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Abstract

Insect pollination benefits over three quarters of the world’s major crops. There is growing concern that observed declines
in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators
is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete
knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service
to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence,
and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM)
with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-
wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated
the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings
on model performance and on its capacity to identify the most important predictors. The importance of the different
predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We
then used the species distributions from the calibrated model to predict pollination service of wild and managed
pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and
managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct
local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination
demand and the availability of pollinators, resulting from environmental change or policy scenarios.
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Introduction

The importance of ecosystems to human well-being was

documented by the Millennium Ecosystem Assessment, which

also recognised that the majority of pollinators are in decline or

threatened [1]. Crop pollination is a key ecosystem service vital to

the maintenance of both wild plant communities and agricultural

productivity. Over three quarters of the world’s major crops

benefit from insect pollination, with an economic value estimated

to be around J 153 billion globally in 2005 and approximately J

500 million in the United Kingdom [2–4]. Pollination services are

mainly provided by wild pollinators (bees, hoverflies, flies, moths,

beetles) and domesticated bees (primarily honey bee Apis mellifera).

The recent declines observed in pollinators, mainly bees [5,6],

may therefore impact on the production of and profits from

pollinator-dependent crops. For instance, long-term trends of

global crop production suggest that to compensate for a 3–8%

yield reduction expected in absence of animal pollination, the

expansion of agricultural land would be much greater (ca. 25%,

and proportionally much greater in the developing world), which

in turn could accelerate habitat destruction and contribute to

further pollination loss [7].

Knowing spatial patterns of managed and wild pollinators is

therefore crucial to estimate their availability to crops and to

inform management strategies. In general, however, we have

incomplete knowledge of where wild pollinators occur. To

overcome this, a recent approach proposed by Lonsdorf et al. [8]

derives the probability of occurrence of wild bees from a relative

availability (from 0 to 1) of nesting sites and floral resources within

a landscape, assessed for a few large guilds of species. This

probability is then used to derive the relative pollinator service

available to a particular crop, taking into account crop location, its

potential pollinators and their foraging distance.

Here we propose an approach that combines the Lonsdorf

model to derive pollinator services, with predicted pollinator
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occurrences from species records rather than from landscape

suitability. One of the preferred tools to predict species spatial

patterns from geographically and temporally sparse biodiversity

data are species distribution models (SDMs), which now offer a

wide range of approaches due to enhanced computational

resources, increasing availability of spatially explicit environmental

information and accessibility of species occurrence databases

[9,10]. SDMs mainly differ in the requirements of the species

records (e.g. presence and true absence, presence and background,

presence only) and in the algorithms used to define the species

niche as a function of the predictors (e.g. regression methods,

machine learning techniques, Bayesian statistics) [11]. While it is

unlikely that a single modelling approach will outperform all

others in any situation, comparative work [10,12] helps to identify

the main elements affecting model performance, and thus

represents a valuable resource to orient the end user in the choice

of the modelling approach. In this study we use the maximum

entropy method implemented within the freely available software

MaxEnt [13], to derive species distributions from sparse pollinator

records. MaxEnt is a general purpose machine-learning technique

that estimates the potential distribution of the species by estimating

the probability distribution of maximum entropy (i.e. that is most

spread out), subject to the constraints derived from the available

occurrence data [13]. MaxEnt has received increasing attention

within the field of SDM (File S1: Fig. S1–1), both in single species

applications [14,15] and in comparisons of algorithms [16,17].

Extensive experimental work has allowed guidance for several

settings of MaxEnt modelling [18], as well as drawing attention to

the main elements affecting its performance [19–21].

First, we describe the main steps and tests carried out to

calibrate the MaxEnt model; we then show the predictions of the

calibrated model for a representative sample of crop-pollinators

within Great Britain; finally, we use the predicted species

distributions to derive the potential pollination service of wild

pollinators and managed honey bees, using the annual legume

field bean Vicia faba as a test case. In conclusion, we discuss some of

the methodological advantages of our approach, the remaining

challenges and how it can be further applied to other ecological

questions.

Materials and Methods

Datasets
Wild pollinator data. We used presence-only records of wild

bees and hoverflies collected within the period 2000–2010 (‘‘Bees,

Wasps and Ants Recording Society’’, BWARS [22]; ‘‘Hoverfly

Recording Scheme’’, HRS [23]). The spatial accuracy of the data

varied between 10 m and 10 km; we chose 1 km2 as a suitable

resolution to balance the aim to derive patterns at a national

extent as well as to inform decisions at the local scale. We

registered all records with accuracy finer than or equal to 1 km to

a grid of 1 km2 cells, removing duplicates so that within each cell

there was only one record of the same species. We use the term

‘‘records’’ to mean the number of original records for each species,

with accuracy finer or equal to 1 km, whilst we use ‘‘occurrences’’ to

denote the number of 1 km2 grid cells occupied by a species.

To calibrate the model, we selected a subset of pollinator species

representing a range of geographic distributions. To follow a

repeatable and objective procedure, we used hierarchical cluster

analysis to group the species based on the number of occurrences,

minimum and maximum latitude and longitude (expressed as

northing and easting on the British National Grid), and spatial

distribution. Spatial distribution was measured as the longest

distance within the third quartile of the pairwise distances between

the occurrences of each species; we preferred the third quartile

over the fourth quartile, to avoid potential outliers and thus obtain

a better characterisation of the species’ distribution extent [24].

We selected about one third of the species from within each

resulting cluster, ensuring representation across genera. Finally, we

used visual inspection of the species occurrence maps to confirm

they represented contrasting geographic distributions (e.g. ranging

from few to many occurrences, and from narrow to wide range).

The selection was carried out separately for bees and hoverflies.

Six hoverfly species and 22 bee species were selected (File S2:

Table S2–1). The number of occurrences ranged from 232 to

4048 for hoverflies and from 12 to 4144 for bees, and longest third

quartile distance ranged from 215.4 km to 312.6 km for hoverflies

and from 63.8 km to 763.9 km for bees.

Managed pollinator data. The distribution of the managed

honey bees was derived from the optional beekeeping register

BeeBase, held by the National Bee Unit at the Food and

Environment Research Agency [25]. The number of bee foragers

was modelled at the 4 km2 resolution from the size and location of

apiaries in England and Wales using the estimated average

foraging distance [26–28]. At the time of this study, a sufficient

coverage of apiaries from which to model forager numbers was not

available for Scotland. To match the grain to the other pollinator

data, the number of foragers was divided by four, assuming a

uniform distribution across the four 1 km2 grid cells. The data

were then linearly rescaled between 0 and 1, to provide a relative

score of honey bee foragers per km2.

Environmental predictors. We use four types of environ-

mental predictors (Table 1):

N Land cover classes: 10 continuous variables representing cover

percent for Great Britain, from CEH Land Cover Map 2007

[29].

N Bio-climatic data [30]: six variables derived from 25 km2

gridded monthly averages of minimum temperature, maxi-

mum temperature and precipitation for the 1991–2000 period

(to provide an average climate characterizing the decade

preceding the oldest species records), obtained from UKCP09

[31] and resampled to 1 km2 grain. Data were computed

within R software environment 2.13.0 [32].

N Topography: two indices describing aspect (i.e. slope orienta-

tion), derived from a 10 m horizontal interval digital elevation

model [33] resampled to 1 km2.

N Pesticides: treated hectares that pose a potential risk to bees per

hectare of crop grown, derived from the Pesticides Usage

Survey [34] and linked to cropping data from the Defra June

Agricultural Survey [35]. The impact was assessed for honey

bees, due to data availability for this species [36,37].

Bio-climatic and topographic variables were selected

using Jolliffe’s Principal Component Analysis [38] to

minimize multicollinearity [39]. Details of this procedure and

the Pearson’s correlation between the chosen variables are in

File S2: Table S2–2.

Species distribution models
Choice of the background data. Species distribution

models were carried out within MaxEnt 3.3.3 k [13,40]. One of

the advantages of MaxEnt is that presence-only data can be used.

In this case the MaxEnt probability is defined over a sample of

points taken from the study region (‘‘background points’’) which

may, or may not, contain the species presence records [13].

To derive the MaxEnt probability, in addition to the

environmental conditions at localities where a species is found,

Crop Pollination from Species Occurrences
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the model requires a sample from the background. This assumes a

uniform survey effort over the entire study area, but if this

assumption is violated the background information should reflect

the sample bias. A possible correction is to restrict the selection of

the background points to a region where a target group of species

has been observed by similar methods [19]. We tested for violation

of this assumption by comparing the AUC (Area Under the Curve

of the Receiver Operating Characteristic) of models based on all

known records of crop pollinators in Great Britain (i.e. the target

group background, TGB), against the AUC of models based on n-

time sampling an equal number of points from the entire study

area (referred as null models) [41]. We found that the average

AUC of 10 sets of 5000 points drawn from the TGB was

significantly greater than the average AUC of 100 null models

from the entire study area (0.77160.002 and 0.54360.005

respectively). The background localities for the individual SDMs

were therefore drawn from within the TGB.

Model calibration. During the model calibration we evalu-

ated the single and combined effects of changing two main

MaxEnt settings:

N Choice of the feature classes (the functions) used to fit the data:

default settings currently allow for six feature classes (Linear,

Quadratic, Product, Threshold, Hinge and Categorical), provided

sufficient samples are available [42]. For each species, we

compared models with default settings against models built

with Hinge features alone, which are base functions for

piecewise linear splines [18]. When using Hinge alone, we

modified the threshold for minimum sample size to 12 (rather

than 15, the default) to allow its application to the full set of

calibration species (which included Andrena niveata with 12

records and Lasioglossum semilucens with 13).

N Default prevalence: prevalence is defined as the probability of

presence at ordinary occurrence points and, when absence

data are not available, MaxEnt assigns it 0.5 [18]. It is defined

over specific spatial and temporal scales, which should be

taken into account particularly when working with pools of

species differing in their rarity [42]. For each species, we

compared models with default prevalence 0.5 to models where

this value was modified to reflect the species commonality

relative to the rest of the species within the pollinator set. To

our knowledge there are no theoretically based rules to adjust

this value; we therefore empirically rescaled it, considering the

number of available records, the number of occurrences and

the number of years with non-zero observations over the

temporal scale (2000–2010). Each species was then assigned a

new prevalence, from 0.1 to 0.5 (File S3: Table S3–1, Fig. S3–

1, Figs S3–2.1 and S3–2.2).

Model performance. We evaluated the effects of changing

default settings on model calibration with two metrics:

N The model testing AUC and its standard deviation (AUCSD),

using mixed effect models with species as random factor. We

tested whether changing default parameters significantly

affected the AUC and its variability between different models.

N The standard deviation (SD) of the Permutation importance (%)

between predictors and background, using generalized linear

models. The Permutation importance is derived by randomly

permuting the values of each predictor between presence and

Table 1. Environmental predictors used to derive species distribution models.

Variable theme Variable name Variable definition

Topography *AspNS Aspect = sin (rad (aspect))

{AspEW Aspect = cos (rad (aspect))

Climate `Isoth Isothermality %

TAR Temperature Annual Range

MTDQ Mean Temperature of Driest Quarter

MTCQ Mean Temperature of Coldest Quarter

RainSeasCV Precipitation Seasonality (Coefficient of Variation)

RainCQ Precipitation Coldest Quarter (mm)

Land-cover BLW Broadleaf woodland

ConW Coniferous woodland

AR Arable

GrassImp Improved grassland

GrassSN Semi-natural grassland

MHB Mountain, heath, bog

SW Saltwater

FW Freshwater

Coast Coastal

UrbGar Built-up areas and gardens

Pesticides Pest Average number of risk hectares

*AspNS = sine (radiant [aspect angle in degree]); {AspEW = cosine (radiant [aspect angle in degree]); `Isothermality % = Mean Diurnal Range (MDR)/Temperature
Annual Range (TAR); where MDR = Mean of monthly (max temp – min temp)); TAR = Max Temperature of Warmest Month – Min Temperature of Coldest
Month. Isothermality is a quantification of how large the day-to-night temperature oscillation is in comparison to the summer-to-winter oscillation. A value of
100 would represent a site where the diurnal temperature range is equal to the annual temperature range. A value of 50 would indicate a location where the
diurnal temperature range is half of the annual temperature range.
doi:10.1371/journal.pone.0076308.t001
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background in turn; the model is re-evaluated on the permuted

values and the resulting drop in training AUC is then

normalized to percentages. We expected that a model with

good discriminatory power would result in a greater spread

between the significance of the different predictors.

All models were carried out through k-fold cross-validation,

where data are divided into k mutually exclusive subsets: for each

run, k–1 of them are combined into a set for training, and one is

used for the prediction (i.e. model testing). The number of

mutually exclusive subsets was 10 for all species. Evaluation was

performed on the average of the cross-validation runs (for AUC,

AUCSD, Permutation importance and its SD).

After completing the model calibration, we used null models to

test whether the resulting SDMs provided a significantly better fit

than expected by chance alone. With presence-only data the

maximum achievable AUC is ,1 [43]: namely, it is 1-a/2, with a

being the true fraction of the study area occupied by a species,

typically unknown when absence data are not available [13]. To

assess SDM accuracy, therefore, we compared the average AUC

value of each species SDM (AUCSDM) with the average AUC

value of a set of null models (AUCNM) where species records were

replaced by randomly chosen locations [41]. We expected

AUCSDM . AUCNM.

Following the assessment of model performance, we tested

whether the predictors that were most important for fitting the

training data were also the most important for predicting species

distribution. Single-predictor models are built within MaxEnt for

the training and testing phases: we ranked them according to their

gain (a measure of model fit), assigning one the model with the

lowest increase in gain. We then computed the Spearman’s rank

correlation between training and testing models for each predictor,

using Mean and Mode. Their observed correlations were tested

against the frequency of randomly generated correlations, using

999 bootstrap replicates [44]. Lastly, we also tested whether the

Mean of each predictor was correlated to its Mode, for the pooled

set of training and testing models.

Application to crop pollinators
Pollinator distribution models. The settings chosen from

the model calibration were used to derive SDMs for the wild

pollinators of field bean. We used expert knowledge from our team

and existing literature [45] to select species known to pollinate field

bean. For each species, we used ‘‘10th percentile training presence’’ as

threshold to derive a binary map (1 = presence, 0 = absence) from

the predicted continuous probability of each of the cross-validation

runs. We summed together the 10 binary maps and we took the

areas where the sum equalled 10 (i.e. areas where all 10 runs had

predicted presence) as the presence area for that species. This strict

criterion implies that the sites where all 10 runs have predicted

presence identify conditions of greatest suitability for the species.

The effects of this choice compared to a less conservative criterion

are presented in the results. We then assigned to each presence

area the average probability of presence derived from the 10

model runs, this became the predicted likelihood of occurrence for

that particular species. This map was used as pollinator source to

derive the potential pollinator service.

For consistency with the modelled distributions of wild

pollinators, we applied a threshold to the probability of occurrence

of managed honey bees to distinguish absence from presence. We

used the fifth percentile as a cut-off, corresponding to a 0.001

probability of occurrence, and we assigned ‘‘absence’’ to areas

with probability below this threshold. This threshold is less

conservative than the one used for wild pollinators, to reflect the

fact that the data on managed pollinators are based on

information updated annually and on dispersal functions empir-

ically derived.

Crop distribution. We used distributional records of field

bean from the Defra 2010 June Agricultural Survey and mapped

to an original grain of 4 km2, which we resampled to 1 km2 to

match the grain of the SDMs.

Pollinator service. We adapted the model by Lonsdorf et al.

[8], which focuses on wild bees. The model maps an index of

potential pollinator abundance (‘‘pollinator source map’’), based

on the relative availability of nesting sites and floral resources

across the landscape as provided by expert knowledge and/or field

observations. The source map is used to estimate the potential

pollinator service Pos [8]:

Pos ~

PM

m~1
Psm e

{Dom
as

PM

m~1

e
{Dom

as

ð1Þ

Where: Psm = relative index for pollinator species s on map unit

m, based on the pollinator source map; Dom = (Euclidean)

distance between map unit m and crop cell o; as = average

foraging distance of species s. Equation 1 is the distance-weighted

proportion of M cells occupied by foraging pollinators [46]. The

score Pos therefore represents the relative abundance (from 0 to 1)

of the pollinator species s visiting each crop cell, i.e. the pollination

service from species s.

The main difference between Lonsdorf’s model and ours is the

input used to generate the potential pollinator source (Psm): in our

case, it is not derived from landscape suitability scores for nesting

sites and floral resources, but from SDMs based on actual species

records. We discuss the implications later in the text.

The total service Po of S pollinator species visiting cell o is [8]:

Po ~

PS

s~1
Cos Pos

PS

s~1
Cos

ð2Þ

Where Cos is 1 if the crop on farm o requires pollinator s, and 0

otherwise.

The model was carried out in NetLogo 5.0.1 [47]; the outputs

were exported to ArcGIS 10.0 [48] for visualization.

Wild pollinator foraging distances were estimated from expert

knowledge within our team and existing literature [49,50]: we used

1 km for Andrena labialis, A. wilkella, Bombus hortorum, B. lucorum, B.

muscorum and Osmia rufa; we doubled this distance forB. lapidarius, B.

pascuorum and B. terrestris. We used the estimated foragers’

occurrence on the crop parcels as a proxy for the service provision

by managed pollinators, as this dataset already accounted for their

typical foraging distance.

Results

Model calibration
Modifying default settings for feature class and prevalence did

not significantly affect model performance (AUC) (P.0.5 for all,

File S4: Table S4–1); variability between cross-validation runs

(AUCSD) was also not affected, with the exception of

modifying prevalence for features class All in hoverflies, which

increased AUCSD (File S4: Table S4–2). In contrast, the ability to

Crop Pollination from Species Occurrences
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discriminate the importance of the different predictors, measured

by the SD of the Permutation importance (%) was greater in models

built using Hinge feature class alone (P#0.001 in bees and

hoverflies, File S4: Table S4–3); within bees this effect was even

stronger when Hinge was used in combination with modified

prevalence. In addition, the more complex response curves

allowed by the default settings All suggested in some cases a

possible overfit (a representative subset of these curves is shown in

File S4: from Fig. S4–1.1 to Fig. S4–1.4).

Based on these patterns we chose Hinge feature class alone (with

modified prevalence) to derive SDMs for the set of pollinators

relevant to British crops.

Model performance
SDMs provided a significantly better fit than expected by

chance alone for all the species (Fig. 1 shows the results for the

AUC of the testing phase; a similar pattern was observed for the

AUC of the training phase).

Of the predictors tested (Table 1), climatic variables generally

ranked higher than the others, although with variation between

species. In particular, Temperature Annual Range (TAR), Precipitation of

the Coldest Quarter (RainCQ), Mean Temperature of the Coldest Quarter

(MTCQ) and Precipitation Seasonality (RainSeasCV) were the

predictors with the greatest importance (Fig. 2 and File S5: from

Fig. S5–1.1 to Fig. S5–1.4).

The Mean and Mode of the predictors’ importance were

significantly correlated between training and testing phase (rMean

= 0.974; rMode = 0.944; File S5: Figs S5–2 and S5–3). The

correlation between Mean and Mode of the pooled set of training

and test models across species was also significant (r= 0.940;

File S5: Figs S5–3 and S5–4).

Pollinator distribution models
Figure 3 shows an example of outputs for Bombus pascuorum, one

of the pollinator species of field beans. The average probability of

presence from the 10 cross-validation models ranged from 0.05 to

0.74. The fraction of the 4144 occurrences available for B.

pascuorum predicted as presence after converting each model

prediction into a binary map (using 10th percentile training

presence as threshold) was 0.9060.003 (mean 6 SD). This

fraction decreased to 0.86 when 0 was assigned to any area

predicted absence by at least one binary map, while retaining the

average probability only in areas identified as ‘‘presence’’ by all 10

binary maps.

Across species, the average fraction of observed occurrences

captured within each species’ final area of presence was

0.8460.030 (mean 6 SD). This fraction was positively but non-

significantly correlated with the number of available occurrences

(Spearman r= 0.64, significance assessed with 1000 permutations

of samples without replacement, yielding a frequency ,0.06).

Across species, the average final area of presence was 16%69%

smaller than the average from the 10 runs, and negatively

correlated with the number of species occurrences (Spearman

r= 20.85, observed with a frequency ,0.005 from 1000

permutations). Had we derived the final area of presence from

sites predicted by at least nine runs rather than by all 10 runs, the

fraction of captured occurrences would be on average 3% greater

(6 2%) than the one obtained with the stricter criterion, and

negatively correlated with the number of species occurrences

(Spearman r= 20.86, observed with a frequency ,0.005 from

1000 permutations).

Pollinator service
Figure 4 shows an example of potential pollinator service to field

bean for Bombus pascuorum, as relative scores from 0 to 1.

Predictions ranged from 0 to 0.58 and areas evaluated as zeroes

indicate crop fields outside the typical foraging distance of B.

pascuorum (i.e. no pollination service). Results for the remaining

wild pollinators of field bean are in File 6: from Fig. S6–1 to

Fig. S6–8.

The summed outputs across the nine wild pollinator species,

used as a proxy for the total potential pollinator service for field

bean, ranged from 0 to 0.43, with a minimum service of 0.01

(Fig. 5(A)): regions close to zero indicate areas where pollinator

service is predicted to be low. The predicted pollination service

from managed honey bees ranged from 0 (i.e. field bean cells

without service from honey bees) to 1, with minimum service of

Figure 1. Performance of the calibrated SDMs against performance of the null models. Model performance is measured as the AUC of
model testing. Error bars show the SD of the null models (10 sets for each species, each modelled with 10-fold cross-validation). The number of
available records is used to plot different species along the x-axis.
doi:10.1371/journal.pone.0076308.g001
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0.002 (Fig. 5(B)). We also identified areas where pollinator service

to field bean cannot be estimated due lack of information on the

distribution of managed honey bees (blue regions in Fig. 5(B);

File S7: Fig. S7–1 shows the underlying probability of honey bee

occurrence).

Taken together, maps in Fig. 5 may be used to qualitatively

compare the predicted spatial patterns of potential pollinator

service to field bean, based on the current likelihood of occurrence

of wild and managed pollinator species in Great Britain. We did

not combine the two maps or make quantitative comparisons of

patterns across the two groups, due to the different methods used

to generate their underlying likelihood of species occurrence. The

honey bee index was derived from the estimated maximum

forager density based on reported hive location, apiary type and

typical foraging distance; the wild pollinator index, instead, was

based on a probability of occurrence, which did not take into

account number of individuals per species.

Discussion

In this study we have predicted the current potential distribution

of the main crop pollinators of field beans in Great Britain, to

derive the potential service provision. Pollinator availability for

crop pollination was based on SDMs from species occurrences,

rather than on landscape suitability scores from expert knowledge.

Potential service provision was assessed for wild and managed

pollinators, which to our knowledge has never been done at this

scale.

The calibration of the SDMs played an important part in this

process making best use of the large species dataset and warranting

use of the model outputs as inputs in the pollination service model.

For crops benefiting from insect pollination, we assumed that

likelihood of species occurrence can be used as a proxy for

potential pollinator service provision, thus implying two main

premises: the first one is that the two variables scale proportionally;

the second one is that a unit difference in the likelihood of

occurrence in one species means the same change in service

provision as in a different species.

Species distribution models
Prior to the modelling work, we tested for sample selection bias

within the pollinator records to define the appropriate back-

ground: opportunistic records are in fact a great resource to

predict species distribution, but they rarely provide a representa-

tive sample of the study area. The effects of the choice of

background on model predictions are widely documented

[19,41,51] and therefore it was important that this step was

carried out at the start.

In the absence of an independent dataset covering the extent of

our study region and the entire spectrum of species, each SDM

was built using replication through cross-validation, so that after

splitting the occurrence data into groups, models were built and

tested using all the groups in turn. An advantage of this method,

over using a single partitioning for training and testing, is that it

uses all the data for validation, thus making better use of small

datasets and minimising the impact of possible outliers.

During model calibration, we used AUC as a threshold-

independent measure of model performance. Sole reliance on this

method has been criticised [52,53] as AUC depends on predictive

success and not on explanatory value and it is affected by the

geographical extent of the model; the latter point is particularly

important if AUC is used to compare modelling performance

between different species or between models built with different

base datasets. In our study, however, we used AUC to compare

models based on the same datasets and within species.

The similar AUC between models derived with default settings

for feature class and models derived with Hinge alone has been

observed in at least one other study [42]. In addition, the similar

variation in model performance between the 10-fold cross-

validation runs, independent of the feature class, indicated

comparable stability in their predictions.

Our results on the importance of different predictors indicated a

superior discriminatory power within models built with Hinge

alone, probably due to the greater flexibility of fitted functions

when All feature classes are allowed. It also became apparent that

some of the response curves derived from single-predictor models

were too narrowly fitted to the training data when allowing for All

Figure 2. Importance of different predictors. Arithmetic and bootstrap mean and 95% confidence interval of each predictor’s importance,
pooled across species. Confidence interval shows the 95% biased-corrected accelerated percentile, based on 999 replicates. Predictors are defined in
Table 1.
doi:10.1371/journal.pone.0076308.g002
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feature classes (see also [54]), which further supported the choice

of using the Hinge alone.

The effect of changing the default prevalence to reflect the

relative rarity of each species was significant (and positive) only

within the bee group, possibly due to their greater variation in

number of records. Modifying prevalence has implications for the

maximum value predicted by the MaxEnt logistic output [18],

noticeable when comparing response curves generated with

default and modified prevalence. Since logistic outputs should be

interpreted in relation to a temporal and spatial scale appropriate

for each species [42], modifying the prevalence allowed us to make

the outputs of the SDMs more comparable across species, and to

account for their relative differences when evaluating crop

pollination service.

The results on predictors’ importance highlight within and across

species properties (training vs. testing and mean vs. mode

respectively). The within species agreement on the predictors’

importance between training and testing data suggests that the

models are transferable. With climatic predictors being in general

the most important ones, this also indicates the possibility of

investigating the effects of projected climate changes on the future

distribution of wild pollinators. This aspect is of particular interest

given the projected shifts in suitable environmental conditions

predicted for many taxa including pollinators [55], and the

potential phenological mismatch within mutualistic relations, such

as plants and pollinators [56,57]. The significant correlation

between the Mean and the Mode used to rank predictors’

importance can be interpreted as a general agreement on their

relative importance across species.

Applications to crop pollinators
We adapted Lonsdorf’s [8] model to derive pollinator service,

using the SDMs derived for the field bean pollinators as inputs.

Our choice was motivated by three main reasons: firstly, for the

extent of our study area, it would be difficult to rely on expert

knowledge to provide landscape suitability scores for pollinators

and expert opinion may not be available for poorly known species.

Secondly, regularly maintained databases with nation-wide

pollinator records offered us the opportunity to rely on actual,

albeit opportunistic, sightings. These data have already proven

instrumental in detecting changes in species richness across

temporal and spatial scales [6,58]. Thirdly, our approach also

accounted for the contribution of managed pollinators, providing

the opportunity to compare patterns of pollination service between

wild and domesticated pollinators. This is particularly important,

given the potentially changing contribution made by both types of

crop pollinators in the UK [59]. There is increasing evidence

highlighting the importance of wild pollinators to crop production

worldwide [60]. However, agricultural intensification and alter-

ation of natural habitats, have shown negative effects on wild

pollinator communities [61,62] and for appropriate mitigation

measures to be designed [63,64], it is crucial to understand how

different pollinator species are distributed in space and how this is

determined by relationships with their abiotic environment. We

believe that the work described here can be used to this end.

Our study has provided predicted PSM for a specific crop, field

bean, as a case study to demonstrate how the general approach

can be applied to other crops. For application of this method

elsewhere we highlight several advantages and further challenges.

For instance, since the results are spatially explicit, they can be

used to simultaneously investigate the predicted pollinator supply

and the underlying extent of crop parcels. This information can

help quantify relevant risk factors such as the fraction of crop

vulnerable to low pollinator supply. As previously illustrated by the

recent work of Lautenbach et al. [65] in their map of global

pollination benefits, spatially explicit information of this kind can

provide a first instrument to prioritize areas where policies aiming

at preserving pollination services and mitigating potential pollina-

tor deficits for agricultural crops can be effectively targeted.

Whilst the cross-validation approach used during the SDM

allowed us to use the available species occurrences to train and

validate the models, testing for significant correlation between the

PSM predictions and the pollination service actually provided,

Figure 3. SDM outputs for Bombus pascuorum. Outputs from the SDM for B. pascuorum: (A): known occurrences; (B): predicted MaxEnt average
probability from the 10-fold cross-validation models, using geometric interval classes from blue to red; (C): summed presence from the 10 binary
maps (10 indicates areas where all 10 models predicted presence and 0 areas where all models predicted absence); (D): final predicted probability for
B. pascuorum used as input for the pollinator service, derived from assigning the average probability values in (C) only to the areas where all models
predicted presence, and 0 to any area predicted ‘‘absence’’ by at least one binary map. Map projection: British National Grid (BNG).
doi:10.1371/journal.pone.0076308.g003

Figure 4. Pollination service to field beans, from Bombus
pascuorum. The potential pollination service is represented using
geometric intervals, with the exclusion of the zero class which was
manually defined. Areas evaluated as 0 indicate crop fields outside the
foraging distance of B. pascuorum (i.e. no pollination service). Map
projection: BNG.
doi:10.1371/journal.pone.0076308.g004
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would require additional data, which are currently unavailable. In

particular, we would need empirical information on pollinator

density, flower visitation rate and fruit set for a representative set of

crop parcels. Given the extent of the study region, parcels would

need to be selected along the gradient of the environmental

variables captured by the model, and power analysis would be

needed to determine how may parcel replicates would be

necessary to achieve the desired level of confidence. An additional

difficulty relates to the scale (resolution) of the current model,

which is suitable for country-wide and local scale patterns, but

may be too coarse to draw correlations with what is observed at

the crop parcel scale. We recommend that future applications of

our method consider building models with species and environ-

mental layers matching the spatial scale of the field work, thereby

allowing direct testing of predictions. The empirical information

being collected in different agricultural systems worldwide has

already proven instrumental for drawing general patterns, such as

the relative importance of wild pollinators vs. managed pollinators

for enhancing fruit set (e.g. [60] and references therein). A number

of studies funded under the UK Insect Pollinator Initiative, may

provide the information needed towards a first validation step over

the next few years.

Conclusion and Next Steps
The primary interest of our study was to show how the Lonsdorf

et al. [8] pollination service model can be integrated with the

MaxEnt species distribution model [13] to predict geographical

patterns of pollination service to crops. We chose these two models

since they both have peer-reviewed track records of successful

applications in their respective fields but, to our knowledge, they

have never been used in combination. The two main elements of

novelty in our study are the use of pollinator records rather than

expert knowledge to predict wild pollinator occurrence, and the

inclusion of managed pollinator data. This approach allowed us to

map the relative contribution of each pollinator group, and also

identify areas potentially vulnerable to low service provision. Thus

the outputs can help direct local scale mitigation measures, such as

agri-environment scheme options. Despite the difficulties common

to proxy-based approaches [66] the method we have proposed is

sufficiently flexible to incorporate different environmental vari-

ables of biological relevance, which may be available for other

geographic regions, useful to refine predictions, or relevant when

the models are applied to smaller spatial extents. The last point

should be of particular interest to studies at the field parcel scale,

where detailed information of landscape elements may be

collected and used to build the models. The possibility to correlate

relative scores and proxies to empirical data is likely to provide

relevant information for both the SDM and the PSM: for instance,

using information on farm management and landscape composi-

tion and configuration, Kennedy et al. [67] have assessed the

strength of the correlation between different predictors of bee

abundance and richness and empirical data collected in 39 crop

systems across the globe.

Looking ahead, the inclusion of local pollinator abundance and

of the pollination effectiveness of different pollinators are arguably

the most urgent next challenges we need to face to help to translate

Figure 5. Pollination service to field beans, from wild and managed pollinators. Maps show the potential pollination service to field beans,
provided by nine wild pollinator species (A) and by managed honey bees (B). Zero indicates areas lacking pollinator service (minimum service is 0.01
from wild pollinators, 0.002 from managed honey bees). Interval classes are manually defined to the same scale. Blue colour in (B) indicates areas
where pollination service cannot be estimated due to missing information on honey bees’ presence. Map projection: BNG.
doi:10.1371/journal.pone.0076308.g005
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the relative suitability scores into units of crop pollination service

and ultimately yield. Service provision, in fact, results from species’

efficiency and local abundance.

We have used field beans as test case, but the method we have

illustrated can be applied to other crops, provided that their

distribution and main pollinators are known. In addition, this

approach can be extended to investigate the projected effects of

climate change on pollination services. To do that, it would

require predictive SDMs for both the crop of interest and its

pollinators, to reveal any compositional change in the pollinator

community, as well as any potential geographical mismatch

between crop and pollinators.
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Spearman’s rank correlations: Mean (open squares and
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Figure S5–3: Rank correlation between Mean and Mode, for the

pooled set of training and test models across species. Spearman’s
rank correlation: r = 0.940, significant based on 999
bootstrap replicates (Fig. S5–4 panel C). Figure S5–4:

Distributions of bootstrap and observed Spearman’s rank

correlations. A: correlation of predictors’ Mean between
training and testing phase; B: correlation of predictors’
Mode between training and testing phase; C: correlation
between Mean and Mode for the pooled set of training
and testing data. In all three cases the observed
correlation are significantly greater than those generat-
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potential pollinator service (B) for A. labialis. Figure S6–
2: Probability of occurrence (A) and potential pollinator
service (B) for A. wilkella. Figure S6–3: Probability of
occurrence (A) and potential pollinator service (B) for B.
hortorum. Figure S6–4: Probability of occurrence (A) and
potential pollinator service (B) for B. lapidarius. Figure
S6–5: Probability of occurrence (A) and potential
pollinator service (B) for B. lucorum. Figure S6–6:
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service (B) for B. muscorum. Figure S6–7: Probability of
occurrence (A) and potential pollinator service (B) for B.
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55. Giannini TC, Acosta AL, Garófalo CA, Saraiva AM, Alves-dos-Santos I, et al.
(2012) Pollination services at risk: Bee habitats will decrease owing to climate

change in Brazil. Ecol Modell 244: 127–131.

56. Gordo O, Sanz JJ (2005) Phenology and climate change: a long-term study in a
Mediterranean locality. Oecologia 146: 484–495.

57. Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the
disruption of plant-pollinator interactions. Ecol Lett 10: 710–717.

58. Keil P, Biesmeijer JC, Barendregt A, Reemer M, Kunin WE (2011) Biodiversity

change is scale-dependent: an example from Dutch and UK hoverflies (Diptera,
Syrphidae). Ecography 34: 392–401.

59. Breeze TD, Bailey AP, Balcombe KG, Potts SG (2011) Pollination services in the
UK: How important are honeybees? Agric, Ecosyst Environ 142: 137–143.

60. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, et al.

(2013) Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee

Abundance. Science 339: 1608–1611.

61. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees

at risk from agricultural intensification. Proc Natl Acad Sci U S A 99: 16812–

16816.

62. Carvalheiro LG, Seymour CL, Veldtman R, Nicolson SW (2010) Pollination

services decline with distance from natural habitat even in biodiversity-rich

areas. J Appl Ecol 47: 810–820.

63. Klein A-M, Brittain C, Hendrix SD, Thorp R, Williams N, et al. (2012) Wild

pollination services to California almond rely on semi-natural habitat. J Appl

Ecol 49: 723–732.

64. Carvalheiro LG, Seymour CL, Nicolson SW, Veldtman R (2012) Creating

patches of native flowers facilitates crop pollination in large agricultural fields:

mango as a case study. J Appl Ecol 49: 1373–1383.

65. Lautenbach S, Seppelt R, Liebscher J, Dormann CF (2012) Spatial and

Temporal Trends of Global Pollination Benefit. PLoS ONE 7: e35954.

66. Lautenbach S, Kugel C, Lausch A, Seppelt R (2011) Analysis of historic changes

in regional ecosystem service provisioning using land use data. Ecol Indic 11:

676–687.

67. Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, et al. (2013) A

global quantitative synthesis of local and landscape effects on wild bee pollinators

in agroecosystems. Ecol Lett 16: 584–599.

Crop Pollination from Species Occurrences

PLOS ONE | www.plosone.org 12 October 2013 | Volume 8 | Issue 10 | e76308


