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Abstract

Hedgehog (Hh) signaling is implicated in bone development and cellular transformation. Here we
demonstrate that inhibition of Hh pathway activity inhibits tumor growth through effects on the
microenvironment. Pharmacological inhibition of the Hh effector Smoothened (Smo) increased
trabecular bone in vivo and inhibited osteoclastogenesis in vitro. In addition, enhanced Hh
signaling due to heterozygosity of the Hh inhibitory receptor Patched (Pfchi+/-) increased bone
resorption, suggesting direct regulation of osteoclast activity by the Hh pathway. Pfchi+/- mice
had increased bone metastatic and subcutaneous tumor growth, suggesting that increased Hh
activation in host cells promoted tumor growth. Subcutaneous growth of Hh-resistant tumor cells
was inhibited by LDE225, a novel orally bioavailable Smo antagonist, consistent with effects on
tumor microenvironment. Knockdown of the Hh ligand Sonic Hh (SHH) in these cells decreased
subcutaneous tumor growth and decreased stromal cell production of I1L-6, indicating that tumor-
derived Hh ligands stimulated tumor growth in a paracrine fashion. Together our findings
demonstrate that inhibition of the Hh pathway can reduce tumor burden, regardless of tumor Hh
responsiveness, through effects on tumor cells, osteoclasts and stromal cells within the tumor
microenvironment. Hh may be a promising therapeutic target for solid cancers and bone
metastases.
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Introduction

The Hedgehog (Hh) signaling pathway plays critical roles in epithelial-mesenchymal
transition and cell differentiation during embryonic development (1, 2), adult tissue
homeostasis and tumorigenesis (3, 4). In the absence of ligand, the Hh receptor Patched
(Ptch) inhibits the activator Smoothened (Smo). Upon ligand binding to Ptch, Smo is
released, resulting in pathway activation and transcription of target genes including G//1,
Gli2and Prchl (5, 6). Cyclopamine, a naturally occurring Hh inhibitor and Smo antagonist,
first highlighted the importance of Hh signaling. Several next-generation analogues with
increased specificity and tolerability (7) (including GDC-0449, LDE225 and IP1-926) exert
anti-tumor effects in a subset of cancer cells and are currently in clinical trials for a wide
variety of tumors (8-10).

The Hh signaling pathway plays a critical role in tumorigenesis and progression in many
tumor types. Mutations leading to ligand-independent Hh pathway activation have been
linked to basal cell carcinoma and medulloblastoma (11, 12) while overexpression of the Hh
ligand Sonic hedgehog (SA#) or mutations in Hh signaling genes (Smo, Ptchl, Glil, GIi2)
have been implicated in the emergence and progression of numerous epithelial cancers
including breast, skin, esophagus, stomach, pancreas, liver, lung and prostate (11, 13, 14).
Hh inhibition via cyclopamine suppressed proliferation of breast carcinoma cell lines and
decreased G/i1 (15, 16). These effects are not limited to primary tumors, as inhibition of the
Hh pathway decreased lung and liver metastases in a mouse pancreatic cancer model
together with gemcitabine (17, 18).

In addition to direct effects on tumor cell growth, Hh signaling within the host stromal
microenvironment also controls tumor progression. Mice with a targeted disruption of the
Hh inhibitory receptor Ptch1 develop ductal hyperplasia (15). Interestingly, it was disruption
of Ptch1in mammary stroma rather than in mammary epithelium that led to the ductal
changes, suggesting an indirect effect of Hh signaling on tumor-initiating cells. Furthermore,
paracrine Hh activation in host-derived stromal cells leads to increased tumor growth
(19-21) and is necessary to support the growth of stromal-dependent B cell lymphoma and
multiple myeloma (22). Increased intra-tumoral expression of Hh target gene G/i2increased
production of osteoclast (OC) activating factor PTHrP in breast cancer cells, linking Hh
signaling with tumor-induced osteolysis (23). However, in certain breast cancer cell lines
that are relatively resistant to Hh signaling modulation, G/i2 expression can be induced
through TGFp signaling independent of Hh resulting in enhanced osteolysis (24). Together
these studies provide a strong rationale for evaluating Hh signaling as a therapeutic target
for cancer and metastasis.

The Hh pathway is critical to osteoblast (OB) differentiation and chondrocyte proliferation
during embryonic endochondral bone development (25, 26). Targeted disruption of several
Hh pathway genes result in profound effects on bone development (27-29). Postnatal
interruption of the Hh pathway leads to trabecular bone abnormalities and disrupted long
bone formation (30, 31). The effects of Hh signaling interruption on adult bone have not
been fully elucidated. Mice with conditional deletion of Pfch1 in mature OB using
osteocalcin-Cre show increased production of RANK ligand (RANKL) by OB which
indirectly increased OC activity and bone loss (32). However, mice with heterozygous
germline deletion of Pfchl (Ptchi+/-) show increased bone mass, with enhanced bone
formation being dominant to increased in vivo OC number and resorption (33). The
discrepancy between the two models remains to be fully resolved. Interestingly, direct
effects of Hh pathway signaling on OC have not been reported.
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We hypothesized that disruption of Hh signaling would block tumor growth both directly by
targeting intratumoral survival signaling and indirectly by altering the host
microenvironment. Indeed, OC and OB-derived proteins such as TGF can enhance growth
of bone-invading tumor cells (34), and we propose that the effects of Hh signaling in both
tumor and host cells may enhance metastatic growth. In this study we demonstrate that
disruption of the Hh pathway in adult non-tumor bearing mice increased trabecular bone in
part through reduced OC function and identified a cell-autonomous role of Hh signaling
during osteoclastogenesis. Employing pharmacologic inhibitors, we show that disruption of
the Hh pathway decreased subcutaneous and bone tumor burden /n vivo. Mice heterozygous
for Ptch, resulting in systemically enhanced Hh signaling, also had increased tumor burden.
Moreover, Hh inhibitors decreased subcutaneous tumor burden in a cell line that is resistant
to direct cytotoxic effects due to reduced Smo expression (24), demonstrating indirect anti-
tumor effects of targeting cells of the host microenvironment. Interestingly, MDA-MB-231
cells produce Hh ligands and knockdown of SHH decreased tumor growth through paracrine
effects on stromal cell production of growth factors including IL-6. Thus, Hh inhibitors
represent promising therapeutics due to their ability to target both tumor cells and the pro-
tumor microenvironment.

Materials and Methods

Animals

Cells

Female BALB/c mice and athymic nude mice (NCr-nude) were obtained from Taconic
(Hudson, NY). Ptch+/- (12) and Smdl/fl (25) mice on C57BI/6 and mixed backgrounds
respectively, were previously described. Animals were housed under pathogen-free
conditions according to the guidelines of the Division of Comparative Medicine,
Washington University. The animal ethics committee approved all experiments.

4T1 BALB/c murine breast cancer (35) and B16-F10 C57BI/6 murine melanoma cell lines
(36) were purchased from the American Type Culture Collection and modified to express
firefly luciferase as previously described. A bone metastatic variant of MDA-MB-231,
described in (37), was a kind gift of T. Guise (Indiana University). Low passage stocks were
utilized and regularly tested for mycoplasma and maintenance of growth characteristics.

Drug compounds and dosing

The following drugs were used as indicated: cyclopamine (LC Labs, Woburn, MA),
tomatidine (Sigma, St. Louis, MO), GDC-0449 (provided by Dr. Jim Janetka, Washington
University), and LDE225 (provided by Novartis Pharmaceuticals). Cyclopamine (25mg/kg)
was administer per oral gavage twice daily for 11-14 days as previously described (17);
LDE225 (20mg/kg) once daily for 21 days orally.

Micro—computed tomography

Post-mortem, tibiae and femurs were scanned (wCT-40; Scanco Medical) and evaluated as
described previously (36).

Bone histology and in vitro OC quantification

Decalcified and paraffin embedded sections were stained with H&E or TRAP. Images were
taken with an Eclipse TE300 inverted microscope (Nikon, Tokyo, Japan) using the 4x
(H&E, TRAP, in vitro OC) or 40x (actin rings, pits) objectives. Histomorphometry was
performed using BioQuant Osteo (Nashville, TN).
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Serum CTX and osteocalcin

Serum from overnight fasted mice was measured by ELISA for CTX (RatLaps,
Immunodiagnostic Systems, Scottsdale, AZ) and osteocalcin (Biomedical Technologies Inc,
Stoughton, MA) according to the manufacturer’s instructions.

Macrophage and OC generation

To generate macrophages, whole bone marrow cells were cultured in aMEM with 10% FBS
and 100 ng/ml M-CSF for 3 days. To generate OCs, macrophages were cultured in aMEM,
10% FBS, 50 ng/ml M-CSF and 50 ng/mL RANKL for 6 days (36, 38). Media was
refreshed every 2 days. Cells were fixed and stained for tartrate-resistant acid phosphatase
(TRAP) using the leukocyte acid phosphatase kit (Sigma).

Lentiviral production and infection

293T cells were transfected with plasmid of interest, pHR’8.2deltaR and pCMV-VSV-G
using Xtreme Gene 9 (Roche, Indianapolis, IN) and supernatant harvested 48 hours later.
Cells were infected with lentivirus-containing supernatant for 4 hours in the presence of 10
g/ml protamine sulfate. For ex vivo Smo excision, Smo™ macrophages were infected
with virus produced from pHR’EF-Cre-WPRE-SIN (‘CRE’) or pHR’EF-GFP-WPRE-SIN
(‘GFP?) virus in the presence of 50ng/ml M-CSF. 48 hours after infection, macrophages
were screened for excision efficiency and differentiated into OC. For SHH knockdown,
shRNA constructs in pLKOpuro vectors were obtained from the Washington University
Genome Institute and Children’s Discovery Institute RNAi Consortium. (shLacZ-
CGCGATCGTAATCACCCGAGT; shSHH-2—- GCTGATGACTCAGAGGTGTAA,;
ShSHH-3—- CATATCCACTGCTCGGTGAAA). Transduced cells were selected with 2 pg/
ml puromycin.

Quantitative reverse transcription PCR (qRT-PCR)

RNA was extracted using RNeasy Mini kit (Qiagen, Valencia, CA), treated with DNasel and
reverse transcribed using iScript (Bio-Rad, Hercules, CA). A no-RT control was included in
each assay.Quantitative PCR was performed using SsoFast EVA Green Supermix (Bio-
Rad). Experiments were performed in duplicate for both the target and the endogenous gene
(GAPDH for OC, cyclophilin for BMSC and MDA-MB-231) used for normalization.
Relative quantification of the target gene expression was calculated by the comparative
threshold cycle (Ct) method: 2-2ACt where ACt = Cttarget gene—Ctendogenous gene and

A ACt=ACtvehicle—ACttreated. See supplemental methods for primer sequences.

Actin ring and bone resorption assay

3,000 day 3 pre-osteoclasts differentiated as above were plated on bovine bone slices in 96
well plates. At day 6, actin rings and resorption lacunae were visualized as previously
described (36).

BrdU proliferation assay

2.5x10% cells/mL were plated with indicated drug concentrations. Cells were labeled with
BrdU for 24 hours and processed according to the manufacturer’s instructions (Cell
Proliferation ELISA, Roche).

Immunoblotting

50 g protein was separated on 8% SDS-polyacrylamide gels and transferred onto a PVDF
membrane and incubated with p-AKT-Substrate, p-ERK, or total-ERK rabbit antibodies
(Cell Signaling Technology, Danvers, MA), followed by horseradish peroxidase-conjugated
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anti-rabbit secondary antibody (Amersham Bioscience, Piscataway, NJ). Specific bands
were developed by enhanced chemiluminescence. Loading control was p-actin (clone AC15;
Sigma).

Tumor models

Intra-cardiac (1x10° cells) and intra-tibial (1x10% cells) tumor cell injections were
performed as previously described (36). For subcutaneous injections 1x106 (4T1 and B16)
or 2x108 (MDA-MB-231) tumor cells were injected in a 1:1 ratio with Matrigel (BD
Biosciences) as previously described (36, 38).

In vivo bioluminescence imaging (BLI)

Imaging was performed on a IVIS 100 device (Caliper Life Sciences, Hopkinton, MA) as
previously described (36), except that for subcutaneous tumor image analysis, a software-
defined contour region of interest (ROI) was used to measure total photon flux.

MTT viability assay

5,000 cells/well were plated in 96 well plates with indicated concentrations of drug. After 48
hours, 10uL MTT (Sigma) was added for 4 hours. HCl/isopropanol was added to measure
absorbance at 570nm and 630nm.

Bone marrow chimeras

Recipient mice were lethally irradiated (1000 rads). 24 hours later, 1x10° donor whole bone
marrow cells were transferred intravenously into recipient mice. After 4 weeks,
hematopoietic reconstitution with the donor genotype was confirmed by PCR of peripheral
blood and mice were challenged with the B16 tumor.

Bone marrow stromal cell (BMSC) culture

To generate BMSC, whole bone marrow of WT C57BL/6 mice was cultured in aMEM with
20% FBS for 7 days and adherent cells replated at 5x10° cells/ml. At confluence,
recombinant murine Shh (Ebioscience, San Diego, CA) or a 50:50 dilution of tumor cell
conditioned media (from 3x108 cells, 24 hours in serum-free media) was added and cultured
for an additional 72 hours in aMEM with 2.5% FBS.

Statistical analysis

Experiments were analyzed using two-tailed Student’s #test or ANOVA using Prism5
(Graphpad, LaJolla, CA). Errors bars represent SEM. Results were considered to reach
significance at p<0.05 and are indicated with an asterisk (*).

Results

Cyclopamine increased bone mass and suppressed OC function in non-tumor bearing

mice
To understand the effect of Hh signaling on adult non-tumor bearing bone, we administered
the Hh inhibitor cyclopamine to adult mice by twice daily by oral gavage for 14 days and
observed increased trabecular bone volume and thickness (Fig. 1A-D). Despite a non-
significant increase in OC number (Fig. 1E), serum CTX, a marker of osteoclastic bone
resorption, was significantly decreased with cyclopamine (Fig. 1F). Serum osteocalcin, a
marker of osteoblast activity, showed a non-significant reduction after Hh inhibition (Fig.
1G). Thus, pharmacologic inhibition of Hh signaling led to increased trabecular bone mass,
with evidence of decreased OC function /n vivo.
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Disruption of Hedgehog signaling inhibited ex vivo osteoclastogenesis in a cell-
autonomous manner

To test whether Hh signaling had direct effects on OC formation, we disrupted Smoothened
by transducing Smd™/f bone marrow macrophages (BMMs) with a lentivirus expressing
Cre-recombinase (Fig. S1A) and subjected the cells to osteoclastogenesis. We observed a
decrease in OC size and number after Smo excision compared to GFP transduced control
cells (Fig. 2A-B). Furthermore, pharmacological inhibition of Smo with cyclopamine (Fig.
S1B) or LDE225 (Fig. 2C) resulted in a dose-dependent decrease in TRAP+ multinucleated
OC formation. Likewise, LDE225 reduced the mRNA abundance of the Hh target G/iZ and
of the OC differentiation markers NFATc1 (Nfatfc1), B3 integrin (/fgb3), and cathepsin K
(Ctsk) (Fig. 2D). Furthermore, treatment of preOCs with recombinant murine Shh increased
MRNA transcripts of G/i1, Nfatcl, and /fgbh3, suggesting that Hh stimulation enhanced
signaling pathways involved in OC differentiation (Fig. 2E). These results suggest that Hh
signaling through Smois critical to normal OC formation in a cell-autonomous fashion.

Enhanced Hh signaling due to Ptchl-heterozygosity increased OC function in a cell-
autonomous manner

Adult Ptchi+/- with enhanced Hh signaling, had elevated serum CTX, indicating increased
bone resorption (Fig. 3A). Interestingly, subjecting equal numbers of WT and Pichi+/-
BMMs to osteoclastogenesis, Pichi+/— OC formed increased actin rings and resorption
lacunae when plated on bone (Fig. 3B-C), but showed no difference in osteoclastogenesis on
plastic (Fig. S2A). We observed increased proliferation of Ptchi+/- BMMs (Fig. 3D) and
increased levels of phospho-AKT substrates (p-AKTS) in day 3 Ptchi+/- pre-OC (Fig. 3E).
However, we did not observe a difference in the expression of phosphorylated ERK in
BMMs (Fig. S2B) nor in rate of apoptosis of Pichi+/- OCs (Fig. S2C). From these data we
conclude that enhanced Hh signaling promoted macrophage proliferation and OC function.

Hedgehog pathway inhibition with cyclopamine decreased bone metastases in a murine
breast cancer model

To test whether Hh inhibition would reduce bone tumor burden, we challenged
immunocompetent BALB/c mice with osteolytic murine 4T1 mammary breast carcinoma
cells (35). Cyclopamine significantly decreased tumor burden in bone after either intra-
cardiac (Fig. 4A-D) or intra-tibial (Fig. 4E) injection. These data demonstrate that Hh
antagonism decreased bone metastatic tumor growth in immunocompetent mice.

Smo antagonists exert direct cytotoxic effects on 4T1 breast cancer cells

In vitro analyses demonstrate that 4T1 tumor cells have intact Hh signaling pathways that
are responsive to Smo antagonism. Cyclopamine decreased the viability and proliferation of
4T1 cells in a dose-dependent manner (Fig. 5 A-B). mRNA expression of the downstream
target G/i1 was also significantly decreased with cyclopamine (Fig. 5C). The small molecule
Smo inhibitor GDC-0449 (Fig. S3A) also decreased 4T1 viability, while tomatidine, an
inactive structural analog of cyclopamine, had no effect (Fig. S3B). Compared to vehicle
controls, subcutaneous growth of 4T1 cells in Balb/c mice was significantly reduced by
cyclopamine (Fig. 5D). These data are consistent with a direct inhibition of tumor growth,
however the specific contribution of host-targeted Smo antagonism cannot be evaluated in
this model.

Enhanced Hh signaling due to Ptchl-heterozygosity indirectly enhanced tumor growth

To examine the possibility that Hh signaling may play a role in various tissues through
mechanisms independent of direct anti-tumor actions, we evaluated tumor growth in Pichi+/
- mice. Following intra-cardiac injection of osteolytic B16 cells into immunocompetent
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C57BI/6 mice, metastatic bone tumor burden was significantly increased in Ptch1+/- mice
compared to WT littermates (Fig. 6A-D). We also observed an increase in subcutaneous B16
tumor burden in PtchI+/- mice (Fig. 6E), suggesting that the tumor-promoting effects of
enhanced Hh signaling in the host are not specific to the bone environment. To test whether
this was due to cells of hematopoietic origin (including myeloid and immune cells), we
established radiation chimeras of WT and Ptchi+/- recipient mice reconstituted with
reciprocal WT or Pfchi+/- bone marrow. In both WT and Ptch1+/- recipients,
reconstitution with Ptchi+/- hematopoietic cells increased B16 subcutaneous tumor growth
compared to reconstitution with WT bone marrow (Fig. 6F-G). Flow-cytometry showed no
significant differences in the extent of hematopoietic reconstitution (Fig. S4A-C). These data
suggest that host Hh signaling, in part through hematopoietic cells, influenced tumor growth
indirectly through the microenvironment, independent of direct effects on tumor cells.

MDA-MD-231 breast cancer cells are resistant to direct cytotoxic effects of Smo

antagonists

MDA-MB-231 human breast cancer cells are reported to have non-detectable levels of Smo
transcripts and to be resistant to killing by Smo antagonists (7, 39). In agreement, we did not
observe significantly decreased viability even at micromolar concentrations of LDE225 (Fig.
7A). Reports of cytotoxicity in sensitive tumor cell lines are in the nanomolar range (40),
thus demonstrating relative resistance of this tumor to in vitro cytotoxic effects.
Furthermore, LDE225 treatment did not decrease the expression of Hh target genes PTCH1
or GL/2in MDA-MB-231 cells (Figs. SSA-B). These data suggest that MDA-MB-231 cells
are resistant to direct effects of pharmacologic Hh inhibition, allowing for a system in which
to examine the microenvironment-targeted effects of Smo antagonists.

Hh signaling in host microenvironment cells influence tumor growth in vivo

To evaluate the roles of Hh inhibition directly on cells present in the tumor
microenvironment, subcutaneous growth of MDA-MB-231 Hh inhibition ‘resistant” tumor
cell lines was evaluated. While the decreased growth of Hh inhibition “sensitive’ 4T1 cells
could be attributed to direct cytotoxic effects on the tumor cells (Figs. 4-5), effects of Smo
antagonists on growth of ‘resistant” MDA-MB-231 tumors would be specifically due to
modulation of the host microenvironment. In nude mice, subcutaneous growth of MDA-
MB-231 cells was significantly reduced by LDE225 (Figure 7B), demonstrating that Hh
inhibition isolated to host cells can modulate tumor growth.

Tumor-derived Sonic hedgehog increased tumor growth through effects on the
microenvironment

Although MDA-MB-231 cells are unresponsive to canonical Hh pathway stimulation, their
production of Hh ligands, particularly SHH (Fig. 7C), could stimulate Hh signaling in
surrounding tissues in a paracrine fashion. To investigate the effects that tumor-produced Hh
ligands have on the microenvironment, SHH expression was decreased in MDA-MB-231
cells by approximately 70% using two lentivirally-expressed shRNAs (Fig. 7D). Following
knockdown, cells maintained in vitro proliferation rates similar to parental cells (Fig. S5C).
In vivo, MDA-shSHH-2 and MDA-shSHH-3 formed significantly smaller subcutaneous
tumors than parental or control MDA-shLacZ tumors, demonstrating that tumoral
production of Hh ligands can increase growth of tumors that fail to respond to canonical Hh
stimulation in an autocrine signaling (Fig. 7E).

Stromal cells within the microenvironment produce a variety of tumor-supporting growth
factors. To evaluate the effects of tumor-derived SHH on stromal cells, we added
conditioned media (CM) from parental MDA or MDA-shLacZ cells to murine bone marrow
stromal cells (BMSC) and found that increased transcription of G/ to similar levels as
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recombinant Shh (Fig. S5D). In contrast, CM from MDA-shSHH-2 or MDA-shSHH-3
failed to induce BMSC G/i1, suggesting that Hh signaling was blunted. BMSC production of
IL-6, a pro-tumor and pro-osteoclastogenic factor, was increased by recombinant Shh (Fig.
7F). CM from parental MDA or MDA-shLacZ further induced IL-6 transcription (Fig. 7F)
and secretion (Fig. S5E) in BMSC, while that of MDA-shSHH-2 or MDA-shSHH-3 cells
induced it to a lower extent. While tumor cells produce an abundance of factors that affect
numerous stromal cells signaling pathways, this data suggests that BMSC production of I1L-6
is due in part to stimulation of the Hh pathway. These data suggest that Hh inhibition in host
microenvironment cells can reduce tumor burden indirectly even when tumor cells
themselves are resistant to direct Hh inhibition.

Discussion

While the majority of current pharmaceuticals used in the treatment of cancer directly target
tumor cell growth and survival, a growing body of evidence has demonstrated that many
components of the host microenvironment are critical to tumorigenesis and represent
additional therapeutic targets. Thus, therapeutic manipulation of this pathway has the
potential to decrease tumor growth both through direct and indirect mechanisms.
Intratumoral Hh pathway signaling has been shown to be vital for the growth and
maintenance of many tumor types (3, 4). However, a number of tumors have been shown to
be refractory to the direct effects of pharmacologic Hh inhibition with Smo antagonists due
to natural or acquired mutations in Smo (24, 41) or amplification of downstream effector
Gli2 (40, 42).

Previous reports have shown that tumor growth was blunted when paracrine Hh signaling
was inhibited in stromal components of the microenvironment even when the tumor itself is
Smo-independent (19, 22, 43). The Hh inhibitor GDC-0449 induced dramatic reductions in
the growth of tumors with activating Hh mutations (44, 45). Interestingly, GDC-0449 has
little direct effect on tumors without Hh mutations; however, it significantly blocked Hh
signaling in tumor stroma and decreased tumor burden (46). In this report, we found that the
Smo antagonist LDE225 had potent in vivo anti-tumor activity in MDA-MB-231, an
aggressive breast tumor cell line relatively resistant to Hh pathway modulation due to
undetectable levels of Smo (7, 39). Furthermore, we demonstrate that tumoral production of
the Hh ligand SHH supported growth of subcutaneous tumors in vivo. We provide evidence
that this effect is due to paracrine stimulation of the Hh signaling pathway in stromal cells,
resulting in the increased production of growth factors, including, but not limited to, IL-6.
We also show that enhanced Hh signaling in the host environment of Ptchi+/- mice
promoted growth of bone metastases and subcutaneous tumors, in part through contributions
of hematopoietically-derived cells, including but not limited to, immune cells and OC.
While the mechanisms underlying the described phenotypes still need to be further
elucidated, these data underscore a role for Hh inhibition in cells of the microenvironment,
even in Hh unresponsive tumor cells, and highlights the potential for increased clinical
utility of Hh inhibition in cancer treatment.

In addition to its role in tumorigenesis, Hh signaling is crucial to proper development and
maintenance of many host tissues including bone (25, 26). However, studies into the role of
Hh signaling in post-natal bone have yielded disparate results. Enhancing Hh signaling
through germline PtchI-heterozygosity resulted in increased bone density (33), while
conditional homozygous deletion of Pfc/h1 in mature OB decreased bone density (32). Both
groups observed increases in bone formation and resorption, however the effects of Hh
signaling on the OC were attributed to be indirect via increased OB expression of RANKL.
Here we report a previously unrecognized cell-autonomous role for Hh signaling in the
differentiation of bone-resorbing OCs. We found that genetic and pharmacological Hh
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inhibition decreased OC differentiation /n vitro. Furthermore, transcription of target gene
Gli1 and key genes involved in OC differentiation (Nfatcl, /tgb3, and Ctsk) were reduced
with Hh inhibition. These results are in agreement with a recent report demonstrating that
RAW cell differentiation into OCs could be inhibited with cyclopamine (47). Ptchi+/-
mice, where Hh signaling is enhanced, are known to have increased bone mineral density
and OB activity (33). Concurrently, we observed that Pic/hZ+/— mice also had enhanced OC
activity in vitro. Together these data suggest a direct, cell-autonomous role for Hh signaling
in the OC.

We report that systemic Hh inhibition with cyclopamine increased bone density of adult WT
mice, while a previous study found decreased bone density (33). Several differences
between treatment protocols (i.e. administration and dosing), and importantly, recognized
gender differences in bone biology, may explain these seemingly paradoxical results. The
previous study dosed male mice with 10mg/kg cyclopamine intraperitoneally once a day
(33) while we used 25mg/kg orally twice daily in females. Twice daily administration and/or
increased drug dosage could result in more continuous or potent inhibition of Hh and OC
function, leading to increased bone density. Similarly, continuous administration of
parathyroid hormone (PTH) has catabolic effects on bone while intermittent dosing is
anabolic (48). Hh signaling in bone homeostasis seems tightly regulated by the strength of
signaling, as suggested in discrepant results between heterozygous (33) and homozygous
loss of Prch1 (32). Overall our results and those of others (32, 33) suggest that level and
regulation of Hh signaling in the bone microenvironment is important to properly regulate
the extent of bone formation and resorption occurring under non-pathologic conditions.

As OC and tumor cells are both known to produce growth factors that support the activity of
the other, the bone microenvironment is a hotspot of tumor metastasis, known as “the
vicious cycle” (34). Thus, blunting tumor-driven manipulation of bone remodeling and
turnover can indirectly decrease the expansion of tumor in bone. Here we demonstrate that
mice treated with cyclopamine had decreased tumor burden in bone. However, as
subcutaneous tumor growth was also decreased, the anti-tumor activity of Smo antagonists
was due at least partially to non-bone cell effects, including those directly on tumor cells and
on host stromal cells.

In conclusion, our data demonstrate that components of the Hh signaling pathway are
promising therapeutic targets for cancer as they have the ability to decrease tumor growth
both by exerting direct anti-tumor effects and by making the host microenvironment less
hospitable to tumors. Hh inhibition has now been shown to act on a variety of host
microenvironment cells, including stroma, hematopoietic cells and vasculature (49, 50) to
contribute to the overall therapeutic effect. In addition to these effects on solid tumors,
targeting the Hh pathway is a particularly attractive target for the treatment of bone
metastases as it may prove beneficial in interrupting the vicious cycle of OB, OC and tumor
cells and effectively decrease both tumor burden and tumor-associated osteolysis, which are
linked to high rates of mortality and morbidity. As several small-molecule Hh signaling
inhibitors are currently being clinically evaluated for efficacy in a variety of tumor types,
their effect on Hh signaling in cells of the tumor microenvironment warrants active
investigation.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cyclopamine increased bone mass and suppressed OC function in non-tumor bearing
mice

8-week-old female C57BI/6 mice treated with vehicle or cyclopamine for 14 days (n=7/
group). A-B) uCT analysis for calculation of trabecular bone volume and trabecular
thickness of tibiae C-E) Histomorphometry of tibiae stained for OC marker TRAP (red) to
calculate: D) Trabecular bone volume and E) OC number (ns, p=0.28). F) Serum CTX and
G) Serum osteocalcin (ns, p=0.37).
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Figure 2. Disruption of Hedgehog signaling inhibited ex vivo osteoclastogenesisin a cell-
autonomous manner

A) Smodf bone marrow derived macrophages were lentivirally infected with Cre-
recombinase or GFP control to delete Smoothened, differentiated into OCs and stained with
TRAP. B) Quantification of above OC area per total area on day 6. C) TRAP staining of OC
differentiated in the presence of vehicle or LDE225 for 6 days. D) Treatment with 1uM
LDE?225 decreased G/i1, Nfatcl, Itgb3, and Ctsktranscripts by gRT-PCR on days 3 and 5 of
OC differentiation. Data normalized to gene expression of day 1 vehicle treated
macrophages. E) Day 3 preOC treated with 1pg/ml recombinant murine Shh for 24 hours
had increased levels of G/i1, Nfatcl, and /tgb3 by qRT-PCR.
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Figure 3. Enhanced Hedgehog signaling due to Ptch1l heter ozygosity increased OC function in a
cell-autonomous manner

A) Serum CTX was increased in Pichl+/- mice compared to WT littermates (n=7/group).
B) Increased actin ring formation (top) and bone resorption lacunae (bottom) in Pichi+/-
OC differentiated on bovine bone slices for 6 days. C) Quantification of resorption lacunae
area. D) Proliferation of Pfchi+/— and WT macrophages in response to 100 ng/mL MCSF
by BrdU incorporation assay. E) Immunoblotting of p-AKT substrates and p-actin of
Ptchi+/- and WT day 3 pre-OC starved for 1 hour and stimulated with 50 ng/mL MCSF or
50 ng/mL RANKL for 30 minutes.

Cancer Res. Author manuscript; available in PMC 2013 May 21.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Heller et al.

Page 16

A 4T1: Intra-cardiac B 4T1: Intra-cardiac
Bioluminescent imaging day 9 Tumor burden in femurs/tibiae

’g & 25 : *
b= ) <O Vehicle
3 o3t % 2.04 “® Cyclopamine
z 815 gt
-2 S £ 1.0 5
B °
i é £ 05
o
& Day2 Day7 Day9
Vehicle Cyclopamine
C .. . D, .. , E,.. -
4T1: Intra-cardiac 4T1: Intra-cardiac 4T1: Intra-tibial
_Tumor burden in tibiae__ Tumor volume in tibiae Tumor burden in tibiae

3
2 15 *
g0, e’o;‘ | O Vehicle
g 0 -I- ® ‘o 4 Cyclopamine %
S g™ o
2o * @
3 205
S o4 g

S VAR EMiE 2 o] g

d o =5 . .

o . Vehicle Cyclopamine Day2 Day7 Day9

TN 4
Vehicle Cyclopamine

Figure 4. Hedgehog pathway inhibition with cyclopamine decr eased bone metastasesin a murine
breast cancer model

A-D) Balb/c mice treated with vehicle (n=6) or cyclopamine (n=10) starting 1 day prior to
left ventricular injection of 4T1. A-B) Tumor burden in femurs and tibiae as measured by in
vivo bioluminescence (BLI). C-D) Histomorphometric analysis of tumor volume per total
volume in tibiae by H&E on day 9. M=marrow; T=tumor. E) Cyclopamine treatment
beginning on day -1 also decreased tumor burden following direct intra-tibial inoculation of
4T1 cells as measured by BLI.
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Figure 5. Smo antagonists exert direct cytotoxic effectson 4T 1 breast cancer cells
4T1 cells treated for 24 hours with cyclopamine had decreased: A) viability as measured by
MTT assay, B) proliferation as measured by BrdU incorporation, and C) expression of G/i1
by gRT-PCR (10uM cyclopamine). D) Tumor weight on day 11 after subcutaneous injection

of 4T1 cells into WT Balb/c mice after vehicle or cyclopamine (n=9/group) treatment

starting on day -1.
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Figure 6. Enhanced Hh signaling due to Ptchl-heterozygosity indirectly enhanced tumor growth
A-D) Following intra-cardiac injection of B16 cells, tumor burden was increased in Pich1+/
- (n=6) mice as compared to WT littermates (n=5) by (A-B) BLI and (C-D)
histomorphometric analysis of H&E stained tibiae on day 12. M=marrow; T=tumor. E)
Tumor weight on day 11 after subcutaneous injection of B16 cells (WT, n=4; Pichi+/-,
n=5). F-G) B16 subcutaneous tumor burden by BLI on day 14 in WT and Prchi+/-
reciprocal bone marrow chimeras. F) Subcutaneous tumors of WT recipients of Ptchi+/-
bone marrow (n=5) compared to recipients of WT bone marrow (n=>5) (p=0.3009). G)
Ptchi+/- recipients reconstituted with Pfch1+/- bone marrow (n=5) showed a trend toward
increased tumor growth compared to those receiving WT bone marrow (n=4) (p=0.0760).
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Figure 7. Tumor-derived Sonic hedgehog increased tumor growth through effectson the
microenvironment

A) Viability of MDA-MB-231 human breast cancer cells is not decreased by LDE225
treatment in vitro as assayed by MTT. B) Subcutaneous growth of MDA-MB-231 in nude
mice treated with LDE225 (n=6) or vehicle (n=4) starting day -2. C) MDA-MB-231
expression of Hh ligands relative to 293T cells by gRT-PCR. D) Expression of SHH by
gRT-PCR following lentiviral-based shRNA knockdown of control LacZ (shLacZ) or SHH
(2 independent shRNAs: shSHH-2 and shSHH-3) in MDA-MB-231 cells as compared to
parental cells. E) Subcutaneous tumor growth of MDA-MB-231 parental (n=7), -shLacZ
(n=8), -shSHH-2 (n=7) and —shSHH-3 (n=8) cells in nude mice. Repeated measures
ANOVA: p<0.05: parental vs. shSHH-2; parental vs. shSHH-3; shLacZ vs shSHH-3.
shLacZ vs shSHH-2 p=0.0632. F) Murine bone marrow stromal cell (BMSC) expression of
/16 by qRT-PCR following 72-hour culture with 1ug/ml Shh or conditioned media from
MDA-MB-231 -parental, -shLacZ, -shSHH-2 or —shSHH-3 tumor cells. * indicates p<0.05
vs. vehicle treated BMSC; lines (---) designate p<0.05 between groups.
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