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QUANTITATIVE DE JONG THEOREMS

IN ANY DIMENSION

CHRISTIAN DÖBLER AND GIOVANNI PECCATI

Abstract. We develop a new quantitative approach to a multidimensional ver-
sion of the well-known de Jong’s central limit theorem under optimal conditions,
stating that a sequence of Hoeffding degenerate U -statistics whose fourth cumu-
lants converge to zero satisfies a CLT, as soon as a Lindeberg-Feller type condition
is verified. Our approach allows one to deduce explicit (and presumably optimal)
Wasserstein bounds in the case of general U -statistics of arbitrary order d ≥ 1.
One of our main findings is that, for vectors of U -statistics satisfying de Jong’ s
conditions and whose covariances admit a limit, componentwise convergence sys-
tematically implies joint convergence to Gaussian: this is the first instance in which
such a phenomenon is described outside the frameworks of homogeneous chaoses
and of diffusive Markov semigroups.

1. Introduction, framework and main results

1.1. Overview. Let {Wn : n ≥ 1} be a sequence of unit variance U -statistics of or-
der d ≥ 1 (not necessarily symmetric) with underlying independent data X1, . . . , Xn,
that are degenerate in the sense of Hoeffding (see Section 1.2 for formal definitions)
and have a finite fourth moment. In the landmark paper [dJ90] (see also [dJ89]), P.
de Jong proved the following remarkable fact, valid as n → ∞: if E[W 4

n ] → 3 and a
Lindeberg-Feller-type condition is verified, thenWn converges in distribution towards
a standard Gaussian random variable Z (note that 3 = E[Z4]). This surprising re-
sult represents a drastic simplification of the method of moments and cumulants (see
e.g. [NP12, Section A.3]), which should be contrasted with the ‘typical’ non-central
asymptotic behaviour of degenerate U -statistics of a fixed order d ≥ 2 and with a
fixed kernel — see e.g. [Gre77], [Ser80], [RV80], [DM83] or [Jan97, Ch. 11] ; it also
provides a general explanation of the ubiquitous emergence of the Gaussian distri-
bution in geometric models where counting statistics can be naturally represented in
terms of degenerate U -statistics, see e.g. [JJ86,PR16,Pen03].

One should notice that de Jong’s central limit theorem (CLT) is a one dimensional
qualitative statement: in particular, it does not provide any meaningful information
about the rate of convergence of the law of Wn towards the target Gaussian dis-
tribution. Our aim in this paper is to use Stein’s method of exchangeable pairs, as
originally developed in Stein’s monograph [Ste86], in order to prove new quantita-
tive and multidimensional versions of de Jong’s central limit theorem under minimal
conditions, in the setting of degenerate and non-symmetric U -statistics that do not
necessarily have the form of homogeneous sums. In particular, we are interested
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in characterizing the joint convergence of those vectors of degenerate U -statistics,
whose components verify one-dimensional CLTs.

One of the main motivations for pursuing our goal is that the findings of [dJ89] have
anticipated a modern and very fruitful direction of research, where tools of infinite-
dimensional calculus are used in order to deduce fourth moment theorems in the spirit
of de Jong (but, crucially, without the use of Lindeberg-Feller-type conditions) for
random variables belonging to the homogeneous chaos of some general random field.
The best-known results in this area gravitate around the main discovery of [NP05]
(as well as its multidimensional extension [PT05]), where it is proved that a sequence
of normalized random variables {Yn : n ≥ 1}, belonging to a fixed Wiener chaos of a
Gaussian field, verifies a central limit theorem (CLT) if and only if E[Y 4

n ] → 3. The
combined use of Malliavin calculus and Stein’s method has consequently allowed one
to deduce strong quantitative versions with explicit Berry-Esseen bounds of these
results (see [NP09,NP12]), and it is therefore a natural question to ask whether the
original CLT by de Jong can be endowed with explicit bounds, that are comparable
with those available in a Gaussian setting.

The reader can consult the constantly updated webpage

https://sites.google.com/site/malliavinstein/home

for an overview of the emerging domain of research connected to [NP09,NP12,NP05,
PT05]. Among the many notable ramifications of the results of [NP09, NP05] to
which our findings should be compared, we quote: [KRT, NPR10b, PT15] for re-
sults involving homogeneous sums in the Rademacher (also called Walsh) chaos,
[ET14,LRP13a,LRP13b,PSTU10,PZ10,RS13,Sch16] for the analysis of Poissonized
U -statistics living in the Wiener chaos associated with a Poisson measure, [Ari13,
BP14b,KNS12,NPS13] for fourth moment theorems involving homogeneous sums in
a non-commutative setting, and [ACP14,CNPP16,Led12] for results in the setting of
chaotic random variables associated with a diffusive Markov semigroup. Central and
non-central quantitative versions of de Jong’s results in the case of fully symmetric
Poissonized U -statistics can be found in [ET14,FT16,PT13].

Two sets of references are particularly relevant for the present work:

(a) In reference [NPR10a] (see also [PZ14]) de Jong’s CLT in the special case
of homogeneous sums was studied in the framework of the powerful theory
of universality and influence functions initiated in [MOO10]. In particular,
explicit bounds were obtained for vectors of homogeneous sums satisfying a
CLT.

(b) In the already quoted reference [PT05], the following striking phenomenon
was discovered. For r ≥ 2, let Y m = (Y m

1 , ..., Y m
r ), m ≥ 1, be a sequence of

random vectors whose components live in a fixed Wiener chaos, and assume
that the covariance matrix of Y m converges to some Σ ≥ 0 and that each
component Y m

i verifies a CLT; then, Y m converges in distribution towards a
Gaussian vector with covariance Σ, that is: for vectors of random variables

living in a fixed chaos, componentwise convergence to Gaussian, systemati-

cally implies joint convergence. As explained e.g. in [NP12, Chapter 6], such
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a phenomenon serves as a key stepping stone in order to deduce Gaussian ap-
proximations for general functionals of Gaussian fields. Since then, this result
has been extended (at least, partially), to the framework of the homogeneous
chaos associated with a Poisson measure (see [BP14a,PZ10]), to general vec-
tors of homogeneous sums (see [NPR10a, Section 7] and [NPPS16]), to the
free probability setting (see [NPS13]), as well as to the framework of Markov
chaoses (see [CNPP16]).

The achievements of the present paper are twofolds:

(1) On the one hand, we will obtain a general quantitative version of the one-
dimensional de Jong CLT, displaying explicit bounds on the 1-Wasserstein
distance. As anticipated, we will do that in the full general setting of de-
generate U -statistics that do not necessarily have the form of homogeneous
sums, and that are not necessarily symmetric. In particular, this extends the
CLTs for homogeneous sums proved in [NPR10a], as well as the results for
Poissonized and symmetric U -statistics proved in [ET14,LRP13a].

(2) On the other hand, we will deduce (quantitative) multidimensional versions of
de Jong theorems, showing that the crucial phenomenon observed in [PT05]
(see the discussion at Point (b) above) basically extends to the framework
of degenerate U -statistics. Our main theorems on the matter show that the
case of U -statistics of the same order must take into account at least one
cumulant of order four — thus echoing recent results from [CNPP16]. Our
forthcoming Theorem 1.7 marks the first instance in which the phenomenon
observed in [PT05] is described in full generality, outside the frameworks of
homogeneous chaoses, and of the chaoses associated with a diffusive Markov
semigroup.

We will now describe our setting and our main results in more detail.

1.2. Main results, I: univariate normal approximations. Let us fix the fol-
lowing setup and notation, which we essentially adopt from [dJ90]. We refer the
reader to the classical references [Hoe48,KB94,KR82,Ser80,Vit92], as well as to the
more recent works [EDP08,EDPP14,LRP,Pec04], for an introduction to degenerate
U -statistics, Hoeffding decompositions and their use in stochastic analysis.

Let (Ω,F ,P) be a probability space and for an integer n ≥ 1 let X1, . . . , Xn

be independent random elements on this space assuming values in the respective
measurable spaces (E1, E1), . . . , (En, En). Further, assume that

f :

n
∏

j=1

Ej → R is

n
⊗

j=1

Ej − B(R) - measurable

and that
W := f(X1, . . . , Xn) ∈ L4(P)

satisfies

(1) E[W ] = 0 and E[W 2] = 1 .

We write
[n] := {1, . . . , n}
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and for J ⊆ [n] we also write

FJ := σ(Xj, j ∈ J) .

We write

(2) W =
∑

J⊆[n]

WJ

to indicate the Hoeffding decomposition of W . Note that this means that, for each
J ⊆ [n], WJ is FJ-measurable and that

(3) E[WJ | FK] = 0 ,

whenever J * K. It is well-known that W admits a Hoeffding decomposition of the
type (2), as long as W ∈ L1(P) and that it is almost surely unique and given by

(4) WJ =
∑

L⊆J

(−1)|J |−|L|E
[

W
∣

∣FL

]

, J ⊆ [n] .

We can thus write

(5) WJ = fJ(Xj , j ∈ J)

for some measurable functions

fJ :
∏

j∈J

Ej → R , J ⊆ [n] .

Let us also define
σ2
J := Var(WJ) , J ⊆ [n] .

One major assumption in what follows will be that, for some fixed integer d ∈ [n],
W is a degenerate U-statistic of order d (or d-degenerate U -statistic), i.e. that the
Hoeffding decomposition (2) has the form

(6) W =
∑

J∈Dd

WJ ,

where
Dd := {J ⊆ [n] : |J | = d}

denotes the collection of all
(

n
d

)

d-subsets of [n]. Equivalently, we have WK = 0
whenever K ⊆ [n] is such that |K| 6= d. Hence, we have

W = f(X1, . . . , Xn) =
∑

J∈Dd

fJ(Xj, j ∈ J) .

The next lemma lists important properties of the Hoeffding decomposition of W
which will be used without further mention.

Lemma 1.1. Let the above notation and definitions prevail. Then, one has the fol-

lowing properties:

1) Whenever J,K1, . . . , Ks ∈ Dd are such that

J *
s
⋃

i=1

Ki =: K

and g(WK1, . . . ,WKs
) is square-integrable, then

E
[

WJg
(

WK1, . . . ,WKs

)]

= 0 .
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In particular, WJ , J ∈ Dd, are uncorrelated.

2) For all J,K ∈ Dd such that J 6= K we have E[WJ | FK ] = 0.
3) For all J,K ∈ Dd we have E[WJ ] = 0 and E[WJWK ] = δJ,Kσ

2
J .

4)
∑

J∈Dd

σ2
J = 1.

5) Whenever J1, . . . , Jr, K1, . . . , Ks ∈ Dd are such that

(

r
⋃

l=1

Jl

)

∩
(

s
⋃

i=1

Ki

)

= ∅ ,

then the families {WJl : l = 1, . . . , r} and {WKi
: i = 1, . . . , s} are independent,

i.e. the summands WJ , J ∈ Dd, are dissociated as defined in [MS75].

Proof. Point 1) is a consequence of the degeneracy property (3) because,

E[WJ | FK] = 0 ,

as J 6⊆ K and, hence, by conditioning we have

E
[

WJg
(

WK1, . . . ,WKs

)]

= E
[

g
(

WK1, . . . ,WKs

)

E[WJ | FK]
]

= 0 .

Now, Point 2) follows since it is a special case of Point 1) and also Point 3) and Point
4) are immediately implied by Point 1), in view of assumption (1). Finally, Point 5)
follows from independence as well as the disjoint block theorem.

�

Let us furthermore define the quantity

(7) ̺2 := ̺2n := max
1≤i≤n

∑

K∈Dd:
i∈K

σ2
K .

The next result corresponds to de Jong’s celebrated (qualitative) CLT discussed
in Section 1.1.

Theorem 1.2 (See [dJ90]). Fix d ≥ 1, and let {nm : m ≥ 1} be a sequence of

integers diverging to infinity. Let {Wm : m ≥ 1} be a sequence of unit variance

degenerate U-statistics of order d, such that each Wm is a function of the vector

of independent variables (X
(m)
1 , ..., X

(m)
nm ). Then, as m → ∞, if E[W 4

m] → 3 and

̺2nm
→ 0, one has that Wm converges in distribution towards a standard Gaussian

random variable.

Note that the condition limm→∞ ̺2nm
= 0 guarantees that, asm→ ∞, the influence

of each of the random variables (X
(m)
1 , ..., X

(m)
nm ) on the total variance of Wnm

is
negligible. In fact, in the case d = 1 it reduces to the classical Lindeberg-Feller

condition

lim
m→∞

max
1≤j≤nm

σ2
j = 0 ,

from the Lindeberg-Feller CLT (see e.g. Theorem 5.12 in [Kal02]). Here, we wrote
σ2
j for σ2

{j}.
Our first main statement provides an explicit bound in the Wasserstein distance

dWass for Theorem 1.2. We recall that, given two integrable random variables X and
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Y , the Wasserstein distance between the distributions of X and Y is given by the
quantity

dWass(X, Y ) = sup
h∈Lip(1)

|E[h(X)]− E[h(Y )]| ,

where Lip(1) stands for the class of 1-Lipschitz functions.

Theorem 1.3. As before, let W ∈ L4(P) be a degenerate U-statistic of order d such

that (1) is satisfied and let Z ∼ N(0, 1) be a standard normal random variable. Then,

it holds that

dWass(W,Z) ≤
√

2

π

(

E[W 4]− 3 + κd̺
2
n

)1/2

+
2
√
2

3

(

2
(

E[W 4]− 3
)

+ 3κd̺
2
n

)1/2

≤
(

√

2

π
+

4

3

)
√

∣

∣E[W 4]− 3
∣

∣+
√
κd

(

√

2

π
+

2
√
2√
3

)

̺n .

where κd is a finite constant which only depends on d.

Recall that a degenerate U -statistic W of order d as given by (6) is called sym-

metric, if, additionally, the measurable spaces (E1, E1), . . . , (En, En) all coincide, the
random variables X1, . . . , Xn are i.i.d. and if there is a measurable kernel g : Ed

1 → R
such that fJ = g for all J ∈ Dd. In this special situation, the relations

1 = Var(W ) =
∑

J∈Dd

E
[

g2(Xj , j ∈ J)
]

=

(

n

d

)

E
[

g2(X1, . . . , Xd)
]

and

̺2n =
∑

J∈Dd:
1∈J

E
[

g2(Xj , j ∈ J)
]

=

(

n− 1

d− 1

)

E
[

g2(X1, . . . , Xd)
]

imply that

̺2n =
d

n
.

Hence, we arrive at the following corollary of Theorem 1.3.

Corollary 1.4. Let W ∈ L4(P) be a normalized, degenerate and symmetric U-

statistic of order d and let Z ∼ N(0, 1) be a standard normal random variable.

Then,

dWass(W,Z) ≤
(

√

2

π
+

4

3

)
√

∣

∣E[W 4]− 3
∣

∣+

√
dκd√
n

(

√

2

π
+

2
√
2√
3

)

.

In particular, under the assumptions of Theorem 1.2, a sequence {Wm : m ≥ 1} of

degenerate and symmetric U-statistics of a fixed order d converges in distribution to

Z ∼ N(0, 1), whenever limm→∞ E[W 4
m] = 3.

Remark 1.5. (a) The previous Therorem 1.3 is a complete quantitative counterpart
to de Jong’s Theorem 1.2. The constant κd appearing in the bound is given by
κd = Cd + 2d, where Cd is a combinatorial constant defined in Equation (50)
below.

(b) In the context of multilinear forms in independent and standardized real-valued
random variables (Xi)i∈N considered in [NPR10a], the authors had to assume
that the uniform moment condition supi∈N E[X

4
i ] < ∞ is satisfied. It is easy
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to check that, for homogeneous sums, this condition is in fact equivalent to the
hypercontractivity condition

sup
n∈N

Dn <∞ where Dn := max
J∈Dd

E
[

W 4
J

]

σ4
J

.

Interestingly, this condition was also assumed in the monograph [dJ89] by de Jong
who was only able to dispense with it in the later paper [dJ90]. Note further that
the bounds for multilinear forms in independent random variables with arbitrary
distributions derived in [NPR10a] are stated in terms of three times differentiable
test functions whose first three derivatives are uniformly bounded by a constant.
Hence, our Theorem 1.3 is not only more general than the corresponding result
from [NPR10a] as far as the class of random functionals dealt with is concerned
but is also stated in terms of much less smooth test functions.

(c) It should be mentioned that the original proof of Theorem 1.2 in [dJ90] applies
a quantitative martingale CLT from [HB70] and, by carefully revising its proof,
one would be able to derive a bound on the rate of convergence. This issue
is also briefly addressed in the introduction of the monograph [dJ89] but not
pursued any further. The resulting rate, however, would be of a much worse
order than the rate provided by Theorem 1.3. Roughly, the power 1/2 appearing
in our statements would have to be systematically replaced by the power 1/5.
Furthermore, as was shown in [Hae88] by means of an example, the Berry-Esseen
bound for martingales from [HB70] cannot in general be improved with respect
to the rate of convergence. Consequently, the techniques used by de Jong are
not capable of providing sharp error bounds for his qualitative statement. Note
that the phenomenon of generally sharp bounds on the rate of convergence for
martingale CLTs which reduce to sub-optimal bounds in particular situations was
already discovered in the paper [Bol82]. We also stress that, unlike our work,
references [dJ89,dJ90] do not contain any multidimensional statements.

Finally, we would like to mention that the paper [RR97] also deals with bounds
on the normal approximation of so-called degenerate weighted U -statistics of order
d = 2, which have the form

U =
∑

1≤i<j≤n

wi,jψ(Xi, Xj)

for some vector X = (X1, . . . , Xn) of i.i.d. random variables, some symmetric, degen-
erate kernel ψ and with nonnegative weights wi,j, 1 ≤ i < j ≤ n. Note that the class
of weighted U -statistics is strictly included in our framework, since we can define
the degenerate kernel f{i,j} corresponding to the subset {i, j} ∈ D2 by f{i,j} = wi,jψ,
leading to the Hoeffding components W{i,j} = wi,jψ(Xi, Xj), 1 ≤ i < j ≤ n. This,
of course, also holds for arbitrary positive integers d. Note that, in contrast to our
work, the bounds given in [RR97] are expressed in terms of quantities which are
related explicitly to the kernel ψ and to the weights wi,j rather than in terms of the
fourth cumulant of U and, hence, cannot be immediately compared to ours.

1.3. Main results, II: multivariate normal approximations. In this subsection
we state a new approximation theorem for the distribution of vectors of degenerate,
non-symmetric U -statistics by a suitable multivariate normal distribution. In par-
ticular, we show that an analog of de Jong’s theorem 1.2 holds in any dimension, see
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Theorem 1.7. Note that, in the multivariate case, even this qualitative result relating
the asymptotic normality of the vector of degenerate, non-symmetric U -statistics to
fourth moment conditions is completely novel.
As before, let X1, . . . , Xn be the underlying sequence of independent random vari-
ables, let r ∈ N and for 1 ≤ i ≤ r let W (i) be a random variable on (Ω,F ,P) which is
measurable with respect to F[n] = σ(X1, . . . , Xn) and whose Hoeffding decomposition
is given by

W (i) =
∑

J∈Dpi

WJ(i)

for some pi ∈ N, i.e. W (i) is a degenerate U -statistic of order pi. Without loss of
generality, we can assume that pi ≤ pk whenever 1 ≤ i < k ≤ r. Thus, there is
an s ∈ {1, . . . , r}, positive integers r1, . . . , rs with 1 ≤ r1 < r2 < . . . < rs = r and
integers 1 ≤ q1 < q2 < . . . < qs such that

pi = ql for all i ∈ {rl−1 + 1, . . . , rl} and all l = 1, . . . , s ,

where we set r0 := 0. We define

W := (W (1), . . . ,W (r))T

and assume that each W (i) ∈ L4(P) with

E
[

W (i)
]

= 0 and Var
(

W (i)
)

= E
[

W (i)2
]

=
∑

J∈Dpi

E
[

WJ(i)
2
]

= 1 , 1 ≤ i ≤ r .

We also let

vi,k := Cov
(

W (i),W (k)
)

= E
[

W (i)W (k)
]

, 1 ≤ i ≤ k ≤ r ,

and
V = V(W ) := Cov(W ) = (vi,k)1≤i,k≤r .

Note that vi,i = 1 for i = 1, . . . , r and |vi,k| ≤ 1 for 1 ≤ i, k ≤ r, by the Cauchy-
Schwarz inequality. Note also that vi,k = 0 unless pi = pk. Hence, V is a block
diagonal matrix. Throughout this section we denote by

Z =
(

Z(1), . . . , Z(r)
)T ∼ Nr(0,V)

a centered Gaussian vector with covariance matrix V. For 1 ≤ k ≤ r and J ∈ Dpk

we define

σJ(k)
2 := Var

(

WJ(k)
)

= E
[

WJ(k)
2
]

and ̺2n,k := max
1≤j≤n

∑

J∈Dpk
:

j∈J

σJ(k)
2 .

Before stating our multivariate normal approximation theorem, we have to intro-
duce some more notation: For a vector x = (x1, . . . , xr)

T ∈ Rr we denote by ‖x‖2 its
Euclidean norm and for a matrix A ∈ Rr×r we denote by ‖A‖op the operator norm

induced by the Euclidean norm, i.e.,

‖A‖op := sup{‖Ax‖2 : ‖x‖2 = 1} .
More generally, for a k-multilinear form ψ : (Rr)k → R, k ∈ N, we define the operator

norm

‖ψ‖op := sup {|ψ(u1, . . . , uk)| : uj ∈ Rr, ‖uj‖2 = 1, j = 1, . . . , k } .
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Recall that for a function h : Rr → R, its minimum Lipschitz constant M1(h) is
given by

M1(h) := sup
x 6=y

|h(x)− h(y)|
‖x− y‖2

∈ [0,∞) ∪ {∞}.

If h is differentiable, then M1(h) = supx∈Rr‖Dh(x)‖op. More generally, for k ≥ 1 and
a (k − 1)-times differentiable function h : Rr → R let

Mk(h) := sup
x 6=y

‖Dk−1h(x)−Dk−1h(y)‖op
‖x− y‖2

,

viewing the (k − 1)-th derivative Dk−1h of h at any point x as a (k − 1)-multilinear
form. Then, if h is actually k-times differentiable, we haveMk(h) = supx∈Rr‖Dkh(x)‖op.
Having in mind this identity, we define M0(h) := ‖h‖∞.
Recall that, for two matrices A,B ∈ Rr×r, their Hilbert-Schmidt inner product is
defined by

〈A,B〉H.S. := Tr
(

ABT
)

= Tr
(

BAT
)

= Tr
(

BTA
)

=

r
∑

i,j=1

aijbij .

Thus, 〈·, ·〉H.S. is just the standard inner product on Rr×r ∼= Rr2 . The corresponding
Hilbert-Schmidt norm will be denoted by ‖·‖H.S.. With this notion at hand, following
[CM08] and [Mec09], for k = 2 we finally define

M̃2(h) := sup
x∈Rr

‖Hessh(x)‖H.S. ,

where Hess h is the Hessian matrix corresponding to h.

Theorem 1.6. There exist finite constants Cql, 1 ≤ l ≤ s, only depending on ql as

well as finite constants Ci,k, 1 ≤ i, k ≤ r, depending on i and k only through pi and

pk such that, with the definition

A := 4
s
∑

l=1

q2l
q21

rl
∑

i,k=rl−1+1

(

E
[

W (i)2W (k)2
]

− E
[

Z(i)2Z(k)2
]

+ ql min
(

̺2n,k , ̺
2
n,i

)

+ ql̺n,k̺n,i + Ci,k max
(

̺2n,i, ̺
2
n,k

)

)

+ 2
∑

1≤l<m≤s

(ql + qm)
2

q21

rl
∑

i=rl−1+1

rm
∑

k=rm−1+1

[

(

E
[

W (i)4
]

− 1
)1/2

(

E
[

W (k)4
]

− 3 +
(

2qm + Cqm

)

̺2n,k

)1/2

+min
(

ql̺
2
n,k , qm̺

2
n,i

)

+ Ci,k max
(

̺2n,i, ̺
2
n,k

)

]

and under the above assumptions, we have the following bounds:
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(i) For any h ∈ C3(Rr) such that E
[

|h(W )|
]

<∞ and E
[

|h(Z)|
]

<∞,

∣

∣E[h(W )]− E[h(Z)]
∣

∣ ≤ 1

4q1
M̃2(h)

√
A

+

√
2r

9
M3(h)

s
∑

l=1

ql
q1

rl
∑

i=rl−1+1

(

2
(

E
[

W (i)4
]

− 3
)

+ 3
(

Cql + 2ql
)

̺2n,i

)1/2

.

(ii) If V is in addition positive definite, then for each h ∈ C2(Rr) such that

E
[

|h(W )|
]

<∞ and E
[

|h(Z)|
]

<∞,

∣

∣E[h(W )]− E[h(Z)]
∣

∣ ≤ 1√
2πq1

M1(h)‖V−1/2‖op
√
A

+

√
πr

6
M2(h)‖V−1/2‖op

s
∑

l=1

ql
q1

rl
∑

i=rl−1+1

(

2
(

E
[

W (i)4
]

− 3
)

+ 3
(

Cql + 2ql
)

̺2n,i

)1/2

.

Fix r ∈ N. Since the class of all compactly supported, three times differentiable
functions h on Rr is convergence-determining, from Theorem 1.6 (i) we obtain the
following statement, which is a new multidimensional extension of Theorem 1.2.

Theorem 1.7. Fix r ≥ 2, as well as integers p1, ..., pr, and let nm → ∞, as m →
∞. Let Wm := (Wm(1), . . . ,Wm(r))

T , m ≥ 1, be a sequence of random vectors

such that each Wm(k) is a centered, unit variance degenerate U-statistic of order

pk, whose argument is the vector of independent random elements (X
(m)
1 , ..., X

(m)
nm ).

Furthermore, let Σ ∈ Rr×r be a positive semi-definite matrix with Σ(j, j) = 1 for

j = 1, . . . , r and denote by N = (N(1), ..., N(r))T ∼ Nr(0,Σ) a centered Gaussian

vector with covariance matrix Σ. Assume the following:

(i) The covariance matrix of Wm converges to Σ;

(ii) As m→ ∞, ̺2nm,k → 0, for every k = 1, ..., r;

(iii) As m→ ∞, E[Wm(k)
4] → 3, for every k = 1, ..., r;

(iv) If j 6= k but pj = pk then, as m→ ∞,

E[Wm(j)
2Wm(k)

2] → E[N(j)2N(k)2] = 1 + (Σ(j, k))2.

Then, as m→ ∞, Wm converges in distribution to N .

In the framework of the normal approximation of vectors of eigenfunctions of
diffusive Markov semigroups, a condition similar to (iv) in the above statement has
been recently introduced and applied in [CNPP16]. The rest of the paper is organized
as follows: Section 2 contains the proof of our one-dimensional result, Section 3
focusses on our multidimensional statements, whereas Section 4 contains the detailed
proofs of several technical lemmas.

2. Proof of the one-dimensional theorem

In this section we give a detailed proof of Theorem 1.3. First we review Stein’s
method of exchangeable pairs for univariate normal approximation.

2.1. Stein’s method of exchangeable pairs. The exchangeable pairs approach
within Stein’s method dates back to Stein’s celebrated monograph [Ste86]. Recall
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that a pair (X,X ′) of random elements on a common probability space is called
exchangeable, if

(X,X ′)
D
= (X ′, X) .

In [Ste86] C. Stein extensively illustrated the fact that a given normalized random
variable W is close in distribution to Z ∼ N(0, 1), whenever one can construct
another random variable W ′ on the same space such that: (i) W ′ is ‘close’ to W in
some proper, quantifiable sense, (ii) the pair (W,W ′) is exchangeable, (iii) the linear

regression property

(8) E
[

W ′ −W
∣

∣W
]

= −λW
is satisfied for some small λ > 0, and (iv) the conditional second moment of W ′−W
given W is close to its mean, the constant 2λ, in the L1 metric. For a precise state-
ment see Theorem 2.1 below.
The range of examples to which this method can be applied was considerably ex-
tended by the work [RR97] by Rinott and Rotar, who proved bounds on the distance
to normality under the condition that the linear regression property is only approx-
imately satisfied, i.e. that there is some negligible remainder term R such that

(9)
1

λ
E
[

W ′ −W
∣

∣G
]

= −W +R

is satisfied, where G is a sub-σ-field of F such that σ(W ) ⊆ G. The method of ex-
changeable pairs has been generalized to other absolutely continuous distributions,
like the exponential ([CFR11] and [FR13]), the multivariate normal ([CM08], [RR09]
and [Mec09]) and the Beta distribution [Döb15]. It has also been developed for gen-
eral classes of one-dimensional absolutely continuous distributions in [CS11], [EL10]
and [Döb15]. As was observed in [Röl08], in the case of one-dimensional distribu-
tional approximation one may in general relax the exchangeability condition to the
assumption that W and W ′ be identically distributed.
In this article we focus on the exchangeable pairs method in the context of one- and
multidimensional normal approximation. The following result is a variant of Theo-
rem 1, Lecture 3 in [Ste86] (see also Theorem 4.9 in [CGS11]). It slightly improves on
these result with respect to the constants appearing in the bound and is also stated in
terms of identically distributed random variables W,W ′ as opposed to exchangeable
ones as well as for general sub-σ-fields G of F with σ(W ) ⊆ G. The proof is standard
and therefore omitted from the paper. Moreover, the result is a direct consequence
of Proposition 3.19 in [Döb15] together with the best known bounds on the first two
derivatives of the solution to the standard normal Stein equation for Lipschitz test
functions (see e.g. Lemma 2.4 in [CGS11]).

Theorem 2.1. Let (W,W ′) be a pair of identically distributed, square-integrable

random variables on (Ω,F ,P) such that, for some λ > 0, (8) holds. Furthermore, let

G be a sub-σ-field of F with σ(W ) ⊆ G. Then, we have the bound

dWass(W,Z) ≤
√

2

π

√

Var
( 1

2λ
E
[

(W ′ −W )2
∣

∣G
]

)

+
1

3λ
E
∣

∣W ′ −W
∣

∣

3
.(10)

For the proof of Theorem 1.3 we will need the following new auxiliary result about
exchangeable pairs satisfying identity (8) which might be of independent interest.
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Lemma 2.2. Let (W,W ′) be an exchangeable pair of real-valued random variables in

L4(P) such that, for some λ > 0, (8) is satisfied and let G be a sub-σ-field of F with

σ(W ) ⊆ G. Then,

1

4λ
E
[

(W ′ −W )4
]

= 3E
[

W 2 1

2λ
E
[

(W ′ −W )2
∣

∣G
]

]

− E
[

W 4
]

.

Proof. By exchangeability of (W,W ′) we have

1

2
E
[

(W ′ −W )4
]

= E
[

W (W −W ′)3
]

= E
[

W 4 − 3W 3W ′ + 3(W ′W )2 −W (W ′)3
]

= E[W 4] + 3E
[

(WW ′)2
]

− 4E
[

W 3W ′
]

.(11)

Also, by (9)

E
[

W 3W ′
]

= E
[

W 3E
[

W ′
∣

∣G
]

]

= (1− λ)E[W 4](12)

and

E
[

(WW ′)2
]

=
[

W 2E
[

(W ′ −W +W )2
∣

∣G
]

]

= E
[

W 2E
[

(W ′ −W )2 + 2W (W ′ −W ) +W 2
∣

∣G
]

]

= E[W 4]− 2λE[W 4] + E
[

W 2E[(W ′ −W )2
∣

∣G
]

]

= (1− 2λ)E[W 4] + E
[

W 2E[(W ′ −W )2
∣

∣G
]

]

.(13)

Thus, from (11), (12) and (13) we obtain that

1

2
E
[

(W ′ −W )4
]

=
(

1 + 3(1− 2λ)− 4(1− λ)
)

E[W 4] + 3E
[

W 2E[(W ′ −W )2
∣

∣G
]

]

= 3E
[

W 2E[(W ′ −W )2
∣

∣G
]

− 2λE[W 4] ,

proving the lemma.
�

2.2. Proof of Theorem 1.3. Let W ∈ L4(P) be as in Theorem 1.3 such that its
Hoeffding decomposition is given by (6). We are going to apply Theorem 2.1 to the
σ-field G = σ(X1, . . . , Xn) and to the exchangeable pair (W,W ′) which is constructed
as follows: Let Y := (Yj)1≤j≤n be an independent copy of X := (Xj)1≤j≤n and let α
be uniformly distributed on {1, . . . , n} such that X, Y and α are jointly independent.
Letting, for j = 1, . . . , n,

X ′
j :=

{

Yj , if α = j

Xj , if α 6= j

and

X ′ := (X ′
1, . . . , X

′
n)
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it is easy to see that the pair (X,X ′) is exchangeable. Finally, as exchangeability is
preserved under functions, defining

W ′ := f(X ′
1, . . . , X

′
n) =

n
∑

j=1

1{α=j}

(

∑

J∈Dd:
j /∈J

WJ +
∑

J∈Dd:
j∈J

W
(j)
J

)

=:
∑

J∈Dd:
α/∈J

WJ +
∑

J∈Dd:
α∈J

W
(α)
J ,

also the pair (W,W ′) is exchangeable. Here, for J = {j1, . . . , jd} ∈ Dd with 1 ≤ j1 <
j2 < . . . < jd ≤ n and j = jk ∈ J , we write

W
(j)
J := fJ(Xj1, . . . , Xjk−1

, Yjk , Xjk+1
, . . . , Xjd) ,

where the kernel fJ is given by (5). We now show that the pair (W,W ′) satisfies
Stein’s linear regression property (8) exactly with coefficient λ = d/n.

Lemma 2.3. With the above definitions, we have

E
[

W ′ −W
∣

∣W
]

= E
[

W ′ −W
∣

∣X
]

= −d
n
W .

Proof. It suffices to prove the second equality. Note that

W ′ −W =
n
∑

j=1

1{α=j}

∑

J∈Dd:
j∈J

(

W
(j)
J −WJ

)

=
∑

J∈Dd:
α∈J

(

W
(α)
J −WJ

)

.

Hence, by independence,

E
[

W ′ −W
∣

∣X
]

=
1

n

n
∑

j=1

∑

J :j∈J

(

E
[

W
(j)
J

∣

∣X
]

−WJ

)

=
1

n

n
∑

j=1

∑

J :j∈J

(

E
[

W
(j)
J

∣

∣Xi, i ∈ J \ {j}
]

−WJ

)

=
1

n

n
∑

j=1

∑

J :j∈J

(

E
[

WJ

∣

∣FJ\{j}

]

−WJ

)

= −1

n

n
∑

j=1

∑

J :j∈J

WJ = −1

n

∑

J∈Dd

WJ

∑

j∈J

1

= −d
n

∑

J∈Dd

WJ = −d
n
W .

Here, we have used the defining property of the Hoeffding decomposition to obtain
the fourth equality.

�

We would like to mention that the same construction of the exchangeable pair
(W,W ′) was used in [RR97] in the situation of weighted U -statistics. They also
noted the validity of (8) with λ = d/n in the special case of completely degenerate
weighted U -statistics of order d.
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In order to apply (10), by Lemma 2.3, we thus have to compute an upper bound on the
variance of n

2d
E
[

(W ′−W )2
∣

∣X
]

. This is done by finding the Hoeffding decomposition
of this quantity in terms of the Hoeffding decomposition of W 2 for which we will
now find a new convenient expression. More generally, we derive a formula for the
Hoeffding decomposition of the product of two degenerate U -statistics, which will
also be needed for the proof of Theorem 1.6.

Assume that 1 ≤ p, q ≤ n and that W and V are square-integrable p- and q-
degenerate U -statistics with respect to the same underlying sequence X, respectively,
with Hoeffding decompositions

(14) W =
∑

J∈Dp

WJ and V =
∑

K∈Dq

VK .

The product U := VW in general is not a degenerate U -statistic, but it clearly has
a Hoeffding decomposition of the form

(15) U =
∑

M⊆[n]

UM =
∑

M⊆[n]:
|M |≤p+q

UM .

The following simple observation will be crucial for the computation of the Ho-
effding decompositions of both VW and of the quantity n

2d
E
[

(W ′ −W )2
∣

∣X
]

.

Lemma 2.4. If L ⊆ [n] is such that J∆K = (J \K) ∪ (K \ J) 6⊆ L, then

E
[

WJVK
∣

∣FL

]

= 0 .

Proof. Assume e.g. that (J \K) \ L = J \ (K ∪ L) 6= ∅. Then,

E
[

WJVK
∣

∣FL

]

= E
[

VKE
[

WJ

∣

∣FK∪L

]

∣

∣

∣
FL

]

= E
[

VK · 0
∣

∣FL

]

= 0 ,

as E
[

WJ

∣

∣FK∪L

]

= 0 because J 6⊆ K ∪ L. �

Lemma 2.5. Let J ∈ Dp and K ∈ Dq, respectively.

(a) The Hoeffding decomposition of WJVK is given by

(16) WJVK =
∑

M⊆[n]:
J∆K⊆M⊆J∪K

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJVK
∣

∣FL

]

.

(b) If j ∈ J ∩K, then we have the Hoeffding decomposition

(17) E
[

WJVK
∣

∣F(J∪K)\{j}

]

=
∑

M⊆[n]:
J∆K⊆M⊆(J∪K)\{j}

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJVK
∣

∣FL

]

.

Proof. The claim of (a) follows immediately from Lemma 2.4 and from the general
formula for the Hoeffding decomposition of an FJ∪K-measurable random variable T
which is given by

T =
∑

M⊆J∪K

(

∑

L⊆M

(−1)|M |−|L|E[T |FL]
)

.

The claim of (b) follows similarly upon observing that, for L ⊆ (J ∪K)\{j} we have

E
[

E
[

WJVK
∣

∣F(J∪K)\{j}

]

∣

∣

∣
FL

]

= E
[

WJVK
∣

∣FL

]

.

�



QUANTITATIVE DE JONG 15

The next result which might be of independent interest plays a similar role as the
product formula for two multiple Wiener-Itô integrals (see e.g. [NP12]).

Theorem 2.6 (Product formula for degenerate U -statistics). Let 1 ≤ p, q ≤ n and

let W,V ∈ L2(P) be p- and q-degenerate U-statistics, respectively, with respective

Hoeffding decompositions given by (14). Then, the Hoeffding decomposition (15) of

U := VW is given by the following formula:

VW =
∑

M⊆[n]:
|M |≤p+q

(

∑

J∈Dp,K∈Dq:
J∆K⊆M⊆J∪K

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJVK
∣

∣FL

]

)

=
∑

M⊆[n]:
|M |≤p+q

(

∑

L⊆M

(−1)|M |−|L|
∑

J∈Dp,K∈Dq:
J∆K⊆L,
M⊆J∪K

E
[

WJVK
∣

∣FL

]

)

,

i.e. for M ⊆ [n] with |M | ≤ p + q we have

UM =
∑

J∈Dp,K∈Dq:
J∆K⊆M⊆J∪K

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJVK
∣

∣FL

]

=
∑

L⊆M

(−1)|M |−|L|
∑

J∈Dp,K∈Dq:
J∆K⊆L,
M⊆J∪K

E
[

WJVK
∣

∣FL

]

.

Proof. By the linearity of the Hoeffding decomposition and since we have

VW =
∑

J∈Dp,K∈Dq

WJVK ,

it suffices to collect the terms resulting from the Hoeffding decompositions of the
summands WJVK in a suitable way. By Lemma 2.5 (a) we have

VW =
∑

J∈Dp,K∈Dq

WJVK =
∑

J∈Dp,K∈Dq

∑

M⊆[n]:
J∆K⊆M⊆J∪K

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJVK
∣

∣FL

]

=
∑

M⊆[n]:
|M |≤p+q

(

∑

L⊆M

(−1)|M |−|L|
∑

J∈Dp,K∈Dq:
J∆K⊆L,
M⊆J∪K

E
[

WJVK
∣

∣FL

]

)

.

�

Now we are in the position to express the Hoeffding decomposition of
n
2d
E
[

(W ′ −W )2
∣

∣X
]

in terms of that of W 2. Since we prove a more general result,
Lemma 3.3 below, we do not give its proof, here.

Lemma 2.7. Let W 2 =
∑

|M |≤2dUM be the Hoeffding decomposition of W 2. Then,

we have the Hoeffding decomposition

n

2d
E
[

(W ′ −W )2
∣

∣X
]

=
∑

M⊆[n]:
|M |≤2d−1

aMUM ,
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with

aM = 1− |M |
2d

∈ [0, 1] for each M ⊆ [n] with |M | ≤ 2d .

Before we proceed, let us, following [dJ89] and [dJ90], introduce the following
important classes of quadruples (J1, J2, J3, J4) ∈ D4

d. We call an element j ∈ J1 ∪
J2 ∪ J3 ∪ J4 a free index, if it appears in Ji for exactly one i ∈ {1, 2, 3, 4}. Note that
this implies that

(18) E
[

WJ1WJ2WJ3WJ4

]

= 0

by Lemma 1.1 4). We say that (J1, J2, J3, J4) is bifold, if each element in the union
J1 ∪ J2 ∪ J3 ∪ J4 appears in Ji for exactly two values of i ∈ {1, 2, 3, 4}, i.e. if

1J1 + 1J2 + 1J3 + 1J4 = 2 · 1J1∪J2∪J3∪J4 .
Let us denote by B = Bd the set of all bifold quadruples. Among the bifold quadru-
ples, the most important ones are given by the subclass S0 which is defined by

S0 =
{

(J,K, L,M) ∈ D4
d : J ∩K = L ∩M = ∅ , ∅ ( J ∩ L = J \ (J ∩M) ( J

and ∅ ( K ∩ L = K \ (K ∩M) ( K
}

.

Further, we denote by T = Td the set of all quadruples (J1, J2, J3, J4) ∈ D4
d that are

neither bifold nor have a free index. This just means that

1J1 + 1J2 + 1J3 + 1J4 ≥ 2 · 1J1∪J2∪J3∪J4
and there exists at least one j ∈ [n] such that

1J1(j) + 1J2(j) + 1J3(j) + 1J4(j) ≥ 3 ,

i.e. each element of the union J1 ∪ J2 ∪ J3 ∪ J4 appears in Ji for at least two values
of i ∈ {1, 2, 3, 4} and there is an element of the union J1 ∪ J2 ∪ J3 ∪ J4 that appears
in Ji for at least three values of i ∈ {1, 2, 3, 4}.
Following [dJ90] let us define the quantities

S0 :=
∑

J,K,L,M∈Dd:
J∩K=∅=L∩M,
∅(J∩L(J ,
∅(J∩M(J

E
[

WJWKWLWM

]

=
∑

(J,K,L,M)∈S0

E
[

WJWKWLWM

]

,

as well as
τ := τd :=

∑

(J,K,L,M)∈T

σJσKσLσM .

Note that the last identity in the definition of S0 is true by virtue of (18). The
following result is Proposition 5 (b) of [dJ90]. We will prove a more general version
stated as Proposition 3.5 to deal with the multivariate case.

Proposition 2.8. We have

S0 ≥ −τ .
Recall the definition of the Lindeberg-Feller quantity ̺ = ̺n given in (7). Next,

we state a substantial improvement of Lemma B in [dJ90]. Indeed, there the upper
bound on τ is of order ̺ as compared to the order ̺2 which we obtain. Its proof is
deferred to Section 4.
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Proposition 2.9. For each d ∈ N there is a finite constant Cd which is independent

of n such that

τ =
∑

(J,K,L,M)∈T

σJσKσLσM ≤ Cd̺
2 .

Furthermore, we can let C2 = 13.

The next two lemmas will be very useful for what follows.

Lemma 2.10. Again, let W 2 =
∑

|M |≤2dUM denote the Hoeffding decomposition of

W 2. Then, we have the bound
∑

M⊆[n]:
|M |≤2d−1

Var(UM) ≤ E
[

W 4
]

− 3 + κd̺
2 ,

where κd = Cd + 2d and Cd is the constant from Proposition 2.9.

Proof. We have
∑

M⊆[n]:
|M |≤2d−1

Var(UM) = Var(W 2)−
∑

M⊆[n]:
|M |=2d

Var(UM)

= E
[

W 4
]

− 1−
∑

M⊆[n]:
|M |=2d

Var(UM)

= E
[

W 4
]

− 3 + 2−
∑

M⊆[n]:
|M |=2d

E[U2
M ]

= E
[

W 4
]

− 3 +
(

2−
∑

J,K,L,M∈Dd:
J∩K=∅=L∩M

E
[

WJWKWLWM

]

)

.(19)

For the last equality we have used the fact that for |M | = 2d we have

UM =
∑

J,K∈Dd:
J∩K=∅,
J∪K=M

WJWK .

Also, we can write
∑

J,K,L,M∈Dd:
J∩K=∅=L∩M

E
[

WJWKWLWM

]

= 2
∑

J,K∈Dd:
J∩K=∅

E
[

W 2
JW

2
K

]

+ S0

= 2
∑

J,K∈Dd:
J∩K=∅

σ2
Jσ

2
K + S0

= 2− 2
∑

J,K∈Dd:
J∩K 6=∅

σ2
Jσ

2
K + S0

≥ 2− 2d̺2 + S0 ,



18 CHRISTIAN DÖBLER AND GIOVANNI PECCATI

where we have used Lemma 4.1 to obtain the last inequality. Thus, from (19) and
Propositions 2.8 and 2.9 we conlude that

∑

M⊆[n]:
|M |≤2d−1

Var(UM) = Var(W 2)−
∑

M⊆[n]:
|M |=2d

Var(UM)(20)

≤ E
[

W 4
]

− 3 + 2d̺2 − S0

≤ E
[

W 4
]

− 3 + (2d+ Cd)̺
2

= E
[

W 4
]

− 3 + κd̺
2 ,

which proves the claim.
�

Now we are able to bound the first term on the right hand side of (10):

Lemma 2.11. For the above constructed exchangeable pair we have

(21) Var
( n

2d
E
[

(W ′ −W )2
∣

∣X
]

)

≤ E
[

W 4
]

− 3 + κd̺
2 .

Proof. Using the orthogonality of the summands within the Hoeffding decomposition
as well as aM ∈ [0, 1], |M | ≤ 2d− 1, from Lemma 2.7 we obtain that

Var
( n

2d
E
[

(W ′ −W )2
∣

∣X
]

)

= Var

(

∑

M⊆[n]:
|M |≤2d−1

aMUM

)

=
∑

M⊆[n]:
|M |≤2d−1

a2M Var(UM )

≤
∑

M⊆[n]:
|M |≤2d−1

Var(UM)

≤ E
[

W 4
]

− 3 + κd̺
2 ,

where the final inequality is by Lemma 2.10.
�

Now, we proceed to bounding the second error term appearing in the bound (10)
from Theorem 2.1. The next lemma will be crucial for doing this.

Lemma 2.12. For the above constructed exchangeable pair we have the bound

n

4d
E
[

(W ′ −W )4
]

≤ 2
(

E[W 4]− 3
)

+ 3κd̺
2 .

Proof. From Lemmas 2.3, 2.2 and 2.7 we obtain that

n

4d
E
[

(W ′ −W )4
]

= 3E
[

W 2 n

2d
E
[

(W ′ −W )2
∣

∣X
]

]

− E
[

W 4
]

= 3
∑

M,N⊆[n]:
|M |,|N |≤2d

aME
[

UMUN

]

− E
[

W 4
]

,

where we recall that aM = 1 − |M |
2d

∈ [0, 1], for all M ⊆ [n] such that |M | ≤ 2d.
Noting that a∅U

2
∅ = 1, aM = 0 whenever |M | = 2d and using the orthogonality of
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the Hoeffding decomposition yield
n

4d
E
[

(W ′ −W )4
]

= 3a∅U
2
∅ − E

[

W 4
]

+ 3
∑

M⊆[n]:
1≤|M |≤2d−1

aM Var(UM)

≤ 3− E[W 4] + 3
∑

M⊆[n]:
1≤|M |≤2d−1

Var(UM)

≤ 3− E[W 4] + 3
(

E[W 4]− 3 + κd̺
2
)

= 2
(

E[W 4]− 3
)

+ 3κd̺
2 ,

where we have used Lemma 2.10 to obtain the last inequality.
�

From the fact that
2d

n
= 2λ = E

[

(W ′ −W )2
]

and using the Cauchy-Schwarz inequality we obtain

1

3λ
E
∣

∣W ′ −W
∣

∣

3 ≤ n

3d

(

E
[

(W ′ −W )2
]

)1/2(

E
∣

∣W ′ −W
∣

∣

4
)1/2

=
2
√
2

3

( n

4d
E
[

(W ′ −W )4
]

)1/2

.(22)

Hence, by virtue of Lemma 2.12 we have

(23)
1

3λ
E
∣

∣W ′ −W
∣

∣

3 ≤ 2
√
2

3

(

2
(

E[W 4]− 3
)

+ 3κd̺
2
)1/2

.

Theorem 1.3 now follows from (10), Lemma 2.11 and from (23) .

3. Proof of the multidimensional theorem

3.1. Stein’s method of exchangeable pairs for multivariate normal approx-

imation. Although the exchangeable pairs coupling lies at the heart of univariate
normal approximation by Stein’s method, it was only in 2008 in [CM08] that the
problem of developing an analogous technique in the multivariate setting was finally
attacked. In their work, for a given random vector

W = (W (1), . . . ,W (r))T ,

the authors assume the existence of another random vector

W ′ = (W ′(1), . . . ,W ′(r))T ,

defined on the same probability space (Ω,F ,P), such that W ′ has the same distri-
bution as W and such that the linear regression property

E
[

W ′ −W
∣

∣W
]

= −λW
is satisfied for some positive constant λ. Under these assumptions the authors prove
several theorems which bound the distance from W to a standard normal random
vector in terms of the pair (W,W ′).
In [RR09] the authors motivate and investigate the more general linear regression
property

(24) E
[

W ′ −W
∣

∣G
]

= −ΛW +R ,
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where now Λ is an invertible non-random r × r matrix, G ⊆ F is a sub-σ-field of F
such that σ(W ) ⊆ G and R = (R(1), . . . , R(r))T is a small remainder term. However,
in contrast to [CM08] and to the univariate situation presented in Subsection 2.1,
in [RR09] the full strength of the exchangeability of the vector (W,W ′) is needed.
Finally, in [Mec09] the two approaches from [CM08] and [RR09] are combined, al-
lowing for the more general linear regression property from [RR09] and using sharper
coordinate-free bounds on the solution to the Stein equation similar to those derived
in [CM08]. The following result, quoted from [Döb12], is (a version of) Theorem 3
in [Mec09] but with better constants.

Theorem 3.1. Let (W,W ′) be an exchangeable pair of Rr-valued L2(P) random

vectors defined on a probability space (Ω,F ,P) and let G ⊆ F be a sub-σ-field of F
such that σ(W ) ⊆ G. Suppose there exist a non-random invertible matrix Λ ∈ Rr×r,

a non-random positive semidefinite matrix Σ, a G-measurable random vector R and

a G-measurable random matrix S such that (24) and

(25) E
[

(W ′ −W )(W ′ −W )T
∣

∣

∣
G
]

= 2ΛΣ + S

hold true. Finally, denote by Z a centered r-dimensional Gaussian vector with co-

variance matrix Σ.

(a) For any h ∈ C3(Rr) such that E
[

|h(W )|
]

<∞ and E
[

|h(Z)|
]

<∞,

∣

∣E[h(W )]− E[h(Z)]
∣

∣ ≤ ‖Λ−1‖op
(

M1(h)E
[

‖R‖2
]

+
1

4
M̃2(h)E

[

‖S‖H.S.

]

+
1

18
M3(h)E

[

‖W ′ −W‖32
]

)

≤ ‖Λ−1‖op
(

M1(h)E
[

‖R‖2
]

+

√
r

4
M2(h)E

[

‖S‖H.S.

]

+
1

18
M3(h)E

[

‖W ′ −W‖32
]

)

.

(b) If Σ is actually positive definite, then for each h ∈ C2(Rr) such that

E
[

|h(W )|
]

<∞ and E
[

|h(Z)|
]

<∞ we have

∣

∣E[h(W )]− E[h(Z)]
∣

∣ ≤M1(h)‖Λ−1‖op
(

E
[

‖R‖2
]

+
‖Σ−1/2‖op√

2π
E
[

‖S‖H.S.

]

)

+

√
2π

24
M2(h)‖Λ−1‖op‖Σ−1/2‖opE

[

‖W ′ −W‖32
]

.

3.2. Proof of Theorem 1.6. Recall the notation and assumptions from Subsection
1.3. Starting from the random vector W = (W (1), . . . ,W (r))T we will construct
another vector

W ′ := (W ′(1), . . . ,W ′(r))T

such that (W,W ′) is an exchangeable pair in the following way: For each 1 ≤ i ≤ r
we construct W ′(i) in the same way as we did in the one-dimensional situation
treated in Subsection 2.2 and from the same independent copy Y = (Y1, . . . , Yn) of
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X = (X1, . . . , Xn) and the same α which is independent of (X, Y ) and uniformly
distributed on [n]. We will apply Theorem 3.1 with Σ = V and G = σ(X1, . . . , Xn).

Lemma 3.2. With the above definitions and notation we have

E
[

W ′ −W
∣

∣X
]

= −ΛW ,

where the matrix Λ is given by Λ = diag
(

p1
n
, . . . , pr

n

)

.

Proof. This follows immediately from Lemma 2.3. �

Hence, we obtain that

(26) ‖Λ−1‖op = max
i=1,...,r

n

pi
=

n

p1
.

Let us define the random matrix S = (Si,k)1≤i,k≤r by the relation

(27) E
[

(W ′ −W )(W ′ −W )T
∣

∣X
]

= 2ΛV+ S .

From Lemma 3.2 and the fact that vi,k = 0 unless pi = pk we easily conclude that S
is symmetric. Also, using exchangeability, it is readily checked that

(28) E
[

S
]

= E
[

(W ′ −W )(W ′ −W )T
]

− 2ΛV = 0 .

Lemma 3.3. Let 1 ≤ i ≤ k ≤ r and let

W (i)W (k) =
∑

M⊆[n]:
|M |≤pi+pk

UM(i, k)

be the Hoeffding decomposition of W (i)W (k). Then, we have the Hoeffding decom-

position

nE
[

(W ′(i)−W (i))(W ′(k)−W (k))
∣

∣X
]

=
∑

M⊆[n]:
|M |≤pi+pk−1

aM(i, k)UM(i, k) ,

where

aM(i, k) = pi + pk − |M | .

Proof. First note that we have the representation

(W ′(i)−W (i))(W ′(k)−W (k))

=

n
∑

j=1

1{α=j}

∑

J∈Dpi
,K∈Dpk

:
j∈J∩K

(W ′
J(i)−WJ(i))(W

′
K(k)−WK(k))

=

n
∑

j=1

1{α=j}

∑

J∈Dpi
,K∈Dpk

:
j∈J∩K

(

W
(j)
J (i)W

(j)
K (k) +WJ(i)WK(k)−WJ(i)W

(j)
K (k)

−W
(j)
J (i)WK(k)

)
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which implies that

nE
[

(W ′(i)−W (i))(W ′(k)−W (k))
∣

∣X
]

=
n
∑

j=1

∑

J∈Dpi
,K∈Dpk

:
j∈J∩K

(

E
[

WJ(i)WK(k)
∣

∣F(J∪K)\{j}

]

+WJ(i)WK(k)
)

=
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

|J ∩K|WJ(i)WK(k) +

n
∑

j=1

∑

J∈Dpi
,K∈Dpk

:
j∈J∩K

E
[

WJ(i)WK(k)
∣

∣F(J∪K)\{j}

]

Using Lemma 2.5 (b) we have

n
∑

j=1

∑

J∈Dpi
,K∈Dpk

:
j∈J∩K

E
[

WJ(i)WK(k)
∣

∣F(J∪K)\{j}

]

=
n
∑

j=1

∑

J∈Dpi
,K∈Dpk

:
j∈J∩K

∑

M⊆[n]:
J∆K⊆M⊆(J∪K)\{j}

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJ (i)WK(k)
∣

∣FL

]

=
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

∑

j∈J∩K

∑

M⊆[n]:
J∆K⊆M⊆(J∪K)\{j}

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJ(i)WK(k)
∣

∣FL

]

=
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

∑

M⊆[n]:
J∆K⊆M(J∪K

(

|J ∪K| − |M |
)

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJ(i)WK(k)
∣

∣FL

]

=
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

∑

M⊆[n]:
J∆K⊆M⊆J∪K

(

|J ∪K| − |M |
)

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJ(i)WK(k)
∣

∣FL

]

(29)

Note that for the third equality we have used the crucial fact that

(J ∪K) \M = (J ∩K) \M , whenever J∆K ⊆ M

which implies that

|(J ∩K) \M | = |J ∪K| − |M | for J∆K ⊆ M ⊆ J ∪K .

Also, from Lemma 2.5 (a) we obtain that
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

|J ∩K|
∑

M⊆[n]:
J∆K⊆M⊆J∪K

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJ(i)WK(k)
∣

∣FL

]

=
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

|J ∩K|
∑

M⊆[n]:
J∆K⊆M⊆J∪K

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJ(i)WK(k)
∣

∣FL

]

=
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

∑

M⊆[n]:
J∆K⊆M⊆J∪K

|J ∩K|
∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJ(i)WK(k)
∣

∣FL

]

(30)
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Combining (29) and (30) we thus have

nE
[

(W ′(i)−W (i))(W ′(k)−W (k))
∣

∣X
]

=
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

∑

M⊆[n]:
J∆K⊆M⊆J∪K

(

|J ∪K|+ |J ∩K| − |M |
)

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJ(i)WK(k)
∣

∣FL

]

=
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

∑

M⊆[n]:
J∆K⊆M⊆J∪K

(

pi + pk − |M |
)

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJ(i)WK(k)
∣

∣FL

]

=
∑

M⊆[n]:
|M |≤pi+pk−1

(

pi + pk − |M |
)

∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅,
J∆K⊆M⊆J∪K

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJ(i)WK(k)
∣

∣FL

]

=
∑

M⊆[n]:
|M |≤pi+pk−1

(

pi + pk − |M |
)

∑

J∈Dpi
,K∈Dpk

:
J∆K⊆M⊆J∪K

∑

L⊆[n]:
J∆K⊆L⊆M

(−1)|M |−|L|E
[

WJ(i)WK(k)
∣

∣FL

]

=
∑

M⊆[n]:
|M |≤pi+pk−1

(

pi + pk − |M |
)

UM(i, k) ,

as claimed. �

Since S is centered, from (27) and Lemma 3.3 we obtain that

n2E
[

S2
i,k

]

= Var
(

nSi,k

)

= Var
(

nE
[

(W ′(i)−W (i))(W ′(k)−W (k))
∣

∣X
]

)

=
∑

M⊆[n]:
|M |≤pi+pk−1

(

pi + pk − |M |
)2

Var
(

UM (i, k)
)

≤ (pi + pk)
2

∑

M⊆[n]:
|M |≤pi+pk−1

Var
(

UM(i, k)
)

= (pi + pk)
2
(

Var(W (i)W (k))−
∑

M⊆[n]:
|M |=pi+pk

E
[

UM(i, k)2
]

)

= (pi + pk)
2
(

Var(W (i)W (k))

−
∑

J,L∈Dpi
,K,M∈Dpk

:

J∩K=L∩M=∅

E
[

WJ(i)WK(k)WL(i)WM (k)
]

)

.(31)

For 1 ≤ i ≤ k ≤ r define

S0(i, k) :=
∑

J,L∈Dpi
,K,M∈Dpk

:

J∩K=L∩M=∅,
∅(J∩L=J\(J∩M)(J,
∅(L∩J=L\(L∩K)(L

E
[

WJ(i)WK(k)WL(i)WM(k)
]

.
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If pi < pk, then from (31) we have that

n2E
[

S2
i,k

]

≤ (pi + pk)
2
(

Var(W (i)W (k))−
∑

J∈Dpi
,K∈Dpk

:

J∩K=∅

σJ(i)
2σK(k)

2 − S0(i, k)
)

.

(32)

Lemma 4.1 immediately yields that

∑

J∈Dpi
,K∈Dpk

:

J∩K=∅

σJ(i)
2σK(k)

2 = 1−
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

σJ(i)
2σK(k)

2

≥ 1−min
(

pi̺
2
n,k , pk̺

2
n,i

)

.(33)

If pi = pk, then we obtain that

n2E
[

S2
i,k

]

≤ 4p2i

(

Var(W (i)W (k))−
∑

J,K∈Dpi
:

J∩K=∅

σJ (i)
2σK(k)

2

−
∑

J,K∈Dpi
:

J∩K=∅

E
[

WJ(i)WJ(k)
]

E
[

WK(i)WK(k)
]

− S0(i, k)
)

.(34)

Similarly to Lemma 4.1 we obtain for pi = pk that

∣

∣

∣

∑

J,K∈Dpi
:

J∩K 6=∅

E
[

WJ(i)WJ (k)
]

E
[

WK(i)WK(k)
]

∣

∣

∣

≤
∑

J∈Dpi

∣

∣E
[

WJ(i)WJ(k)
]
∣

∣

∑

j∈J

∑

K∈Dpi
:

j∈K

∣

∣E
[

WK(i)WK(k)
]
∣

∣

≤
∑

J∈Dpi

∣

∣E
[

WJ(i)WJ(k)
]
∣

∣

∑

j∈J

(

∑

K∈Dpi
:

j∈K

σK(i)
2
)1/2( ∑

K∈Dpk
:

j∈K

σK(k)
2
)1/2

≤ pi̺n,k̺n,i
∑

J∈Dpi

∣

∣E
[

WJ(i)WJ(k)
]
∣

∣ ≤ pi̺n,k̺n,i
∑

J∈Dpi

σJ (i)σJ(k)

≤ pi̺n,k̺n,i

(

∑

J∈Dpi

σJ (i)
2
)1/2( ∑

J∈Dpk

σJ(k)
2
)1/2

= pi̺n,k̺n,i .
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Hence, if pi = pk we have that

∑

J,K∈Dpi
:

J∩K=∅

E
[

WJ(i)WJ(k)
]

E
[

WK(i)WK(k)
]

=
(

∑

J∈Dpi

E
[

WJ(i)WJ(k)
]

)2

−
∑

J,K∈Dpi
:

J∩K 6=∅

E
[

WJ(i)WJ(k)
]

E
[

WK(i)WK(k)
]

= v2i,k −
∑

J,K∈Dpi
:

J∩K 6=∅

E
[

WJ(i)WJ(k)
]

E
[

WK(i)WK(k)
]

≥ v2i,k − pi̺n,k̺n,i .(35)

Note that we can write

Var
(

W (i)W (k)
)

= E
[

W (i)2W (k)2
]

−
(

E
[

W (i)W (k)
]

)2

= Cov
(

W (i)2,W (k)2
)

+ E
[

W (i)2
]

E
[

W (k)2
]

− v2i,k

= Cov
(

W (i)2,W (k)2
)

+ 1− v2i,k .(36)

Hence, if pi < pk, then, since vi,k = 0, from (32), (33) and (36) we see that

n2E
[

S2
i,k

]

≤ (pi + pk)
2
(

Cov
(

W (i)2,W (k)2
)

+min
(

pi̺
2
n,k , pk̺

2
n,i

)

− S0(i, k)
)

.

(37)

If, on the other hand, pi = pk, then from (34), (33), (36) and (35) we conclude that

n2E
[

S2
i,k

]

≤ 4p2i

(

Cov
(

W (i)2,W (k)2
)

− 2v2i,k + pi min
(

̺2n,k , ̺
2
n,i

)

+ pi̺n,k̺n,i − S0(i, k)
)

= 4p2i

(

E
[

W (i)2W (k)2
]

− 1− 2v2i,k + pi min
(

̺2n,k , ̺
2
n,i

)

+ pi̺n,k̺n,i − S0(i, k)
)

= 4p2i

(

E
[

W (i)2W (k)2
]

− E
[

Z(i)2Z(k)2
]

+ pi min
(

̺2n,k , ̺
2
n,i

)

+ pi̺n,k̺n,i − S0(i, k)
)

.(38)

For the last identity we have used the elementarily verifiable fact that

E
[

Z(i)2Z(k)2
]

= 1 + 2v2i,k
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for all 1 ≤ i, k ≤ r.
For pi < pk, by the orthogonality of the Hoeffding decomposition and by the Cauchy-
Schwarz inequality we have that

Cov
(

W (i)2,W (k)2
)

=
∑

M,N⊆[n]:
|M |≤2pi,|N |≤2pk

E
[

UM (i, i)UN(k, k)
]

− E[W (i)2]E[W (k)2]

=
∑

M⊆[n]:
1≤|M |≤2pi

E
[

UM(i, i)UM(k, k)
]

≤
∑

M⊆[n]:
1≤|M |≤2pi

(

E
[

UM(i, i)2
]

)1/2(

E
[

UM (k, k)2
]

)1/2

≤
(

∑

M⊆[n]:
1≤|M |≤2pi

E
[

UM(i, i)2
]

)1/2(
∑

M⊆[n]:
1≤|M |≤2pi

E
[

UM (k, k)2
]

)1/2

=

(

∑

M⊆[n]:
1≤|M |≤2pi

Var
(

UM (i, i)
)

)1/2(
∑

M⊆[n]:
1≤|M |≤2pi

Var
(

UM (k, k)
)

)1/2

=
(

E
[

W (i)4
]

− 1
)1/2

(

∑

M⊆[n]:
1≤|M |≤2pi

Var
(

UM(k, k)
)

)1/2

.(39)

Since pi < pk, by means of (39) we can further bound

Cov
(

W (i)2,W (k)2
)

≤
(

E
[

W (i)4
]

− 1
)1/2

(

∑

M⊆[n]:
1≤|M |≤2pk−1

Var
(

UM(k, k)
)

)1/2

=
(

E
[

W (i)4
]

− 1
)1/2(

Var
(

W (k)2
)

−
∑

M⊆[n]:
|M |=2pk

E
[

UM(k, k)2
]

)1/2

≤
(

E
[

W (i)4
]

− 1
)1/2(

E
[

W (k)4
]

− 3 +
(

2pk + Cpk

)

̺2n,k

)1/2

,(40)

where the final inequality is true by (20).
From (37) and (40) and from (38), respectively, we thus obtain the following result.

Lemma 3.4. Let 1 ≤ i ≤ k ≤ r.

(i) If pi < pk, then

n2E
[

S2
i,k

]

≤ (pi + pk)
2

[

(

E
[

W (i)4
]

− 1
)1/2(

E
[

W (k)4
]

− 3 +
(

2pk + Cpk

)

̺2n,k

)1/2

+min
(

pi̺
2
n,k , pk̺

2
n,i

)

− S0(i, k)

]

.
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(ii) If pi = pk, then

n2E
[

S2
i,k

]

≤ 4p2i

(

E
[

W (i)2W (k)2
]

− E
[

Z(i)2Z(k)2
]

+ pi min
(

̺2n,k , ̺
2
n,i

)

+ pi̺n,k̺n,i − S0(i, k)
)

.

It remains to bound the quantities S0(i, k), 1 ≤ i ≤ k ≤ r. The concepts of
free indices and bifold quadruples from Subsection 2.2 generalize in the obvious way
to quadruples (J1, J2, J3, J4) ∈ Dpi × Dpk × Dpi × Dpk =: D4

i,k. We denote by Bi,k

the collection of all bifold quadruples in D4
i,k. Also, we denote by Ti,k the set of

quadruples (J1, J2, J3, J4) ∈ D4
i,k which are neither bifold nor have a free index, i.e.

which satisfy

1J1 + 1J2 + 1J3 + 1J4 ≥ 21J1∪J2∪J3∪J4

and there is a j ∈ [n] such that

1J1(j) + 1J2(j) + 1J3(j) + 1J4(j) ≥ 3 .

With these definitions, for 1 ≤ i ≤ k ≤ r, we define

τi,k :=
∑

(J,K,L,M)∈Ti,k

σJ (i)σK(k)σL(i)σM (k) .

The next result is a generalization of Proposition 2.8.

Proposition 3.5. With these definitions, for 1 ≤ i ≤ k ≤ r, we have

S0(i, k) ≥ −τi,k .

The proof is postponed to Section 4. It remains to obtain a bound on the quantities
τi,k in terms of ̺2n,i and ̺2n,k. This is provided by the following result which generalizes
Proposition 2.9. An outline of the main elements of the proof is given in Section 4.

Proposition 3.6. For each 1 ≤ i, k ≤ r, there exists a finite constant Ci,k which

depends on i and k only through pi and pk and which is independent of n such that

τi,k =
∑

(J,K,L,M)∈Ti,k

σJ (i)σK(k)σL(i)σM (k) ≤ Ci,k max
(

̺2n,i, ̺
2
n,k

)

.

Furthermore, we have Ci,k = Ck,i.

Combining Propositions 3.5 and 3.6, we thus obtain that

(41) S0(i, k) ≥ −Ci,k max
(

̺2n,i, ̺
2
n,k

)

for all 1 ≤ i, k ≤ r.

Observe that, using (26) and the symmetry of S, we can bound

(42) ‖Λ−1‖opE
[

‖S‖H.S.

]

≤ n

p1

(

E
[

‖S‖2H.S.

]

)1/2

=
1

p1

(

r
∑

i,k=1

n2E
[

S2
i,k

]

)1/2

.
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Now, using Lemma 3.4 we have

r
∑

i,k=1

n2E
[

S2
i,k

]

=
s
∑

l,m=1

rl
∑

i=rl−1+1

rm
∑

k=rm−1+1

n2E
[

S2
i,k

]

=
s
∑

l=1

rl
∑

i,k=rl−1+1

n2E
[

S2
i,k

]

+ 2
∑

1≤l<m≤s

rl
∑

i=rl−1+1

rm
∑

k=rm−1+1

n2E
[

S2
i,k

]

≤
s
∑

l=1

4q2l

rl
∑

i,k=rl−1+1

(

E
[

W (i)2W (k)2
]

− E
[

Z(i)2Z(k)2
]

+ ql min
(

̺2n,k , ̺
2
n,i

)

+ ql̺n,k̺n,i + Ci,k max
(

̺2n,i, ̺
2
n,k

)

)

+ 2
∑

1≤l<m≤s

(ql + qm)
2

rl
∑

i=rl−1+1

rm
∑

k=rm−1+1

[

(

E
[

W (i)4
]

− 1
)1/2

(

E
[

W (k)4
]

− 3 +
(

2qm + Cqm

)

̺2n,k

)1/2

+min
(

ql̺
2
n,k , qm̺

2
n,i

)

+ Ci,k max
(

̺2n,i, ̺
2
n,k

)

]

= A .(43)

Here, the constants Cqm are defined by Proposition 2.9.
Note that from Lemma 2.12 applied to the exchangeable pair (W (i),W ′(i)) we

have

(44)
n

4pi
E
∣

∣W ′(i)−W (i)
∣

∣

4 ≤ 2
(

E
[

W (i)4
]

− 3
)

+ 3
(

Cpi + 2pi
)

̺2n,i .

Using (26) as well as Jensen’s inequality, we obtain

‖Λ−1‖opE
[

‖W ′ −W‖32
]

=
n

p1
E
[

‖W ′ −W‖32
]

=
n

p1

(

r
∑

i=1

E
∣

∣W ′(i)−W (i)
∣

∣

2
)3/2

=
n

p1

(

r

r
∑

i=1

E
∣

∣W ′(i)−W (i)
∣

∣

2 1

r

)3/2

≤ n

p1
r3/2

r
∑

i=1

E
∣

∣W ′(i)−W (i)
∣

∣

3 1

r

=
n

p1
r1/2

r
∑

i=1

E
∣

∣W ′(i)−W (i)
∣

∣

3
.
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Thus, by (44) we have

‖Λ−1‖opE
[

‖W ′ −W‖32
]

≤ n

p1
r1/2

r
∑

i=1

(

E
∣

∣W ′(i)−W (i)
∣

∣

2
)1/2(

E
∣

∣W ′(i)−W (i)
∣

∣

4
)1/2

= 2
√
2r

r
∑

i=1

pi
p1

( n

4pi
E
∣

∣W ′(i)−W (i)
∣

∣

4
)1/2

≤ 2
√
2r

r
∑

i=1

pi
p1

(

2
(

E
[

W (i)4
]

− 3
)

+ 3
(

Cpi + 2pi
)

̺2n,i

)1/2

= 2
√
2r

s
∑

l=1

ql
q1

rl
∑

i=rl−1+1

(

2
(

E
[

W (i)4
]

− 3
)

+ 3
(

Cql + 2ql
)

̺2n,i

)1/2

.(45)

Theorem 1.6 now follows from Theorem 3.1 and from the respective bounds (42),
(43) and (45) .

4. Proofs of several technical results

Lemma 4.1. In the situation of Section 3, for all 1 ≤ i ≤ k ≤ r we have
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

σJ (i)
2σK(k)

2 ≤ min
(

pi̺
2
n,k , pk̺

2
n,i

)

.

Proof. Note that we have
∑

J∈Dpi
,K∈Dpk

:

J∩K 6=∅

σJ (i)
2σK(k)

2 =
∑

J∈Dpi

σJ (i)
2
∑

K∈Dpk
:

J∩K 6=∅

σK(k)
2

≤
∑

J∈Dpi

σJ(i)
2
∑

j∈J

∑

K∈Dpk
:

j∈K

σK(k)
2

≤ pi̺
2
k

∑

J∈Dpi

σJ(i)
2 = pi̺

2
k .

The claim follows by symmetry. �

Lemma 4.2 (Generalization of Lemma 4 of [dJ90]). Let (J,K, L,M) ∈ Bi,k be a

bifold quadruple. Then, in the situation of Section 3 we have

E
[

WJWKWLWM

]

= E
[

E
[

WJWK

∣

∣FJ∆K

]

E
[

WLWM

∣

∣FL∆M

]

]

.

Proof. We repeat the short proof from [dJ90]. By independence, we have

E
[

WJWKWLWM

]

= E
[

WJWKE
[

WLWM

∣

∣FL∪M

]

]

= E
[

WJWKE
[

WLWM

∣

∣F(J∪K)∩(L∪M)

]

]

= E
[

E
[

WJWK

∣

∣F(J∪K)∩(L∪M)

]

E
[

WLWM

∣

∣F(J∪K)∩(L∪M)

]

]

.
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Now, the claim follows from the fact that for a bifold quadruple (J,K, L,M) the
identity

(J ∪K) ∩ (L ∪M) = J∆K = L∆M

holds true. �

Lemma 4.3 (Generalization of Lemma 3 of [dJ90]). In the situation of Section 3,

for 1 ≤ i ≤ k ≤ r, J ∈ Dpi and K ∈ Dpk we have

E
[(

E
[

WJWK

∣

∣FJ∆K

]

)2]

≤ σ2
J(i)σ

2
K(k) .

Proof. Again, we immitate the proof given in [dJ90]. Using first the conditional
version of the Cauchy-Schwarz inequality and then twice the independence of the
underlying random variables X1, . . . , Xn we obtain

E
[(

E
[

WJWK

∣

∣FJ∆K

]

)2]

≤ E
[

E
[

W 2
J

∣

∣FJ∆K

]

E
[

W 2
K

∣

∣FJ∆K

]

]

= E
[

E
[

W 2
J

∣

∣FJ\K

]

E
[

W 2
K

∣

∣FK\J

]

]

= E
[

E
[

W 2
J

∣

∣FJ\K

]

]

E
[

E
[

W 2
K

∣

∣FK\J

]

]

= σ2
J (i)σ

2
K(k) .

�

Proof of Proposition 3.5. We generalize the argument used in the proof of Proposi-
tion 5 (b) of [dJ90]. For l = 1, . . . , pi − 1 we have

0 ≤
∑

C⊆[n]:
|C|=pi+pk−2l

∑

B,B′⊆C:
|B|=pi−l,|B′|=pk−l,

B∩B′=∅

E
[(

∑

J∈Dpi
,M∈Dpk

:

J\M=B,M\J=B′

E
[

WJ(i)WM (k)
∣

∣FJ∆M

]

)2]

=
∑

C⊆[n]:
|C|=pi+pk−2l

∑

B,B′⊆C:
|B|=pi−l,|B′|=pk−l,

B∩B′=∅

∑

(J,K,L,M)∈D4
i,k

:

J\M=L\K=B,M\J=K\L=B′

E
[

E
[

WJ(i)WM(k)
∣

∣FJ∆M

]

E
[

WL(i)WK(k)
∣

∣FL∆K

]

]

=
∑

(J,K,L,M)∈Bi,k:
J\M=L\K,M\J=K\L,

|J∩M |=l

E
[

WJ(i)WK(k)WL(i)WM (k)
]

+
∑

(J,K,L,M)∈Ti,k:
J\M=L\K,M\J=K\L,

|J∩M |=l=|L∩K|

E
[

E
[

WJ(i)WM(k)
∣

∣FJ∆M

]

E
[

WL(i)WK(k)
∣

∣FL∆K

]

]

=: S0(i, k, l) +Rl ,

where we have used Lemma 4.2 to obtain the second equality. Note that

pi−1
∑

l=1

S0(i, k, l) = S0(i, k)
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because for a bifold quadruple (J,K, L,M) the identity J \M = L \K implies that
J ∩K = L ∩M = ∅ and because we have

S0(i, k) =
∑

(J,K,L,M)∈Bi,k:
J∩K=L∩M=∅,

∅(J∩M(J

E
[

WJ(i)WK(k)WL(i)WM(k)
]

.

Further, by the Cauchy-Schwarz inequality and by Lemma 4.3, we have

∣

∣

∣

pi−1
∑

l=1

Rl

∣

∣

∣
≤

pi−1
∑

l=1

∑

(J,K,L,M)∈Ti,k:
J\M=L\K,M\J=K\L,

|J∩M |=l=|L∩K|

(

E
[(

E
[

WJ(i)WM(k)
∣

∣FJ∆M

]

)2]
)1/2

(

E
[(

E
[

WL(i)WK(k)
∣

∣FL∆K

]

)2]
)1/2

≤
∑

(J,K,L,M)∈Ti,k

σJ(i)σK(k)σL(i)σM(k) = τi,k .

Thus, the claim follows. �

Proof of Proposition 2.9. In order to prove Proposition 2.9 let us review the following
concepts and notation, introduced in [dJ89]. For a quadruple (J1, J2, J3, J4) ∈ D4

d

write

I := J1 ∪ J2 ∪ J3 ∪ J4 = {i1, . . . , ir} with 1 ≤ i1 < i2 < . . . < ir ≤ n

and define the shadow (J ′
1, J

′
2, J

′
3, J

′
4) of (J1, J2, J3, J4) by

J ′
l :=

{

a ∈ {1, . . . , r} : ia ∈ Jl
}

, 1 ≤ l ≤ 4 .

Note that since we have the equivalence

a ∈ J ′
l ⇔ ia ∈ Jl

the sets J ′
l satisfy obvious relations like

(46) |J ′
l | = |Jl| = d , |J ′

l ∩ J ′
m| = |Jl ∩ Jm| etc.

and that a quadruple (J1, J2, J3, J4) ∈ D4
d is completely determined by its shadow

and by I =
⋃4

l=1 Jl. Note also that if (J1, J2, J3, J4) ∈ Td, then we have

J ′
1 ∪ J ′

2 ∪ J ′
3 ∪ J ′

4 = {1, . . . , r}
for some r ∈ {d, d+ 1, . . . , 2d− 1} and Ji ∩ Jk 6= ∅ for all i, k = 1, 2, 3, 4. Indeed, if,
for instance, J1∩J2 were empty and j0 ∈ Ji for at least three values of i ∈ {1, 2, 3, 4},
then necessarily j0 ∈ J3 ∩ J4 implying |J3 ∪ J4| ≤ 2d − 1. Hence, J1 ∪ J2 6⊆ J3 ∪ J4
because |J1 ∪ J2| = 2d by disjointness. Thus, (J1, J2, J3, J4) has a free index and,
hence, cannot be in Td. By the above observation (46), this immediateley implies
that also J ′

i ∩ J ′
k 6= ∅ for all i, k = 1, 2, 3, 4.

In general, we call a quadruple of sets F = (F1, F2, F3, F4) a shadow (a d-shadow) if
there is an r ∈ {d, d+1, . . . , 2d−1} such that F := F1∪F2∪F3∪F4 = {1, . . . , r} and
|Fl| = d for l = 1, 2, 3, 4. We call r the size of the shadow F. We say that the shadow
F is induced by the quadruple (J1, J2, J3, J4) ∈ D4

d, if F = (J ′
1, J

′
2, J

′
3, J

′
4). We write

F(J1, J2, J3, J4) for the shadow induced by (J1, J2, J3, J4). If F′ = (F ′
1, F

′
2, F

′
3, F

′
4) is

another d-shadow with F ′ := F ′
1 ∪F ′

2 ∪F ′
3 ∪F ′

4 = {1, . . . , r′}, then we say that F and
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F′ are equivalent and write F ∼ F′, if r = r′ and there is a permutation σ ∈ Sr such
that

(47) F ′
l = σ(Fl) for l = 1, 2, 3, 4.

We denote the latter fact by F′ = Fσ. This clearly defines an equivalence relation on
the set of d-shadows and we denote by [F]∼ the equivalence class of F. We further
denote by γ(F) the number of permutations σ ∈ Sr that leave F fixed in the sense
that

(48) σ(Fl) = Fl for all l = 1, 2, 3, 4.

The set of these permutaions is just the stabilizer of F with respect to the natural
action of Sr on the set of d-shadows of size r. Note that, for F′ ∼ F, we have
γ(F) = γ(F′) and that γ(F) also gives the number of permutations σ such that (47)
holds. Let us define the function g : [n]d → R by

g(j1, . . . , jd) :=

{

σ{j1,...,jd} , if
∣

∣{j1, . . . , jd}
∣

∣ = d

0 , otherwise.

Then, g is a symmetric function vanishing on the complement ∆c = [n]d \∆ of

∆ := ∆
(n)
d := {(j1, . . . , jd) ∈ [n]d : jl 6= jm whenever l 6= m} .

Further, for a shadow F = (F1, F2, F3, F4) which is induced by some quadruple
(J1, J2, J3, J4) ∈ D4

d and with F := F1 ∪ F2 ∪ F3 ∪ F4 = {1, . . . , r} and πFl
being the

natural projection [n]F → [n]Fl given by (ja)a∈F 7→ (ja)a∈Fl
, define GFl

: [n]F → R
by GFl

:= g ◦ πFl
. Here, we tacitly identify [n]d with [n]Fl and [n]r with [n]F .

Lemma 4.4. Let F = (F1, F2, F3, F4) be a d-shadow of size r which is induced by

some quadruple (J1, J2, J3, J4) ∈ T . Then, we have the bound

∑

(J,K,L,M)∈T :
F(J,K,L,M)∈[F]∼

σJσKσLσM ≤ d!(d− 1)!

γ(F)
̺2n .

Proof. For ease of notation, in this proof we use bold letters a to denote tuples
a = (a1, . . . , as) ∈ [n]s, where s is some natural number. Also, for two such tuples
a = (a1, . . . , as) ∈ [n]s and b = (b1, . . . , bt) ∈ [n]t we write a ∩ b 6= ∅ if there are
indices 1 ≤ i ≤ s and 1 ≤ j ≤ t such that ai = bj , i.e. if

{a1, . . . , as} ∩ {b1, . . . , bt} 6= ∅ .

We begin the proof with the remark that
∑

(i1,...,ir)∈[n]r

GF1(i1, . . . , ir)GF2(i1, . . . , ir)GF3(i1, . . . , ir)GF4(i1, . . . , ir)

≥ γ(F)
∑

(J,K,L,M)∈T :
F(J,K,L,M)∈[F]∼

σJσKσLσM .
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This follows from

∑

(i1,...,ir)∈[n]r

4
∏

l=1

GFl
(i1, . . . , ir) ≥

∑

(i1,...,ir)∈[n]r6=

4
∏

l=1

GFl
(i1, . . . , ir)

=
∑

1≤j1<...<jr≤n

∑

σ∈Sr

4
∏

l=1

g
(

πFl
(jσ(1), . . . , jσ(r))

)

=
∑

1≤j1<...<jr≤n

∑

σ∈Sr

4
∏

l=1

g
(

πσ(Fl)(j1, . . . , jr)
)

= γ(F)
∑

F′∈[F]∼

∑

1≤j1<...<jr≤n

4
∏

l=1

GF ′
l
(j1, . . . , jr)

= γ(F)
∑

F′∈[F]∼

∑

(J,K,L,M)∈T :
F(J,K,L,M)=F′

σJσKσLσM

= γ(F)
∑

(J,K,L,M)∈T :
F(J,K,L,M)∈[F]∼

σJσKσLσM .

Here, we used the notation [n]r6= for the set of all tuples (i1, . . . , ir) ∈ [n]r such that
ij 6= ik whenever j 6= k. Hence, it suffices to show that we always have the bound

∑

(i1,...,ir)∈[n]r

4
∏

l=1

GFl
(i1, . . . , ir) ≤ d!(d− 1)!̺2n

if F is as in the statement of the Lemma.

We first treat the simple cases that either two or all of the sets Fl, l = 1, 2, 3, 4,
are equal. Note that the case of exactly three equal sets is vacuous for a quadruple
in T . Assume first that e.g. F3 6= F1 = F2 6= F4. It might be that also F3 = F4 but
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this is immaterial. Then, we have

∑

(i1,...,ir)∈[n]r

GF1(i1, . . . , ir)GF2(i1, . . . , ir)GF3(i1, . . . , ir)GF4(i1, . . . , ir)

=
∑

(i1,...,ir)∈[n]F

G2
F1
(i1, . . . , ir)GF3(i1, . . . , ir)GF4(i1, . . . , ir)

=
∑

j∈[n]F1

g(j)2
∑

k∈[n]F\F1

GF3(j,k)GF4(j,k)

≤
∑

j∈[n]F1

g(j)2
(

∑

k∈[n]F\F1

G2
F3
(j,k)

)1/2(
∑

k∈[n]F\F1

G2
F4
(j,k)

)1/2

=
∑

j∈[n]F1

g(j)2
(

∑

l∈[n]F3 :l∩j 6=∅

g(l)2
)1/2(

∑

m∈[n]F4 :m∩j 6=∅

g(m)2
)1/2

≤ (d− 1)!̺2n
∑

j∈[n]F1

g(j)2

= d!(d− 1)!̺2n

Note that the second inequality follows from the fact that F1∩F3 6= ∅ and F1∩F4 6= ∅
in this case as well as by the definition of ̺2n. If F1 = F2 = F3 = F4, then we have
r = d and

∑

(i1,...,ir)∈[n]r

GF1(i1, . . . , ir)GF2(i1, . . . , ir)GF3(i1, . . . , ir)GF4(i1, . . . , ir)

=
∑

(j1,...,jd)∈[n]d

g(j1, . . . , jd)
4

≤
n
∑

j1=1

max
(j2,...,jd)∈[n]d−1

g(j1, . . . , jd)
2

∑

(k2,...,kd)∈[n]d−1

g(j1, k2, . . . , kd)
2

≤ (d− 1)!̺2n

n
∑

j1=1

max
(j2,...,jd)∈[n]d−1

g(j1, . . . , jd)
2

≤ (d− 1)!̺2n
∑

(j1,...,jd)∈[n]d

g(j1, . . . , jd)
2

= d!(d− 1)!̺2n .
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For the remainder of this proof we may thus assume that the sets Fl, l = 1, 2, 3, 4,
are pairwise different. Then, using the Cauchy-Schwarz inequality, we can bound

∑

(i1,...,ir)∈[n]r

GF1(i1, . . . , ir)GF2(i1, . . . , ir)GF3(i1, . . . , ir)GF4(i1, . . . , ir)

=
∑

j∈[n]F1

g(j)
∑

k∈[n]F\F1

GF2(j,k)GF3(j,k)GF4(j,k)

≤
(

∑

j∈[n]F1

g(j)2
)1/2(

∑

j∈[n]F1

(

∑

k∈[n]F\F1

GF2(j,k)GF3(j,k)GF4(j,k)
)2
)1/2

=
√
d!

(

∑

j∈[n]F1

(

∑

k∈[n]F\F1

GF2(j,k)GF3(j,k)GF4(j,k)
)2
)1/2

(49)

Thus, it remains to bound the quantity

A :=
∑

j∈[n]F1

(

∑

k∈[n]F\F1

GF2(j,k)GF3(j,k)GF4(j,k)
)2

.

Let us distinguish the following cases.

1) Each element in F = F1 ∪ F2 ∪ F3 ∪ F4 appears in at least three of the sets
F1, F2, F3, F4. This implies that

F \ Fk = Fj \ Fk for all distinct j, k ∈ {2, 3, 4} .
Then, using Cauchy-Schwarz, we can bound

A ≤
∑

j∈[n]F1

(

∑

k∈[n]F\F1

G2
F2
(j,k)

∑

k∈[n]F\F1

G2
F3
(j,k)G2

F4
(j,k)

)

=
∑

j∈[n]F1

(

∑

l∈[n]F2 :l∩j 6=∅

g(l)2
∑

k∈[n]F\F1

G2
F3
(j,k)G2

F4
(j,k)

)

≤ (d− 1)!̺2n
∑

j∈[n]F1

∑

k∈[n]F\F1

G2
F3
(j,k)G2

F4
(j,k)

= (d− 1)!̺2n
∑

k∈[n]F\F1

∑

l∈[n]F1∩F3∩F4

∑

a∈[n](F3∩F1)\F4

g(k, l, a)2
∑

b∈[n](F4∩F1)\F3

g(k, l,b)2

≤
(

(d− 1)!
)2
̺4n

∑

k∈[n]F\F1

∑

l∈[n]F1∩F3∩F4

∑

a∈[n](F3∩F1)\F4

g(k, l, a)2

=
(

(d− 1)!
)2
̺4n

∑

j∈[n]F3

g(j)2

= d!
(

(d− 1)!
)2
̺4n .

Note that we have used the fact that

(F4 ∩ F1) \ F3 = F \ F3 6= ∅
to obtain the last inequality.
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2) There is an element j0 ∈ F = F1 ∪F2 ∪F3 ∪F4 which is contained in exactly two
of the sets F1, F2, F3, F4. We may assume that j0 ∈ F1. We claim that then there
are distinct indices j, k ∈ {2, 3, 4} such that

F1 6⊆ Fj ∪ Fk .

Indeed, we have

(F2 ∪ F3) ∩ (F2 ∪ F4) ∩ (F3 ∪ F4) = (F2 ∩ F3) ∪ (F2 ∩ F4) ∪ (F3 ∩ F4)

and, hence, j0 cannot be contained in the set on the right hand side. Thus, let us
assume that F1 6⊆ F3 ∪ F4. We obtain that

A ≤
∑

j∈[n]F1\F2

∑

a∈[n]F1∩F2

(

∑

k∈[n]F2\F1

g(a,k)
∑

l∈[n](F3∪F4)\(F1∪F2)

GF3(j, a,k, l)GF4(j, a,k, l)

)2

≤
∑

j∈[n]F1\F2

∑

a∈[n]F1∩F2

(

∑

k∈[n]F2\F1

g(a,k)2
)

·
∑

k∈[n]F2\F1

(

∑

l∈[n](F3∪F4)\(F1∪F2)

GF3(j, a,k, l)GF4(j, a,k, l)

)2

=
∑

j∈[n]F1\F2

∑

a1∈[n]F1∩F2∩(F3∪F4)

(

∑

a2∈[n]F1∩F2\(F3∪F4)

∑

k∈[n]F2\F1

g(a1, a2,k)
2

)

·
∑

k∈[n]F2\F1

(

∑

l∈[n](F3∪F4)\(F1∪F2)

GF3(j, a1, a
∗
2,k, l)GF4(j, a1, a

∗
2,k, l)

)2

≤ (d− 1)!̺2n
∑

j∈[n]F1\F2

∑

a1∈[n]F1∩F2∩(F3∪F4)

∑

k∈[n]F2\F1

·
(

∑

l∈[n](F3∪F4)\(F1∪F2)

GF3(j, a1, a
∗
2,k, l)GF4(j, a1, a

∗
2,k, l)

)2

,

where

a∗
2 ∈ [n]F1∩F2\(F3∪F4)

is arbitrary but fixed. Now note that due to the fact that F is induced by some
quadruple in T we have

F3 ∪ F4 = (F1 \ F2) ∪ (F2 \ F1) ∪
[

(F3 ∪ F4) ∩ F1 ∩ F2

]

∪
[

(F3 ∪ F4) \ (F1 ∪ F2)
]

= (F1 \ F2) ∪ (F2 \ F1) ∪
[

(F3 ∪ F4) ∩ F1 ∩ F2

]

∪
[

(F3 ∩ F4) \ (F1 ∪ F2)
]

,
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where the union on the right hand side is disjoint. Thus, the last bound becomes

A ≤ (d− 1)!̺2n
∑

m∈[n](F3∪F4)∩(F1∪F2)

∑

l∈[n](F3∩F4)\(F1∪F2)

G2
F3
(m, l)

·
∑

p∈[n](F3∩F4)\(F1∪F2)

G2
F4
(m,p)

= (d− 1)!̺2n
∑

a∈[n](F3∩F4)∩(F1∪F2)

∑

b∈[n](F3\F4)∩(F1∪F2)

∑

l∈[n](F3∩F4)\(F1∪F2)

g(a,b, l)2

∑

c∈[n](F4\F3)∩(F1∪F2)

∑

p∈[n](F3∩F4)\(F1∪F2)

g(a, c,p)2

≤
(

(d− 1)!
)2
̺4n
∑

j∈[n]F3

g(j)2

= d!
(

(d− 1)!
)2
̺4n

�

End of the proof of Proposition (2.9). Let F1, . . . ,Fs be a complete system of pair-
wise non-equivalent d-shadows which are induced by quadruples (J,K, L,M) ∈ T .
Then, clearly, s is independent of n and by Lemma 4.4 we have

τ =
∑

(J,K,L,M)∈T

σJσKσLσM =

s
∑

j=1

∑

(J,K,L,M)∈T :
F(J,K,L,M)∈[Fj]∼

σJσKσLσM

≤
(

d!(d− 1)!
s
∑

j=1

γ(Fj)
−1
)

̺2n

so that we can let

(50) Cd := d!(d− 1)!

s
∑

j=1

γ(Fj)
−1

which is independent of n.
�

Remark 4.5. Using the fact that the equivalence class of a shadow
F = (F1, F2, F3, F4) is determined by the cardinalities of all finite intersections of the
sets F1, F2, F3, F4, one can get an upper bound on the number s of all equivalence
classes of shadows induced by quadruples in T . Using that γ(F) ≥ 1 immediately
gives a crude bound on Cd. It is not difficult to verify that C2 = 13 by distinguishing
all possible cases. Furthermore, by some clever combinatorial argument, it might be
possible to compute sharp bounds on Cd starting from (50). This would be of great
interest for deriving limit theorems in situations where d = dn → ∞ with n. We
leave this as an interesting problem for possible future work.

Idea of the proof of Proposition 3.6. The proof of Proposition 2.9 can be easily gen-
eralized to the present situation by introducing the concept of a (pi, pk)-shadow
corresponding to a quadruple (J1, J2, J3, J4) ∈ D4

i,k and following exactly the same
lines of the proof. We have, however, refrained from giving the proof in this more
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general situation for mainly two reasons. Firstly, the proof of Proposition 2.9 already
involves a lot of notation and introducing even more of it might make the argument
less transparent. Secondly, and more importantly, the precise dependence of the con-
stant Ci,k on pi and pk would be more complicated and less explicit than the formula
given by (50) which can be exactly evaluated for small values of d and, as mentioned
in Remark 4.5, might be suitably bounded for general d.

�
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