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Prelude: Medical Simulations
Phase Field Approaches to Fracture

The aim of ”RealTCut” is to devise real-time numerical methods for
the simulation of cutting. (Courtecuisse et al., 2014)

These methods are aimed at surgical training, which has the potential
to help surgeons improve their skills without endangering patients.

Here, we are more interested in predictive and accurate simulations. . .

We have some thoughts on phase field approaches to model fracture
of ”incompressible” soft tissues. (Gültekin et al., 2016)
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Towards Real-Time Multi-Scale Simulation of Cutting
Phase Field Approaches to Fracture
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Prelude: Smeared Crack Approaches
Phase Field Approaches to Fracture

The phase field approaches to fracture
Based on energy minimization with both displacement and crack path
(Francfort & Marigo, 1998)
Use a continuous scalar field to denote the crack (Bourdin et al., 2008)
Able to predict crack nucleation/branching without extra input
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Cons:
High computational cost
Polyconvexity of the functional
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Outline

Phase Field Formulation in General Context

Phase Field Formulation with Incompressibility

Impelementation on FEniCs
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Small Strain Measures
Phase Field Formulation in General Context

Let ψ[ε(u)] be the strain energy density which depends on the strain

ε(u) := 1
2
(
∇u +∇uT

)
as

ψ(ε) := λ

2 (tr ε)2 + µ‖ε‖2

Note that we exclude large strain measure, although most
phenomenological models are based on hyperelastic formulation.
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Variational Formulation of Fracture
Phase Field Formulation in General Context

The variational formulation for fracture of the solid consists in finding
the minimizer of the following potential:

Π[u, Γ] :=
∫

Ω\Γ
ψ[ε(u)] dΩ−

∫
Ω

b · u dΩ−
∫
∂N Ω

tN · u dΓ + gc |Γ|

among all u : R2 → R2 that are bounded deformation functions of Ω
and that satisfy

u = uD, on ∂DΩ.

Γ = Γ(u) ⊂ Ω is the set of discontinuities of u. |Γ| denotes the length
of Γ.

But it is not easy to search among all possible Γ’s for minimization. . .
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Phase Field Regularization
Phase Field Formulation in General Context

We define a continuous scalar field (d) to denote the crack.

We introduce the crack length functional, which takes the following
form:

Γ`[d ] :=
∫

Ω

(
d2

2` + `

2∇d · ∇d
)

dΩ,

where ` is a length scale such that when `→ 0, the regularized
formulation Γ-converges to that with explicit crack representation.
(Dal Maso et al., 2005)

d : Ω→ [0, 1]: In particular, regions with d = 0 and d = 1 correspond
to “perfect” and “fully-broken” states of the material, respectively.
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Regularized Variational Formulation of Fracture
Phase Field Formulation in General Context

We regularize the functional by means of the phase field:

Π`[u, d ] :=
∫

Ω
ψ[ε(u), d ] dΩ−

∫
Ω

b · u dΩ−
∫
∂N Ω

tN · u dΓ

+ gc

∫
Ω

(
d2

2` + `

2 |∇d |2
)

dΩ.

Here ψ(ε, d) is the strain energy density degraded by the phase field
such that ψ(ε, 0) = ψ0(ε) and that ψ(ε, d1) ≥ ψ(ε, d2) if d1 < d2.

Now we look for various ways to degrade the strain energy density. . .
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Popular Phase Field Models (A)
Phase Field Formulation in General Context

Model A: This is the original model proposed for similar
formulations. It is convenient in that ψ is analytic in both d and ε.
(Bourdin et al., 2008)

ψ = (1− d)2ψ+ + ψ−, σ = ∂ψ

∂ε
,

ψ+ = λ

2 (tr ε)2 + µ‖ε‖2,

ψ− = 0.
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Popular Phase Field Models (B)
Phase Field Formulation in General Context

Model B: This model assumes that both volumetric expansion and
deviatoric deformation contribute to crack propagation but not
volumetric compression. (Amor et al., 2009)

ψ = (1− d)2ψ+ + ψ−, σ = ∂ψ

∂ε
,

ψ+ = (λ+ 2µ/3)〈tr ε〉+1 + 2µ dev ε,
ψ− = (λ+ 2µ/3)〈tr ε〉−1.
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Popular Phase Field Models (C)
Phase Field Formulation in General Context

Model C: This model postulates that the stress degradation is due to
a combination of tensile loading and volumetric expansion. (Miehe et
al., 2010)

ψ = (1− d)2ψ+ + ψ−, σ = ∂ψ

∂ε
,

ψ+ = λ〈tr ε〉+1 + 2µ
3∑

i=1
〈εi〉+ni ⊗ ni ,

ψ− = λ〈tr ε〉−1 + 2µ
3∑

i=1
〈εi〉−ni ⊗ ni .
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The Weak Form
Phase Field Formulation in General Context

Find (u, d) ∈ H1(Ω;R2)× H1(Ω) with u = uD on ∂DΩ, such that for
all (w , q) ∈ H1(Ω;R2)× H1(Ω) with w = 0 on ∂DΩ,
δΠ`[(u, d), (w , q)] = 0, or equivalently:∫

Ω
σ[ε(u), d ] : ε(w) dΩ =

∫
Ω

b ·w dΩ +
∫
∂N Ω

tN ·w dΓ,∫
Ω

[
2dqψ+(ε) + gc

(d q
`

+ `∇d · ∇q
)]

dΩ =
∫

Ω
2qψ+(ε) dΩ.

supplemental
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The Tangent Stiffness Matrices
Phase Field Formulation in General Context

We normally solve for the phase field formulation with iterations
between the elasticity half problem and the phase field half problem.

The tangent stiffness matrices are then given by:

KPQ =
∫

Ω
ε(NP) : A[ε(u), d ] : ε(NQ) dΩ,

KPQ =
∫

Ω
2φPψ+(ε)φQ dΩ + gc

∫
Ω

[
φPφQ
`

+ `∇φP · ∇φQ

]
dΩ

where the fourth-order tensor

A[ε(u), d ] := ∂σ(ε, d)
∂ε

∣∣∣∣
ε=ε(u)

is the tangent elastic modulus tensor.
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Outline

Phase Field Formulation in General Context

Phase Field Formulation with Incompressibility

Impelementation on FEniCs
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Regularized Variational Formulation of Fracture
Phase Field Formulation with Incompressibility

Let
Su :=

{
u ∈ H1

(
Ω;R2

)∣∣∣u(·) = uD(·) on ∂DΩ
}
,

Sp := L2(Ω),
Sd := H1(Ω).

We aim to minimize the following potential: (Wheeler et al., 2014)

Π`[u, p, d ] :=
∫

Ω
ψDev [ε(u), d ] dΩ +

∫
Ω

(
−p2

2λ + p div u
)

dΩ

−
∫
∂N Ω

tN · u dΓ−
∫

Ω
ρb · u dΩ + gc

∫
Ω

(
d2

2` + `

2 |∇d |2
)

dΩ.

supplemental
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The Strong Form
Phase Field Formulation with Incompressibility

The Euler-Lagrange equations read:

divσDev +∇p + b = 0, in Ω,(
− 1
λ

p + div u
)

= 0, in Ω,

−∂ψ
Dev

∂d − gc
`

(
d − `2∆d

)
= 0, in Ω,(

σDev · n
)
− tN = 0, on ∂NΩ,
∂d
∂n = 0, on ∂Ω,

u = uD, on ∂DΩ.
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The Weak Form
Phase Field Formulation with Incompressibility

The weak form can be stated as: Find (u, p, d) ∈ Su ×Sp ×Sd
such that for all w ∈ Vu, p̃ ∈ Vp, and q ∈ Vd :∫

Ω
σDev [ε(u), d ] : εDev (w) dΩ +

∫
Ω

p div w dΩ

=
∫
∂N Ω

tN ·w dΓ +
∫

Ω
b ·w dΩ,∫

Ω

(
− 1
λ

p + div u
)

p̃ dΩ = 0,∫
Ω

[
2dqψDev

+ (ε) + gc

(d q
`

+ `∇d · ∇q
)]

dΩ =
∫

Ω
2qψDev

+ (ε) dΩ.
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Outline

Phase Field Formulation in Dynamic Context

Phase Field Formulation in General Context

Phase Field Formulation with Incompressibility

Impelementation on FEniCs
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Impelementation on FEniCs
Features

The FEniCS Project is a collection of free software with an extensive
list of features for efficient solution of differential equations.
energy_elastic = psi(epsdev(u_), d_) * dx
...
Residual_u = derivative (energy_total, v_, v_t)
Jacobian_u = derivative (Residual_u, v_, v)

We use the FEniCS project and PETSc software packages:
“Rigid Punch Incompressible Elasticity” by Jack S. Hale
“FEniCS Variational Damage and Fracture” by Corrado Maurini
Available online at https://bitbucket.org/cmaurini/
“Phase Field Models with Incompressibility” by Vahid Ziaei-Rad
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Conclusion

We used phase field approach toward the simulation of cutting soft
tissues.

We discussed pros and cons of some popular phase field models.

We developed a model for incompressible materials in small strain
measure.

We introduced some features of our FEniCS implementation.
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Supplemental: The variations

Prelude: Explicit Crack Approaches
Phase Field Approaches to Fracture

The explicit crack approaches
Family 1: To regenerate/adjust the mesh
Family 2: To introduce enrichment for the displacement discontinuity

c

b

a
j

Cons:
Need to track the complicated geometry of the evolving crack
Need extra input to predict complex phenomena

The Smeared Crack
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Supplemental: The variations

Phase Field Formulation in General Context
The first variation

Taking the first variation yield:

δΠ`[(u, d), (w , q)] := d
dεΠ`[u + εw , d + εq]

∣∣∣∣
ε=0

=
∫

Ω
σ[ε(u), d ] : ε(w) dΩ−

∫
ΓN

tN ·w dΓ−
∫

Ω
b ·w dΩ

−
∫

Ω
2(1− d)qψ+(ε) dΩ + gc

∫
Ω

(d q
`

+ `∇d · ∇q
)

dΩ

where
σ := ∂ψ

∂ε
=
[
(1− d)2 + k

] ∂ψ+(ε)
∂ε

+ ∂ψ−(ε)
∂ε

is the Cauchy stress tensor.
The weak form
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Supplemental: The variations

Phase Field Formulation in General Context
The residuals

If we use {NP} to denote the set of basis functions for u and w , and
{φP} that for d and q, then we can write the residuals as

RP =
∫

Ω
σ[ε(u), d ] : ε(NP) dΩ−

∫
ΓN

tN ·NP dΓ−
∫

Ω
b ·NP dΩ,

RP = −
∫

Ω
2(1− d)φPψ+(ε) dΩ + gc

∫
Ω

(d φP
`

+ `∇d · ∇φP

)
dΩ.

FEniCS
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Supplemental: The variations

Phase Field Formulation in General Context
The second variation

To derive the expression of the tangent stiffness matrices, we take
another variation:

δ2Π`[(u, d), (w , q); (δu, δd)] := d
dεδΠ`[(u + εδu, d + εδd), (w , q)]

∣∣∣∣
ε=0

=
∫

Ω
ε(w) : A[ε(u), d ] : ε(δu) dΩ

+
∫

Ω
2qd ∂ψ+(ε)

∂ε

∣∣∣∣
ε=ε(u)

: ε(δu) dΩ

+
∫

Ω
ε(w) : ∂σ[ε(u), d ]

∂d δd dΩ

−
∫

Ω
2qψ+(ε)δd dΩ

+ gc

∫
Ω

[qδd
`

+ `∇q · ∇(δd)
]

dΩ.

FEniCS
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Supplemental: The variations

Popular Phase Field Models (B)
Phase Field Formulation in General Context

Model B: This model assumes that both volumetric expansion and
deviatoric deformation contribute to crack propagation but not
volumetric compression. (Amor et al., 2009)

ψ = (1− d)2ψ+ + ψ−, σ = ∂ψ

∂ε
,

ψ+ = (λ+ 2µ/3)〈tr ε〉+1 + 2µ dev ε,
ψ− = (λ+ 2µ/3)〈tr ε〉−1.

The incompressibility formulation
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