such that fĀ(S ) ⊆ L , then EL(Ā, E,D,S ) = {E} if

L ∩ ker(D) = {0}.

Lemma 6. For Ā, E, D and S 3 E, (9) holds if and only
if

g−1
Ā

(ker(D)) ∩S = {0}.

Proposition 7. If

S ⊆ {Ẽ : im(Ẽ) ∪ im(ĀẼ) ∪ im(Ā2Ẽ) ∪ . . .
∪ im(Ān−1Ẽ) ⊆ im(CT )}.

and
D = (XT ⊗ C),

where X ∈ Rn×n is a non-singular matrix, then
EL(Ā, E,D,S ) = {E} and

E = log

([
C
Z

]−1 [
CeAX

ZeĀX

]
X−1

)
− Ā,

where Z is any matrix in R(n−p)×n such that im(ZT ) =
ker(C).

Proposition 8. Suppose the system (10) is initialized at k
different initial points x0,1, x0,2, . . . , x0,k ∈ Rn, C ∈ Rp×n
is a full rank matrix and S is an l-dimensional linear
subspace. At the time t = 1, for initial point i, yi(1) =
CeAx0,i, where i ∈ {1, 2, . . . , k}.

For almost all linearly independent vectors
x0,1, x0,2, . . . x0,k in Rn and almost all matrices Ā in
Rn×n, (9) holds where

D =
[
x0,1 x0,2 . . . x0,k

]T ⊗ C,
if and only if

l ≤ kp.

Remark 1. In Proposition 8, instead of having k different
initial points one can have one intial point and sample y(t)
at the times t = 1, t = 2 etc. for almost all Ā, E and x0 such
that [x0, e

Ax0, e
2Ax0, . . . , e

(k−1)A] has full rank (9) holds
when

D = (
[
xT0 (eAx0)T . . . (e(k−1)Ax0)T

]
⊗ C,

l ≤ kp and S is an l-dimensional linear subset.

V. SYSTEM ALIASING AND BOUNDED CONSTRAINTS

In the previous section we hinted that the conditions for
no system aliasing follow as a consequence of bounded
eigenvalues. In this section we follow this path and explicitly
formulate an optimization problem to deal with identification
in the presence of system aliases.

Consider the case of full-state measurements, i.e. C =
I in (10), and h is NOT chosen small enough such that
E (A, I, h,S (A)) = {A}. In order to find out A among the
aliases we need extra information, for instance, properties of
A known a priori. Here we assume that the ground truth
A is the sparest solution in E (A, I, h,S (κ)) and κ ∈ R
as an upper bound that can be roughly estimated. The set
S (κ) will be defined after giving Definition 6. A is chosen
by solving the following optimization problem

minimize
Â∈E (A,I,h,S (κ))

‖Â‖0. (11)



We need to calculate E (A, I, h,S (κ)) from data. Given
the measurement X1 = [x(h), x(2h), . . . , x(Nh)], X2 =
[x(0), x(h), . . . , x

(
(N − 1)h

)
], let Âd be an estimation of

the A-matrix in the corresponding discrete-time state space
representation. In the deterministic case1as (10), Âd =
X1X

T
2 (X2X

T
2 )−1 and Âd = exp(hA) . Hence,

E (A, I, h,S (κ)) =
{
Ã ∈ S (κ) : exp(hÃ) = Âd

}
, (12)

and define

S :=
{
Ã ∈ Rn×n : exp(hÃ) = Âd

}
. (13)

To formulate S (κ), we introduce a special norm of A,
which is equivalent to the Frobenius norm up to a change of
coordinates.

Definition 6 (Z-weighted norm). Let hZ(A) = Z−1AZ,
where Z is the matrix defined in Theorem 3. Then the norm
is defined as ‖hZ(·)‖F = ‖ · ‖F ◦ hZ .

Since we assume that Âd is fixed, i.e., the data X is not
used in the optimization problems defined here, the matrix
Z is constant. One can observe that

‖hZ(Â)‖F = vec(Â)T (ZT ⊗ Z−1)T (ZT ⊗ Z−1)vec(Â)

is a proper (ZT ⊗Z−1)T (ZT ⊗Z−1)-weighted vector norm
in terms of vec(Â). Using ‖hZ(·)‖F is on the one hand
simplifying the analysis we conduct throughout this section,
and on the other explicitly penalizes the imaginary part
of the eigenvalues without “distorting” them through the
transformation by Z.

Now we define S (κ) using the norm ‖hZ(·)‖F . The basic
idea is that one should exclude such A’s whose imaginary
parts of eigenvalues are too large, which implies their system
response will show wild fluctuation. To make our assumption
and the problem (11) practically meaningful, instead of
Rn×n, we restrict S to be a norm bounded subset

S (κ) =
{
Ã ∈ Rn×n : ‖hZ(Ã)‖F ≤ κ

}
. (14)

In the following we will show that the feasible set of (11)
has only finite elements, which implies it can be solved at
least by brute force methods. Recall that the set S in (13) is
countable according to Theorem 3.

Let M := diag(m1,m2, . . . ,mp), j := [j1, j2, . . . , jp] and
β := [β1, β2, . . . , βp], where log(λk) , αk + iπβk, k =
1, . . . , p, and jk, λk are defined in Theorem 2. A function
I is defined as

I (j, δ) := δTMδ + (2j + β)TMδ, (15)

where j, δ ∈ Zp. Moreover, it satisfies I (j, δ) = I (0, j +
δ)−I (0, j), which follows by noticing

I (j, δ) = (δ + j + β/2)
T
M (δ + j + β/2)

− (j + β/2)
T
M (j + β/2) . (16)

1For stochastic cases, Âd is consistently estimated by Predic-
tion Error Minimization or Maximum Likelihood methods [1], and
limN→∞ E(Âd(N)) = exp(hA). If only finite samples are available,
we cannot obtain the exactly equivalent E (A, I, h,S (κ)) from data.

Moreover, let A0 denote a special matrix logarithm for which
all jk (k = 1, . . . , p) in (3) are equal to 0.

Definition 7 (equivalence relations). An equivalence relation
“∼” is defined on S as a binary relation: for any A1, A2 ∈ S,
j(1) and j(2) are defined for A1, A2, respectively, we say
A1 ∼ A2 if I (j(1), j(2) − j(1)) = 0.

Lemma 9. Let S be the set defined in (12) and parametrized
by (4) in Theorem 3. For any A1, A2 ∈ S, ‖hZ(A1)‖F =
‖hZ(A2)‖F if and only if A1 ∼ A2.

Lemma 10. Given any Ā ∈ S, there exist finite Ai ∈ S that
satisfies Ai ∼ Ā.

Lemma 11. There exists finite Ai ∈ S such that
‖hZ(Ai)‖F ≤ κ.

Proposition 12 (lower boundness of logarithms). Let S be
the set defined in (12). Given any Ā ∈ S, there exists
M(Ā) > 0, such that for any A ∈ {A ∈ S : A � Ā},
it holds that ∣∣‖hZ(A)‖F − ‖hZ(Ā)‖F

∣∣ ≥M.

Proposition 13. Let S be the set defined in (12). For any
Ā ∈ S, there exist κl, κu ∈ R in S (κl, κu) = {Ã ∈ Rn×n :
κl ≤ ‖hZ(Ã)‖F ≤ κu} such that (11) has a unique optimal
point in the sense of the equivalence relation in Definition 7.

VI. CONCLUSIONS

This paper addresses identification of continuous-time dy-
namical systems with sparse topologies. The key assumption
is that the sampling frequency is low. Under this assumption
a realization/identification problem comes to surface, which
has largely been overlooked in the community. First we
propose the minimal sampling frequency that guarantees
no system aliasing. Allowing system aliasing, one needs
to search over a collection of matrix logarithms to find
the sparsest one. We provide theoretical results for when a
unique solution exists up to a finite equivalence class.
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