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    30.1   Introduction 

 Opportunities for microbes to establish infections are enhanced under spacefl ight 
conditions because space travel stimulates their growth (Chap.   15    ) and has a nega-
tive impact on immune functions. Indeed, it has been shown that spacefl ight affects 
lymphoid organs (Gridley et al.  2003 ; Baqai et al.  2009  )  and induces variations in 
peripheral blood leukocyte subsets (Chap.   9    ). Neutrophil, monocyte, and NK cell 
functions are affected by spacefl ight (Chaps.   10    –  12    ). The activation of T lympho-
cytes is also severely depressed under low gravity conditions (Cogoli et al.  1984  )  
because interleukin-2 (IL-2) and IL-2receptor gene expression are modifi ed, the 
delivery of the costimulatory signal to activate the B7/CD28 pathway and the pro-
tein kinase A (PKA) signaling pathway, which is a key early regulator in T cell 
activation, are hindered. Furthermore, a TH2 cytokine shift is associated with space-
fl ight. If this TH2 shift persists during long missions, it could represent a signifi cant 
clinical risk for TH2-related autoimmune diseases, allergies, hypersensitivities, and 
disease susceptibility related to diminished cell-mediated immunity. Studies on 
plasma antibody levels did not reveal signifi cant changes after short spacefl ights 
(Rykova et al.  2008  ) , but contradictory results were reported after long missions. 
Indeed, several studies (Konstantinova et al.  1993 ; Bascove et al.  2008,   2009 ; 
Guéguinou et al.  2009,   2010  )  reported increased levels of immunoglobulin while 
Rykova et al.  (  2008  )  reported normal amounts of antibodies after prolonged space 
missions. Lastly, a differential sensitivity of cellular and humoral immunity to 
spacefl ight conditions seems to exist because it was shown that the cellular, but not 
the humoral, systems are affected by short periods of fl ight. 
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 Taken together, these data demonstrate that spacefl ight-induced modifi cations of the 
immune system could have an immediate impact on mission objectives. The develop-
ment of effi cient countermeasures to combat the deleterious effects of spacefl ight on 
the immune system is therefore an area that should be considered more thoroughly 
before we undertake prolonged space voyages. Furthermore, the observations pre-
sented above are also found in the elderly (Cancro et al.  2009  )  and people subjected to 
chronic or acute stress (see Chap.   4    ). Indeed, the age-associated decline in immune 
function, which is known as immunosenescence, is characterized by a large dysfunc-
tion in innate and adaptive immune system responses (for review see Weiskopf et al. 
 2009  ) . Chronic stress reduces B and T lymphocyte responses and lowers antibody 
production (Glaser et al.  2000  ) . Acute stress induces the reactivation of latent viruses, 
decreases NK cell activity, increases interleukin-6 (IL-6) secretion, and increases neu-
trophil numbers in peripheral blood (Glaser and Kiecolt-Glaser  2005  ) . Finding coun-
termeasures to spacefl ight-associated immune alterations are therefore also of interest 
to counter immunosenescence and the effects of stress-inducing situations on Earth.  

    30.2   Effect of Combined Antioxidant Treatment 

 Increased oxidative stress, which is harmful for cells and can induce many disorders, 
has been observed after radiation exposure and is associated with spacefl ight (Stein 
and Leskiw  2000 ; Wan et al.  2005  ) . Indeed, lipopolysaccharide (LPS)-activated sple-
nocytes from mice that fl ew on the space shuttle mission STS-118 produced more 
IL-6 and interleukin-10 (IL-10) and less tumor necrosis factor (TNF)- a  than control 
mice (Baqai et al.  2009  ) . The same study showed that many of the genes responsible 
for scavenging reactive oxygen species (ROS) were upregulated after the fl ight, sug-
gesting that cells attempted to scavenge ROS produced during spacefl ight. An 
increase in the superoxide response by murine polymorphonuclear neutrophils was 
also reported even after short periods of microgravity (Fleming et al.  1991  ) . 
Furthermore, it was shown that the urinary concentration of 8-hydroxy-2 ¢ -
deoxyguanosine, a marker of oxidative damage to DNA, was higher and that red 
blood cell superoxide dismutase, an antioxidant enzyme that functions as a superox-
ide radical scavenger, was lower in astronauts after long-duration spacefl ight (Smith 
and Zwart  2008  ) . Consequently, research was undertaken to determine if antioxi-
dants could protect organisms from radiation-induced oxidative stress. Two studies 
showed that a mixture of  l -selenomethionine (SeM), vitamin C, vitamin E succinate, 
alpha-lipoic acid, and  N -acetyl cysteine improved the survival of mice after exposure 
to protons or to a potentially lethal dose of X-rays (Wambi et al.  2008,   2009  )  
(Table  30.1 ). Pretreatment of mice with this mixture of antioxidants resulted in sig-
nifi cantly higher total white blood cell and neutrophil counts in the peripheral blood 
and increased bone marrow cell counts after irradiation. Moreover, antioxidants 
increased Bcl-2 (B cell lymphoma-2, proteins regulating anti-apoptotic mechanisms) 
and decreased Bax (Bcl-associated X protein promoting apoptosis), caspase 9, and 
TGF (transforming growth factor)- b 1 mRNA expression in the bone marrow after 
X-ray irradiation (Wambi et al.  2008  ) . In mice or rats exposed to high-energy 



40730 Pharmacological Countermeasures to Spacefl ight-Induced Immune Alterations

particles radiation,  d - or  l -SeM or a combination of selected antioxidant agents, 
which included SeM, could also prevent the decrease in total antioxidants by regulat-
ing the expression of genes involved in the repair of radiation-induced DNA damage 
(Kennedy et al.  2004,   2007  ) . These data indicate that antioxidants, alone or in com-
bination, are promising countermeasures for protection against adverse biological 
effects from space radiation.   

    30.3   Nucleotides 

 Nucleotides are benefi cial for health because they positively infl uence lipid metab-
olism, immunity, and tissue growth, development, and repair (Gil  2002  ) . Rapidly 
proliferating tissues, such as those of the immune system, are not able to fulfi ll the 

   Table 30.1    Effect of countermeasures on immune parameters   

 Countermeasure  Experiment performed  Results  References 
 Antioxidants  Irradiated 

mice + antioxidants 
 –  Antioxidants prevented the 

decrease of the antioxidant status 
of animals exposed to protons or 
high-energy particles 

 Kennedy 
et al.  2007  

 Irradiated mice 
(X-rays) + antioxidants 

 – ↑ survival  Wambi et al. 
 2008   –  ↑ white blood cells and 

neutrophils in blood 
 – ↑ bone marrow cell counts 
 – ↑ Bcl-2 mRNA in bone marrow 

 –  ↓ Bax, caspase 9 & TGF- b 1 
mRNA in bone marrow 

 Nucleotides   In vitro   –  Nucleoside-nucleotide mixture 
and uridine restored splenocyte 
proliferation 

 Hales et al. 
 2002   Mouse splenocytes 

cultured under simulated 
microgravity conditions 
and stimulated with 
PHA + nucleotides 

 –  ↑ IL-1 b , IL-2 & IFN- g  with the 
nucleoside-nucleotide mixture 

  In vivo   –  RNA and uracil restored 
popliteal lymph node prolifera-
tion, PHA-induced proliferation 
of splenocytes, IL-2 & IFN- g  
production 

 Kulkarni 
et al.  2002, 
  2005  

 Hindlimb-unloaded 
mice + nucleotides 

  In vitro   –  PHA-induced proliferation of 
splenocytes restored by uridine 
and nucleoside-nucleotide 
mixture 

 Kulkarni 
et al.  2002, 
  2005  

 Mouse splenocytes cultured 
under simulated micrograv-
ity conditions and 
stimulated with 
PHA + nucleotides 
  In vivo   – ↑ proliferation  Yamauchi 

et al.  2002   Hindlimb-unloaded 
mice + nucleotides 

 – ↑ IL-2 & IFN- g  
 – ↓ corticosterone plasma level 

(continued)
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Table 30.1 (continued)

 Countermeasure  Experiment performed  Results  References 
 AHCC  Hindlimb-unloaded mice 

infected with  K. 
pneumoniae  + AHCC 

 – ↓ mortality  Aviles et al. 
 2003   –  ↑ time to death and ability to 

clear bacteria 
  –  ↑ anti-K. pneumoniae  IgG levels 

 Normally housed 
mice + AHCC 

 –  ↑ spleen cell proliferation 
induced by Con-A or LPS 

 Aviles et al. 
 2004  

 –  ↑ IL-2 & IFN- g  after Con-A 
stimulation 

 –  ↑ IL-4, IL-6 & IL-10 after LPS 
stimulation 

 –  ↑ nitric oxide production in 
peritoneal cells 

 Hindlimb-unloaded 
mice + AHCC 

 –  No effect on splenocyte 
proliferation induced by Con-A 
or LPS 

 Aviles et al. 
 2004  

 –  ↑ IL-2 & IFN- g  after Con-A 
stimulation 

 –  ↑ nitric oxide production in 
peritoneal cells 

 –  Restored peritoneal cell function 
 DHEA   In vitro    TH2 favored   Du et al. 

 2001   KLH-primed mouse 
splenocytes stimulated 
with KLH + DHEA 

 – ↑ IL-4 

 – ↓ IFN- g  

  In vitro   – ↓ IL-1, IL-2 & IFN- g   Powel and 
Sonnenfeld 
2006 

 Mouse splenocytes 
stimulated with Con-A 
and LPS + DHEA 

 – ↑ IL-10 

 –  IL-4, IL-6 & TNF- a  not affected 

  In vivo    TH1 favored   Araghi-
Niknam 
et al.  1997  

 Retrovirus infected 
mice + DHEA 

 – ↑ IL-2 & IFN- g  

 – ↓ IL-6 & TNF- a  
  In vivo   – ↑ IL-2 & IFN- g   Inserra et al. 

 1998   Old female mice + DHEA  – ↓ IL-6 & IL-10 

   Arrows  indicate up and down modulations  

needs of cell nucleotides exclusively by de novo synthesis and consequently use 
the salvage pathway that recovers nucleotides from the blood and diet. Nucleotides 
modulate the immune system (Nagafuchi et al.  1997 ; Holen et al.  2006  ) . They 
infl uence lymphocyte maturation, activation, and proliferation. Likewise, they 
affect lymphocyte subset populations in the blood and are involved in enhancing 
macrophage phagocytosis and delayed hypersensitivity as well as allograft and 
tumor responses. In addition, they contribute to the immunoglobulin response 
(Navarro et al.  1996 ; Nagafuchi et al.  1997 ; Maldonado et al.  2001  ) , which has a 
positive effect on clearing infection. The molecular mechanisms by which 



40930 Pharmacological Countermeasures to Spacefl ight-Induced Immune Alterations

nucleotides modulate the immune system are largely unknown. Nucleotides may 
infl uence protein biosynthesis as well as signal membrane transduction mediated 
by the interaction of exogenous nucleosides and their receptors. They may also 
contribute to modulating the expression of a number of genes, including those 
involved in the immune system. 

 Because nutrient absorption and metabolism appear to be altered under space-
fl ight conditions (see Chap.  29  ) , several studies have analyzed the effects of an exog-
enous source of nucleotides on immune function using ground-based models of 
microgravity. Hales et al.  (  2002  )  and Kulkarni et al.  (  2002 , 2005) have shown that the 
decreased splenocyte proliferation in response to phytohemagglutinin (PHA) under 
simulated microgravity can be restored by a nucleoside-nucleotide mixture and uri-
dine but not by inosine. This observation indicates that pyrimidines are more effec-
tive for immunoprotection of the hosts (Table  30.1 ). In vitro studies also revealed that 
cultured splenocytes secreted more IL-1 b , IL-2, and interferon (INF)- g  in the pres-
ence of a nucleoside-nucleotide mixture. In addition, Kulkarni et al.  (  2002 , 2005) 
performed in vivo studies that demonstrated that popliteal lymph node proliferation, 
PHA-induced splenocyte proliferation, and IL-2 and IFN- g  production, which are 
signifi cantly suppressed in hindlimb-unloaded mice (a ground-based model of choice 
for simulating spacefl ight conditions on Earth (Morey-Holton and Globus  2002  ) ), 
are restored by RNA and uracil. Similarly, Yamauchi et al.  (  2002  )  showed that in 
hindlimb-unloaded mice, nucleotides signifi cantly increased in vivo lymph node pro-
liferation and ex vivo lymphoproliferation response to alloantigen and mitogens, 
respectively, and IL-2 and IFN- g  production. Moreover, a lower plasma corticoster-
one level was observed in hindlimb-unloaded mice with RNA and uracil-supple-
mented diet. Thus, nucleotides and especially uracil/uridine possess immunoprotective 
effects. These molecules are therefore potential countermeasures for the observed 
immune dysfunction associated with space travel.  

    30.4   AHCC 

 Another interesting compound is the active hexose-correlated compound (AHCC). 
AHCC is an extract prepared from cocultured mycelia of several species of 
 Basidiomycete  mushrooms that contains 40% of polysaccharides ( b -glucan and acety-
lated  a -glucan which are known to have immune-stimulating effects), amino acids, 
and minerals. Despite the fact that it is not yet an approved drug, AHCC is the second 
most popular complementary and alternative medicine used by cancer patients in 
Japan. It is available to the general public without a prescription. Its legal status is that 
of a functional food. AHCC may help in the treatment of cancer. Indeed, a cohort 
study showed a signifi cantly longer no recurrence period and an increased overall 
survival rate in 113 postoperative liver cancer patients taking AHCC (Matsui et al. 
 2002  ) . Another study showed that AHCC signifi cantly enhanced cisplatin-induced 
antitumor effect (Hirose et al.  2007  ) . Several studies have shown that this product 
has also a positive effect on human and rodent immune systems, including the 
 enhancement of host resistance to infl uenza and West Nile viruses, the prevention of 
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thymic apoptosis induced by dexamethasone, the increase of natural killer cell activ-
ity, and the induction of IL-12 production (Burikhanov et al.  2000 ; Matsui et al.  2002 ; 
Yagita et al.  2002 ; Nogusa et al.  2009 ; Wang et al.  2009  ) . Consequently, it was tested 
on hindlimb-unloaded mice that present decreased resistance to bacterial infections 
( Klebsiella pneumoniae  and  Pseudomonas aeruginosa ) (Belay et al.  2002 ; Aviles 
et al.  2003  ) . Indeed, hindlimb unloaded mice showed signifi cantly increased mortality 
and reduced mean time to death, increased levels of corticosterone, reduced ability to 
clear bacteria from their organs, and delayed production of anti- P. aeruginosa  IgG 
antibodies, by comparison with controls. Aviles et al.  (  2003  )  showed that the admin-
istration of AHCC for one week before suspension and throughout the 10-day suspen-
sion period yielded signifi cant benefi cial effects for hindlimb-unloaded mice infected 
with  K. pneumoniae , including decreased mortality, increased time to death, and 
increased ability to clear bacteria (Table  30.1 ). Furthermore, mice receiving AHCC 
independent of the type of treatment (hindlimb-unloaded or normally caged) had 
higher anti- K. pneumoniae  IgG antibody levels. The same team later demonstrated 
that AHCC signifi cantly enhanced the function of the immune system in  normally 
housed mice but only enhanced the TH1 response in mice under hindlimb-unloading 
conditions (Aviles et al.  2004  )  (Table  30.1 ). Interestingly, TH1 cytokine production 
has been shown to be depressed after short- and long-duration missions on the 
International Space Station (Crucian et al.  2008  ) . Indeed, both groups of astronauts 
had a low IFN- g  to IL-10 secretion ratio on the day of landing after activation of 
peripheral blood T cells with anti-CD3 and anti-CD28 antibodies. This observation 
was confi rmed by another study performed on PHA-stimulated splenocytes from mice 
fl own on STS-108, which revealed that both IL-2 and IFN- g  were signifi cantly lower 
after the fl ight (Gridley et al.  2003  )  indicating that a shift toward the TH2 subset is 
associated with spacefl ight. AHCC also restored peritoneal cell functions that are sup-
pressed by hindlimb-unloading and increased nitric oxide production in peritoneal 
cells isolated from hindlimb-unloaded mice. Other studies showed that AHCC 
enhanced resistance to infection. In a mouse model of surgical wound infection, mice 
receiving AHCC were better able to clear bacteria from their systems than control 
animals (Aviles et al.  2006  ) . AHCC also increased immune function that resulted in a 
lower bacterial load in a murine model of intramuscular infection (Aviles et al.  2008  ) . 
In conclusion, AHCC appears to be an effi cient immunoenhancer that restores innate 
immunity, which is greatly affected by hindlimb-unloading, and consequently repre-
sents another countermeasure with great potential that warrants further investigation.  

    30.5   DHEA 

 Dehydroepiandrosterone (DHEA) is one of the major circulating adrenal cortical 
hormones in humans and many other warm-blooded animals. This hormone is 
secreted by the adrenal cortex in response to stress (Kroboth et al.  1999  ) . In the 
plasma, DHEA is predominantly present as DHEA-S that generates DHEA after 
cleavage of the sulfate group. For many years, the physiological signifi cance of 
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DHEA remained elusive. However, many studies have now shown that DHEA has 
signifi cant immune modulatory functions, exhibiting both immune stimulatory and 
anti-glucocorticoid effects (for review see Hazeldine et al.  2010  ) . DHEA-S increases 
superoxide generation in primed human neutrophils in a dose-dependent fashion, 
thereby impacting a key bactericidal mechanism (Radford et al.  2010  ) . In murine 
models, exogenous DHEA counteracts stress-induced glucocorticoid immunosup-
pression and increases the resistance of mice to viral and bacterial infections (Ben 
et al.  1999 ; Zhang et al.  1999  ) . In murine model systems of aging, DHEA appears to 
reverse the immunological defects seen as a consequence of aging. In particular, 
DHEA increases the ability of old mice to resist experimental viral and bacterial 
disease (Daynes et al.  1993 ; Kalimi and Regelson  1990 ; Straub et al.  1998  ) . DHEA 
administration also restores immune function after thermal and trauma-hemorrhage 
injury and reduces mortality rates from septic challenge (Knoferl et al.  2003  ) . In 
addition, DHEA provides protection against several diseases, including diabetes, 
oncological disorders, autoimmune disease, and chronic infl ammatory illness (Kalimi 
and Regelson  1990  ) . DHEA appears to be a potent regulator of cytokine production 
supporting the idea that this molecule acts on T cells, which is the lynch pin of the 
adaptive immune response. However, confl icting results on cytokine production in 
the presence of DHEA have been reported (see Table  30.1 ). In vitro studies (Du et al. 
 2001 ; Powell and Sonnenfeld  2006  )  showed that DHEA may be an important factor 
for increasing TH2 cytokine synthesis, which encourage vigorous antibody produc-
tion and are commonly associated with antibody responses important for resisting 
infection, and decreasing TH1 and proinfl ammatory cytokine production. However, 
DHEA has shown an opposite effect in vivo in which a TH2 downregulation (or TH1 
upregulation) associated with DHEA administration has been found in old or retro-
virus-infected mice (Inserra et al.  1998 ; Zhang et al.  1999 ; Araghi-Niknam et al. 
 1997  ) . These discrepancies may refl ect differences in assays used to determine 
DHEA effects on cytokine production or differences in animals used. Additionally, 
whereas in vitro DHEA is protected from biomodifi cations, in vivo DHEA adminis-
tration could lead to rapid clearance from the blood and conversion to other steroids 
in peripheral tissue, which can affect T cells differently from DHEA. Despite these 
contradictory data, DHEA seems to be an interesting countermeasure to fi ght the 
effects of spacefl ight-associated stress on the immune system.  

    30.6   Conclusion 

 The combination of antioxidants and the pharmacologic, immune-directed action of 
nucleotides, AHCC and DHEA show various degrees of effi ciency to restore immune 
system alterations. Some of these molecules are able to restore one part of the immune 
response such as AHCC, which mainly restores innate immunity, while others, like 
antioxidants, have a more general action on the organism. Searching for effi cient 
countermeasures is a promising area of research that deserves more investigation to 
counter or restore alterations of the immune system in Space and on Earth.      
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