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ABSTRACT 

Non-continuous location traces inferred from Call Detail 

Records (CDR) at population scale are increasingly 

becoming available for research and show great potential 

for automated detection of meaningful places. Yet, a 

majority of Home Detection Algorithms (HDAs) suffer 

from “blind” deployment of criteria to define homes and 

from limited possibilities for validation. In this paper, we 

investigate the performance and capabilities of five popular 

criteria for home detection based on a very large mobile 

phone dataset from France (~18 million users, 6 months). 

Furthermore, we construct a data-driven framework to 

assess the spatial uncertainty related to the application of 

HDAs. Our findings appropriate spatial uncertainty in HDA 

and, in extension, for detection of meaningful places. We 

show how spatial uncertainties on the individuals’ level can 

be assessed in absence of ground truth annotation, how they 

relate to traditional, high-level validation practices and how 

they can be used to improve results for, e.g., nation-wide 

population estimation.  

Author Keywords 
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INTRODUCTION 
Location aware computing represents one of the pillars of 

ubiquitous computing [43] and ever since Weiser 

formulated the vision of the third generation of computing 

[44] substantial progress has been made with regards to 

both sensing physical or geographical location as well as to 

utilizing location information for context aware applications 

[6,17].  

With the widespread availability of mobile sensing 

platforms, such as the prevalent smartphone that is 

equipped with GPS or GSM based location sensing, 

outdoor localization can be considered solved [46]. The 

availability of high resolution, outdoor localization 

capabilities has enabled very sophisticated location aware 

applications (e.g., support of visually impaired people in 

public transport access [33]) but also allows personalized 

analysis and analysis of movement patterns [21].  

Yet, the detection of meaningful places – this is, locations 

where persons spend a significant amount of their time with 

most prominent examples being home or work [29] – based 

on sensed location traces often requires active participation 

of users. If not for annotation of locations then the users are 

solicited for the activation of tracking or at least through 

their consent for sharing exact location data, which for 

many means a burden or raises privacy concerns [12].  

As an alternative, research has engaged with passive 

surveying of travel to subsequently derive meaningful 

places. GPS based applications, for example, allow for 

extraction of meaningful places from trajectory traces
1
 by, 

for instance, detecting trip purpose (e.g., home-work 

commuting). Works on small scale samples have achieved 

promising results [5,13,20,28,45] but their limited scope of 

observations – both in space, time, and number of users, 

still limits location sensing for many applications and 

analysis techniques [12]. For example, planners or 

epidemiologists would not only require small samples of 

location traces but rather large-scale recordings of 

movement patterns, ideally at population scale. 

With large samples in mind and in addition to the analysis 

of GPS sensed traces, efforts have been made to exploit 

essential system information routinely recorded by mobile 

phone network operators for billing or maintenance 

purposes (e.g., [9,30]). A prominent example of such low-

level information are Call Detail Records (CDR), that is 

attributes of phone calls that include connection time, 

duration, source and destination number, and respective 

cell-tower IDs for both caller and callee, providing location 

information on both. CDR data are very attractive for large-

scale analysis of location and movement patterns even 

though they are typically very sparse given that they only 

contain information from the time of a call. The attraction 

of the data lies in the fact that they are routinely recorded, 

network-wide and as such provide direct access to 

localization data for large samples of populations  
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Similar to GPS-based location traces, CDR data have been 

analyzed with the objective of identifying meaningful 

places in a person’s life. Through analyzing meaningful 

places at population-wide scale conclusions can be drawn 

with regards to, for example, planning, policy making, or 

infrastructure investments [2]. Beyond such pragmatic 

applications, in-depth sociological studies have been 

conducted based on the extraction of meaningful places 

from CDR data (e.g., [41], [31]) 

In this paper, we review meaningful places detection based 

on CDR data thereby focusing on the most important case 

of automated home allocation. We argue that beyond the 

works performed on small-scale continuous traces, the 

majority of works on CDR data face several methodological 

challenges. Most notably, we find that Home Detection 

Algorithms (HDA) for large-scale data lack ground-truth 

data at the individual level to develop learning methods or 

evaluation criteria. As a consequence, the majority of HDA 

use simple and implicit criteria for the semantic annotation 

of user traces on which no consensus nor assessment of 

sensitivity exists in literature. Additionally, we observe that 

assessments of errors for HDA are restricting themselves to 

nation-wide comparison with census data, since no 

framework has been developed that target lower levels in 

absence of ground truth. All of this fundamentally limits the 

utility of current HDA and limits the potential of large 

dataset for systematic exploitation.  

Based on an exemplary, very large-scale dataset of CDR 

recorded in France, we rigorously investigate the effects of 

five different criteria used in current HDAs. We compare 

findings between the different criteria and use a unique 

validation dataset with a much finer resolution than before 

to compare results to groundtruth. In a second step we 

construct a refined, unified framework to create a data-

driven assessment of spatial uncertainty for home detection 

on individual traces. We calculate the different measures 

for spatial uncertainty for all of the five home detection and 

investigate their temporal and spatial properties. We found 

high correlations between our spatial uncertainty measure 

and validation results for all algorithms. We show how 

incorporating spatial uncertainty even in simple algorithms 

drastically improves results.  

Our findings present the first work in appropriating spatial 

uncertainty in HDA and, in extension, for detection of 

meaningful places based on CDR data analysis. We show 

how spatial uncertainties on the individual level can be 

assessed in absence of ground truth annotation, how they 

relate with high-level validation practices, and how they 

can be used to improve results for nation-wide population 

estimation. With this framework, large-scale explorations of 

location and movement patterns become more robust and 

validation practices can be complemented. 

 

 

RELATED WORK 

In context-aware computing location is by far the most 

researched source of contextual information [29]. However, 

raw location data is often of limited use for research, policy 

makers or the development of Location Based Services 

(LBS) if no meaning for individual users can be added. 

Thus, detection of meaningful places from location data 

becomes important. Meaningful places hereby refers to 

locations where a person spends a significant amount of 

their time or where he/she performs particularly relevant 

activities, the most prominent examples being home or 

work place [1,29].  

The importance of detecting meaningful places, in 

particular home, for large-scale populations is prevalent in a 

lot of different research areas and applications. Since 

meaningful places form focal points of spent time, social 

activity, mobility, economic consumption and labour 

(re)generation, their detection for large-scale populations  

will render important insights in the wider structures 

governing our society. One application area is official 

statistics where the place of residence is a key concept in 

population statistics used for establishing voting rights and 

allocating budget [42]. The place of residence also serves as 

a starting point for establishing migration, population 

mobility and tourism statistics [16].  

Change in tracking technology: GPS to CDR 

With the advent of ubiquitous computing technologies, 

research efforts have focused on accessing a wide range of 

digital traces to render detection of meaningful places 

completely passive and automated, preferably for large 

populations. A naïve distinction can be made between 

works that use continuous and non-continuous traces even 

though the transition between both is difficult to fix.  

Works on analyzing continuous user traces were at the 

forefront of early developments and used small-scale 

samples most commonly from continuous GPS traces but 

also from Bluetooth, or wireless LAN positioning. For 

example, [45] explored possibilities to derive trip purposes 

from GPS traces based on GIS-analysis as early as 2001; 

finding amplification of their idea in the slow replacement 

of travel diaries by GPS surveys in transport research 

throughout the decade [35]. The general methodology 

consists of a two-step approach in which clustering of 

location traces to detect important places leads to results 

mostly by means of time-space heuristics [28]. Techniques 

to detect places from continuous traces range from GIS 

analysis [20,45] to popular k-means algorithms [4], non-

parametric Bayesian approaches [28], and even 

fingerprinting of the radio environment [23] and can be 

applied to a range of digital traces, sometimes even 

including non-continuous traces [28].   

The increasing relevance of non-continuous traces became 

prominent through growing efforts in harvesting new 

datasources consisting of large amounts of location traces 

from, amongst others, mobile phone usage, credit card 



transactions and check-ins on location based services (e.g., 

Foursquare or Gowalla) or online social networks (e.g., 

Twitter). Despite consisting much sparser traces, 

enthusiasm for those new datasources has been rising 

because of much larger coverage in terms of users, 

timespan and spatial extent.  

Detecting meaningful places from CDR data 

In this paper we focus on CDR data as one example of such 

newly available, non-continuous location traces focusing on 

home detection as an example of detecting meaningful 

places. According to the wide consensus in the literature 

CDR data can be considered the most relevant of these 

datasources. However, our analysis is – strictly speaking— 

not limited to this data source as they are generalizable in 

principle to the entire group of large-scale, non-continuous 

location traces. 

CDR data capture the phone activity of subscribers on the 

operator’s network. They consist of records that store 

information about location (the cell-tower used), 

temporality (time and duration of usage), and interaction 

(who contacts whom). CDR data are by definition non-

continuous as information is only stored when a call or text 

is made or received. Penetration rates of mobile phones are 

estimated to a staggering 96% worldwide (2014; [24]), 

indicating the potential to sense billions of people both in 

developed as emerging economies. In addition, mobile 

phone usage has become widely accepted and possible in 

almost every situation or environment. Compared to most 

other data gathering location traces, CDR data is 

considerably more cost-effective, less biased (due to usually 

large sample sizes and widespread adaptation), less limited 

in scale, and less limited in data resolution. [26,27].  

Besides applications on nation-wide communication 

networks [22,37], CDR datasets have widely been mined 

for its mobility traces to study, amongst others
2
, large scale 

human mobility patterns (e.g., [27,32,36]) and population 

presence (e.g., [15,26]). Over the years, several empirical 

findings indicate the strong potential for detection of 

meaningful places from CDR data. Most notably, power-

law-like distributions of human displacement, mobility 

motifs, visitation frequencies and staying times all relate to 

the idea that human mobility, when studied based on CDR 

data, is predictable to a very high degree and across all 

classes of population as people tend to spent most of their 

time in few locations [14,21,34,38,39].  

Having unveiled the potential of CDR data to capture 

important locations, i.e., locations where persons spend 

most of their time, substantial research focuses on detection 

of meaningful places. [1] was one of the first to investigate 

the possibilities of deriving meaningful locations for 

individual users from CDR data. Note that detecting homes 
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For an extensive literature review on the different 

applications of CDR data in research, see [7].  

based on CDR data actually refers to detecting the cell-

tower that operates in the area of the home location. For a 

CDR dataset in Estonia, a multi-stepwise model has been 

proposed for the detection of home, work and 

multifunctional anchor points. Based on experiments with 

the individual traces of 14 users, the detection algorithms 

uses spatial (grouping of adjacent cell-towers) and temporal 

(average starting times of call, and standard deviations of 

starting times of calls) criteria. Validation of the 282,572 

detected home anchor points was done by comparison with 

the Estonian Population Register. Validation of the work-

time and multifunctional anchor points has not been done 

due to the lack of validation data at the investigated scale.  

In [25] home and work locations were identified from CDR 

data in urban areas in the USA (Los Angeles and New York 

City). Individual traces from CDR data have been clustered 

by means of the Hartigan algorithm to detect important 

locations [10]. For validation scores from a logistic 

regression model have been used. That model was 

constructed on a dataset of 18 volunteers and incorporates 

criteria like active days, distinct days, duration of calls, 

events during working hours and during ‘home’ hours. 

The limitations of these works lie in their dependence on 

very small samples for training. To overcome this problem, 

[18] used a training-set of 5,000 users to learn the CDR-

based behavioral fingerprint for residential locations in an 

emerging economy. Home locations of the users in the set 

are derived from their permanent contract with the provider, 

which in their case is only available for 5% of the entire 

CDR dataset. In developed countries, the possibility to 

create such training-sets does not exists due to the legal 

obligation on anonymizing users. For this reason, [14] used 

an unsupervised k-means algorithm with features derived 

from mobile phone user behavior to cluster the frequent 

locations for 100,000 users in Portugal. Annotation of the 

obtained clusters, mostly based on average temporal 

patterns, allows for the detection of home, work and 

unidentified locations on a large-scale base.   

So far only little progress has been made to successfully 

tackle the small training-set problem. In fact, the general 

tendency is to use rather simplified home allocation 

algorithms that incorporate generic criteria for home 

detection instead of using criteria derived from training-

sets. Such methodology has widely been applied in works 

that use home location for a large sample of users as a 

prerequisite for further analysis [8]. For CDR data, such 

applications exist that study human mobility, epidemiology, 

social interactions, or economic development, all of which 

dependent on the detection of home (e.g., [19,27,31,40]).  

A first critique of the state-of-the-art is that existing works 

use a definition of home implemented already during the 

detection of important places. Annotation thus implicitly 

happens a priori by means of the choice for home criteria, 

rather than by being derived from training-sets.  The most 

popular criteria for home definitions are temporal 



limitations during nighttime (‘home is the location with 

most activity between x pm and y am’), but also temporal 

aggregations (distinct days, or even weekend-days) and 

spatial grouping (most observations within a spatial reach) 

are being deployed (e.g., [27,31,40]). As an example, [11] 

uses the highest distinct number of observations between 

6pm and 8am as criteria to derive home locations from a 

Boston dataset, basing the chosen time-interval on statistics 

from the American Time Use Survey.  

Although these criteria seem rather logical, it is remarkable 

that no research exists on the sensitivity of results – neither 

on nation-wide level, nor over time, nor in space and also 

not for different datasets, with the only exception being [8] 

where the effects of using different criteria on a credit card 

transactions and a Flickr database in Spain have been 

evaluated. As a consequence there is no consensus on 

which criteria to use best. 

To support the use of their, almost arbitrary, criteria, 

research has embraced validation by census data. Given the 

population wide coverage of CDR datasets this is not 

surprising but the choice to use census data as validation is 

often taken for granted and implications are rather poorly 

discussed. Using census data as validation dataset for large-

scale home detection –be it by comparing population 

densities or through derived commuting figures— is, 

strictly speaking, a rather limited alternative solely justified 

by the absence of real validation data, which typically does 

not exists at that scale. In-fact, census data has never 

specifically been gathered to serve as validation dataset for 

home detection. Consequently, it is difficult to assess how 

‘valid’ census data actually is and to which degree it 

(mis)shapes methodologies and understanding.  

In addition, census data only allows for high-level 

validation of the developed methodologies. Validating 

HDAs on a nation-wide level provides little to no 

information on the accuracy at individual or meta-level. As 

a consequence, “[n]ot a single study has systematically 

validated the methods used to derive activity locations from 

those passively generated mobile phone datasets” [12]. This 

shortcoming limits the choice of methods that rely on 

learning. It also results in unknown errors and uncertainty 

in studies that use meaningful places as a prerequisite.  

In the next sections we elaborate on these critiques, using a 

large scale CDR dataset for France, which we consider 

representative for other large-scale non-continuous datasets. 

We construct and apply five different HDAs, all 

incorporating one specific criterion to define home. We 

compare findings between the different criteria and use a 

unique validation dataset created in close cooperation with 

the French National Statistics Office (INSEE) to perform a 

conventional third party validation – however at a much 

larger spatial resolution. In a second step we construct a 

framework to assess spatial uncertainty for home detection 

on individual traces. We compute the different measures for 

spatial uncertainty at individuals’ level for all of the five 

HDAs. While investigating the temporal and spatial 

properties of our newly constructed spatial uncertainty 

measures, we show how they can complement traditional 

high-level validation by census. In a next step we explore 

the potential of using spatial uncertainties for performing 

data-driven assessment of HDA performance, so 

eliminating the necessity for third party validation. In a 

final step we experiment with the incorporation of spatial 

uncertainty information in simple HDAs, showing their 

potential to improve results on a nation-wide scale.  

DATA 

Call Detail Record (CDR) data are collected by mobile 

phone service providers for billing and network 

maintenance purposes. Being collected every time a call or 

text is initiated, they store locational (the used cell-tower) 

temporal (time and duration of usage) and interactional 

(who contacts whom) information for both correspondents. 

Location traces from CDR data thus are non-continuous as 

they are user initiated and rather sparse in time. Previous 

research on CDR data has been made possible by providers 

in Western-Europe and the United States mostly (Belgium, 

France, Portugal, LA, Boston, etc.), but also African (Côte 

d’Ivoire, Senegal) and Asian (China) datasets are becoming 

available. In compliance with ethical and privacy guidelines 

CDR data are anonymized and, for recent datasets, often 

aggregated or re-anonymized every given time-period.    

French CDR data 

In this paper, we use access to an anonymized CDR dataset 

recorded by Orange
TM

. The data covers mobile phone usage 

of ~18 million subscribers on the Orange network in France 

during during a period of 154 consecutive days in 2007 

(May 13, 2007 to October 14, 2007). Mobile phone 

penetration being estimated at 86% [3] at that time and 

given a population of 63,945 inhabitants during the 

observed period
3
, that is a rough 32% of all French mobile 

phone carriers and 28% of the total population.  

The Orange
TM

 France 2007 CDR dataset is one of the 

largest CDR datasets available worldwide in terms of 

population-wide coverage and has been extensively studied 

(e.g., [15,22,37]). It is the latest CDR dataset available for 

France that allows for such a long term, continuous 

temporal —but anonymised— tracking of users in France. 

More recent datasets are limited by The French Data 

Protection Agency (CNIL) who are anticipating the EU 

General Data Protection Regulation and do not allow to 

collect individual traces as they are considered risky even if 

personal identification information is irreversibly recoded. 

The spatial accuracy of the dataset is restricted to the 

network’s spatial resolution, i.e., to the locations of the cell 

towers as installed by the network provider. The spatial 

distribution of the 18,273 cell-tower locations is known but 
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 This is the average of the monthly estimates for the period 

between Mai and October 2007 as obtained from the French 

National Statistics Website (www.insee.fr) 



not uniform. In general, higher densities of antennas are 

found in more densely populated areas like cities or 

coastlines. Lower densities of cell towers are observed in 

more rural areas, as well as in mountain or natural reserve 

areas. The Voronoi tessellation of all cell tower locations is 

shown in figure 4 illustrating the coverage and the density 

of the network.  

The temporal resolution of the analysed dataset is 

inhomogeneous as CDR are only created and stored during 

calls thereby generating records on both caller and callee 

side. For example: for one arbitrary day of the covered 

timespan (Thursday, 1
st
 October 2007), the median number 

of records per user was four, relating to only two different 

locations. Such statistics are representative for CDR based 

studies and can be deemed rather high compared to other 

large-scale non-continuous datasets like credit-card 

transactions or Flickr photos [8]. In total, 65% of our 

location traces is related to call activity, while the 

remaining 35% is related to text.  

Temporal sparsity in observations —only a few records per 

user per day— and spatially inhomogeneous distributions 

of covered areas —as a result of demand-driven, non-

uniform distribution of antenna locations— are typical 

characteristics of CDR datasets and pose substantial 

challenges for their automated analysis. On the contrary, the 

very large scale reach at population level without requiring 

active participation of the user for location sharing whilst at 

the same time preserving anonymity as well as privacy is 

very attractive for many application areas. Aggregating data 

over extended periods of time enables complex analysis and 

diminishes influence from singular events and/or non-

routine behaviour. 

National Statistics Validation dataset 

The CDR dataset is anonymized and does not contain any 

personalized or detailed information other than the 

elementary, technical information as outlined before. In 

order to validate HDAs on a nation-wide scale a population 

density dataset was created in close collaboration with the 

French National Statistics (INSEE). To construct this 

validation dataset, the Public Finances Directorate General 

(DGFIP) collected individual (or household) locations from 

revenue declarations, the housing tax and the directory of 

taxable individuals. Subsequently, the French National 

Statistics office calculated population densities at the 

Orange network level by aggregating home locations to the 

nearest cell-tower.  

Unfortunately, such large-scale, high resolution home 

location information could only be made available to us for 

the year 2010. We opt to use this validation dataset over the 

low resolution, publicly available census data as the spatial 

translation of statistical sectors to cell-tower coverage. 

Given the spatially inhomogeneous distribution of cell-

tower locations this translation is complicated and prone to 

errors (see, e.g., [18]). With this in mind having access to a 

validation dataset at the same spatial resolution as the 

mobile phone network is a huge advantage as it has both a 

higher resolution of information and a higher accuracy. 

Note that in our analysis we only use the validation dataset 

for relative comparisons of the analyzed home allocation 

methods, i.e., no absolute validation is attempted. We, 

however, do make the assumption that, at a nation-wide 

level, relative population patterns do not change drastically 

within three years.  

HOME ALLOCATION ANALYSIS FOR CDR DATA 

Based on a literature review that covered, for example (but 

not exclusively), [1,11,12,14,25,27,31,40], we identified 

five different criteria that are often used when detecting 

homes from CDR data. To compare how results change 

with different criteria, as well as to explore the spatial 

uncertainty measures for different criteria, we construct five 

algorithms, each incorporating a specific criterion. The five 

different algorithms define home as the location where: 

1. The majority of both outgoing and incoming calls 

and texts was made;  

2. The maximal number of distinct days with phone 

activities —both outgoing and incoming calls and 

texts— was observed; 

3. Most phone activities were recorded during 7pm 

and 9am; 

4. Most phone activities were recorded, 

implementing a spatial perimeter of 1000 meter 

around a cell-tower that aggregates all activities 

within and 

5. The combination of 3) and 4) thus most phone 

activities recorded during 7pm and 9am and 

implementing a spatial perimeter of 1000 meter. 

Note that some of these algorithms are identical to works 

where home locations were used as a prerequisite. These 

criteria, however, were also used in more elaborated works 

(e.g., [14,25]). In addition, [8] uses a similar methodology 

and similar criteria when comparing home detection based 

on credit card transactions and Flickr data. The relevance of 

these algorithms thus goes further than CDR data alone.  

We apply all five aforementioned algorithms to the 

Orange
TM

 France 2007 CDR dataset, aiming for detecting 

presumed home allocations (L1) for all users during all 

months in the dataset (May-October). Besides the actual 

annotated home we gather several metadata on the 

workings of the algorithms on each case. Most importantly 

we also gather information about the second (L2) and the 

third (L3) most plausible locations for home as defined by 

the different algorithms. In the remainder of this paper we 

will refer to these locations as L2, and L3, with L1 being 

the actual detected home location by a particular algorithm. 

 

 



Comparisons of results at individual level 

To compare results between two different home detection 

methods at the individual level, we assess to which degree a 

set of algorithms detects the same location as home. A 

straightforward approach to do so is through evaluating the 

Simple Matching Coefficient – SMC [8]: 

𝑆𝑀𝐶 (𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝐴, 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝐵) =  
∑ 𝛿(𝐻𝑜𝑚𝑒𝐴,𝑖 , 𝐻𝑜𝑚𝑒𝐵,𝑖)𝑁

𝑖=1

𝑁
 

where i=1..N denotes the N users analysed, and 

𝛿(𝐻𝑜𝑚𝑒𝐴,𝑖 , 𝐻𝑜𝑚𝑒𝐵,𝑖) is the Kronecker delta that equals to 

1 when the home detected by algorithm A for the i-th user 

is identical to the home detected by algorithm B for the 

same user. It is 0 otherwise. Values of SMC range between 

0 and 1 and can easily be interpreted as the percentage of 

individual cases for which both algorithms detected the 

same home locations. 

Validation of results at cell-tower level 

To compare results from the home allocation methods with 

the proposed validation dataset we evaluate the degree of 

similarity in population numbers attributed to the different 

cell-towers on a nation-wide scale. Note that we do not 

target an absolute assessment of similarity, as this is 

impossible given the unknown spatial distribution of the 

28% sample of Orange users and the differences in times of 

collection between the CDR dataset and our validation data. 

Instead, we compare general patterns of estimated 

populations by means of vector comparison.  In our case, a 

first vector x will denote the estimated population by an 

algorithm for all cell-tower areas and is compared to a 

second vector y that describes the validation population for 

exactly the same cell-tower areas. Both vectors thus have an 

equal length (representing the 18,273 cell-towers in the 

Orange network). To quantify (dis-)similarities of 

aforementioned two vectors, we use a standard Cosine 

Similarity Metric (CSM): 

cos(�⃗�, �⃗�) =  
�⃗� ∙ �⃗� 

||�⃗�||  ||�⃗�||
 

Values of the cosine will range between -1 and 1. A value 

of 1 indicates the highest similarity in orientation (the angle 

between x and y is zero degrees), 0 indicates the lowest 

similarity in orientation (the angle between vector x and 

vector y is 90 or -90 degrees) and -1 indicates an opposite 

orientation (the angle between x and y is 180 degrees) 

Deriving the angle between two vectors and expressing it in 

degrees (°) thus becomes: 

𝐶𝑆𝑀 (�⃗�, �⃗�) = | cos−1 (
�⃗� ∙ �⃗�

||�⃗�||  ||�⃗�|| 
) ∗  

180

𝜋
 |  

A CSM value of 0° denotes the highest possible similarity, 

90° indicates the lowest similarity in orientation whereas 

180° degrees refers to an opposite orientation. 

Spatial uncertainty 

Probably the most important step in detecting home is the 

decision to annotate one of the detected important places as 

home. Since most of the time no ground truth data is 

available at the individual level (neither for learning, nor for 

validation), the error of erroneous decisions is unknown. 

Here, we propose a way to calculate the uncertainty that 

comes with deciding for one home location, given that other 

important places derived from the same individual traces 

(L2, L3) could also, plausibly, be the home location.  

We construct our measure of uncertainty to be explicitly 

spatial – Spatial Uncertainties. The idea behind is that if 

distances between the three top locations (L1, L2, and L3) 

are small, the spatial error when annotating the wrong 

location as home will remain small. In this case, the spatial 

uncertainty of home detection can be considered small. If 

distances are high, however, an erroneous detection of 

home will result in a high spatial error. Home detection in 

that case corresponds to a high spatial uncertainty. 

To construct our measure of spatial uncertainty, we 

compare the plausibilities of different locations to be home 

by calculating their ratio of amount of observations that 

have passed the criteria by the deployed algorithm. If the 

criteria of an algorithm, for example, demand the highest 

amount of distinct days for detecting home, then the 

comparison of plausibility will be on the amount of distinct 

days at the different considered locations. We explicitly 

incorporate the spatial extent of the uncertainty by inserting 

the absolute distances between considered locations. 

Distances between locations (e.g., uncertainty because of 

long distance travelling) and differences in spatial 

resolutions of observations (e.g., high-density cell-tower 

areas versus low-density) will therefore both resonate in the 

proposed spatial uncertainty measure: 

𝑆𝑈𝑛 =  ∑
𝑝𝑖

𝑝𝑛

∗
𝑑(𝑛, 𝑖)

2
{𝑖,𝑗,… }

 

where 𝑆𝑈𝑛 is the spatial uncertainty for detecting a home in 

location n (in meters), i and j are the first denoters in a set 

of other possible locations for home, 𝑝𝑛 and 𝑝𝑖  are the 

number of considered observations, given the criteria in the 

algorithm used, in respectively location n and i, and d(n,i) is 

the distance between locations n and i (in meters). 

The spatial uncertainty of a location n is influenced by the 

distance to all other considered locations and by the share 

of evaluated observations in these locations compared to the 

amount of evaluated observations in location n. A smaller 

share of evaluated observations in other locations and 

smaller distances to these other observations both result in 

smaller spatial uncertainties, indicating a higher plausibility 

that home detection is done at the correct location. 

 

 



 

We limit the calculation of SU to detected home locations 

only, i.e., n =1. Note that, in principle, the formula also 

allows to calculate the spatial uncertainty related to 

deciding on a second, third, etc. plausible location. 

However, without loss of precision (see below) we limit our 

analysis to only two other plausible locations, limiting the 

set of {𝑖, 𝑗, … } to i and j only. Doing so, the SU measure 

that we will use can be written as:  

𝑆𝑈𝐿1 =  
𝑝𝐿2

𝑝𝐿1

∗ 
𝑑(𝐿1, 𝐿2)

2
 + 

𝑝𝐿3

𝑝𝐿1

∗  
𝑑(𝐿1, 𝐿3)

2
   

Applying this formula to a simplified example where we 

use algorithm 1 (which considers the total amount of 

activities) to detect the home of user x who has a trace of 

calling 10 times at location A and 5 times at location B and 

1 times at location C.  The distances between location A, B 

and C are all 1 km. Based on the criteria used by algorithm, 

location A is L1, B is L2 and C is L3. The according SU for 

detection home at location A then becomes: 

𝑆𝑈𝐿1 =  
5

10
∗ 

1000

2
 + 

1

10
∗ 

1000

2
=   300 𝑚𝑒𝑡𝑒𝑟 

RESULTS 

We have applied five HDAs, all incorporating different 

criteria, to the French CDR dataset. We analyzed their 

reciprocal differences and performances based on our 

validation dataset. In a next step we discuss the construction 

of spatial uncertainty measures for the five algorithms. 

Building on this, we show the potential of using spatial 

uncertainty measures for a data-driven evaluation of HDAs 

in absence of validation datasets. Ultimately, we show how 

incorporation of spatial uncertainty by means of a very 

basic filtering mechanism leads to better results. 

Numbers of Users analyzed  

We applied all five HDAs to each of the six months 

available in the French dataset. For each algorithm we 

detected homes for ~18 million users per month, resulting 

in a maximum of ~109 million cases for each algorithm. 

Remember that with detecting home, we mean, detecting 

the cell-tower that covers the area of the home location. 

Table 1 shows the exact numbers and the amount of cases 

for which a second or third plausible locations was 

evaluated. 

 Algo 1 Algo 2 Algo 3 Algo 4 Algo 5 

Number of 

detected homes 

109.4 

(100%) 

109.4 

(100%) 

98.4 

(100%) 

109.4 

(100%) 

98.4 

(100%) 

Cases with L2 102.2 

(93.5%) 

102.2 

(93.5%) 

78.0 

(81.3%) 

102.0 

(92.8%) 

78.4 

(79.6%) 

Cases with L3 96.1 

(87.9%) 

96.1 

(87.9%) 

65.0 

(66.1%) 

94.7 

(86.6%) 

62.3 

63.3)% 

Table 1: Total numbers of detected homes by different 

algorithms and amount of cases that had plausible L2/L3 

locations. Percentages are given in brackets. 

 

Figure 1: Percentile distributions of shares of activities in top 3 

most frequent locations for all 110 million detection cases.      

Depicting 66%, to 86% of cases with (at least) three 

plausible locations, these numbers show how loose the used 

criteria for home detection are and thus why the assessment 

of uncertainty deemed necessary. Given competitive 

locations for home detection, we explored the importance 

of locations in terms of observed activity. For each user, we 

calculated the share of activities performed in the top 3 

most frequently used cell-tower. The percentile distribution 

of the shares for the whole French dataset is given in figure 

1. The importance of the location with most observations is 

clearly visible. Its shares range from ~40% (5
th

 percentile) 

to 100% (95
th
 percentile) with a median of 64%. Shares of 

the second and third most frequently visited cell-towers are 

substantially lower with medians of 23% and 10% and a 

95
th

 percentile of 41% and 27%. These figures support our 

decision to limit the analysis of spatial uncertainty to only 

three plausible locations. Observations are similar to [14] 

that found 95% of the users in a Portugal CDR dataset have 

fewer than four frequent locations. 

Comparing detected homes for different algorithms 

To tackle the question to which degree different algorithms 

detect equal home locations, we calculated pairwise SMC 

values. When calculating SMC values, we omit all cases 

where one of the considered algorithms failed to detect a 

home location (e.g., when no observations where left after 

implementing a time constraint). Figure 2 shows the SMC 

values for all algorithm combinations and for different 

months. Degrees of accordance range between 61.5% and 

96.4% of the detected homes, resulting in discordance rates 

between 40% and 4%, which translate in absolute numbers 

of 6.8 and 0.6 million users. 

The patterns of (dis)similarities between algorithms are 

clearly visible. Algorithms that incorporate time-constraints 

(algorithms 3 and 5) disaccord to high degrees with 

algorithms that count amount of activities (algorithm 1), 

distinct days (algorithm 2), or perform spatial grouping 

(algorithm 3), all of which show high degrees of pairwise 

accordance. The criteria of time-constraints thus results in 

different detected homes for 30% to 40% of the cases 

compared to all other criteria. Possibly these differences 

sterns from sparser observations but also different spatial 

behavior during nighttime could form an explanation. 



 

Figure 2: Radar plot showing comparisons of the number of 

identical homes detected for August and the total dataset by 

means of pairwise SMC values for the different combinations 

of algorithms 1 – 5. Other months display similar values. 

Validation with census data: CSM 

In order to validate the performance of the analyzed 

algorithms, we compare numbers of detected home 

locations aggregated at cell-tower level to corresponding 

numbers of our validation dataset by means of the Cosine 

Similarity Metric (CSM). Figure 3 shows the calculated 

CSM values for all algorithms and for different months.  

The distinct days criteria performs best in replicating the 

population pattern of the validation dataset, followed by the 

number of activities and the time-restraining number of 

activities. The criteria that involve grouping in space 

perform worst, even though the applied criterion (1 

kilometre) is not that far.  

Temporal patterns are similar for all algorithms, with lower 

CSM values for June and September, and higher values for 

May, July, August and October. A possible explanation for 

high SMC values for May and October is the limited 

number of available data days for these months in the 

dataset (18 and 14 days), which supports our choice to 

analyse the dataset on a monthly basis.  

Highest SMC values are observed during summer (July and 

August). All algorithms are sensitive to this temporal 

change, probably, because of changing spatial behaviour of 

users that go on holidays [15]. Time-restraining criteria are 

more sensitive for these changes which questions their 

widespread adaptation in literature. In addition it is an 

interesting observation that differences between algorithms 

are smaller than differences of similar algorithms trough 

time. Future deliberation on algorithm choice, we suggest, 

should therefore take into account time-effects or thus, 

more in general, the characteristics of the deployed dataset.  

CSM values between 35° and 38° are still far off the 

intended 0° as perfect matching with the validation set 

would achieve. In light of this, differences between 

algorithms or months that comprise 1° or 2° degrees do not 

seem relevant. However, when looking at the spatial 

patterns related to such small changes in CSM values, their 

relevance becomes clear. 

 

 

Figure 3: CSM values (in degrees) for the comparison between 

amount of detected homes per algorithm and the validation 

ground truth data, both at the cell-tower level.  

Figure 4, for instance, shows the spatial patterns, 

emphasised in “hot” (marked red) and “cold” (marked blue) 

spots, of the detected homes in June and August by the 

amount of activities algorithm. The difference in CSM 

values between June and August is 1.08° but results in a 

very different spatial pattern, pronouncing the holiday trips 

of French people that direct to coasts and mountainous 

areas.  

 

 

  

Figure 4: Hotspots (red) and coldspots (blue) defined by the 

90+% interval of the Getis-Ord Gi* statistic for population 

numbers of the validation dataset (a), the number of detected 

homes by the amount of activities algorithm in June (b) and 

August (c) and the median SU values for detected homes by 

the amount of activities in August (d). The map is a made up 

by the Voronoi tessalation based on cell-tower locations 

 



Spatial uncertainty construction 

In order to evaluate the spatial uncertainty related to the 

home detection choice of the different algorithms, we 

calculated the SU values for home location of each treated 

case. The medians of the SU figures aggregated for all five 

algorithms and all six months are shown in figure 5. The 

observed SU values range between 2.5 km and 7 km, 

suggesting that generally, spatial uncertainty on the 

detected homes is moderate.  

The number of activities criterion depicts the lowest SU 

values. Remarkably, the SU of maximum activities and 

time-constraining algorithms are almost equal during non-

summer months. However, during summer, SUs of the 

time-constraint criteria increases drastically, whereas the 

SUs of the maximum activities only rise moderately. Again, 

this poses questions w.r.t. the use of time-constraints 

algorithms, especially during summer months.  

Despite having the lowest CSM values, the distinct days 

criterion has the highest SU values during non-summer 

months. This is an understandable result as limiting the 

maximum observations in a month to the number of distinct 

days (normally 30 or 31) will give more weight to the L2 

and L3 locations. A clear indicator that using distinct days 

can be risky as it might favor secondary locations.  

The higher SU values in summer suggest a change in the 

nature of observed traces. Home detection is more uncertain 

due to higher distances between plausible locations and 

different calling patterns at these locations; a change poorly 

dealt with in existing algorithms given their growing 

discordance with the validation dataset during July and 

August (see figure 4 (d) where the spatial pattern of 

calculated SU-values for the amount of activities criteria in 

August can be investigated). In addition, low SU values in 

May and October suggest no change in the nature of traces 

and so the observed high CSM values for these months can 

not be explained in a similar way.  

 

 

Figure 5: Medians of calculated Spatial Uncertainties for 

detected homes by five algorithms during different months.  

 

 

The similarity in temporal patterns between SU and CSM 

values suggests that spatial uncertainties at the individual 

level are linked to the nation-wide performance of the 

algorithms. Figure 6 illustrates this relation and shows a 

strong correlation between both measures (R=0.46 to 

R=0.68 depending on the omittance of outliers for May and 

October). This is an important finding as it opens the door 

for a data-driven assessment of different home algorithms, 

so diminishing, or even excluding the role of external 

validation datasets.  

 

 

Figure 6: Relation between SU and CSM values (median per 

month per algorithm). Trendlines are given for the amount of 

activities, amount of distinct days and time-restraint criteria. 

A positive, general correlation with R= 0.46 is obtained for all 

observations when omitting observations for time-restraints 

and time-space restraints algorithm in October (outliers in the 

left top corner). A positive correlation with R=0.68 is found 

when omitting all observations for October and May. 

Since SU and CSM values are correlated, we were 

interested in whether we could use information on SU at the 

individual level, to improve performance of algorithms on 

the nation-wide scale. One simple way would be by using 

SU values as a filter, thus discarding individual traces that 

depict too high spatial uncertainties. We therefore 

investigate the sensitivity of CSM values to filtering on 

different parameters of SU.  

Figure 7 shows the resulting CSM values for the amount of 

activities and time-restraint algorithms when filtering on 

SU-values lower than 10, 30, 50 or 70 km. The results 

exceed our expectations. Filtering on SU values 

significantly improves the performance of HDAs regardless 

the threshold set for SU. In addition, SU filtering seems to 

eliminate, to a large degree, the effect of summer months in 

our dataset since obtained CSM values became more 

constant in time. On the downside, SU filtering seems to 

have limited effects for the months May and October.  

 

 



CONCLUSION 

The analysis of CDR data has great potential for automated 

detection of meaningful places. However, the validation of 

locations for individual users remains a challenge given the 

absence of ground truth for such large-scale datasets. As a 

consequence, previously developed methods based on 

continuous location traces not necessarily scale for large 

scale datasets. Yet, research has continued to use home 

detection from CDR data, mostly as a prerequisite for 

further research, but largely relying on rather simple Home 

Detection Algorithms based on implicit criteria for the 

definition of home. Despite widespread application, no 

consensus on the use of these criteria exists and neither  

does a critical assessment of their application to CDR data.  

 

 

 

Figure 7: CSM values (in degrees) for the amount of activities 

criteria (top) and the time-restraint criteria (bottom) and their 

application when adapting filtering on SU-values (expressed in 

km) lower than 70, 50, 30 and 10 km. Effects of SU-filtering 

for the other algorithms show similar results.   

Comparing findings from the application of five simple 

HDAs, each based on a popular criterion to a French CDR 

dataset, showed large differences between criteria (up to 

40% of the considered cases), large differences in 

performance, and a huge sensitivity to time of observations, 

especially during summer months. Third party validation of 

the large-scale patterns of population density in France 

based on a unique dataset prepared by the French Statistical 

Office showed the ‘distinct days’-criterion to perform best.  

Given the absence of proper ground truth annotation, 

validation of HDAs for CDR dataset is mostly based on a 

very high level comparison with census data. To waive such 

high-level aggregated estimation of error, we proposed the 

construction of a measure of spatial uncertainty (SU) for 

home detection on individual location traces. Calculation of 

SU-values was discussed and applied for five algorithms on 

the French CDR dataset. Interestingly, the aggregation of 

SU-values at cell-tower level correlated strongly with 

previous performance measures obtained from third party 

validation (between R=0.46 and R=0.68) and generalizes 

for all assessed algorithms. This opens possibilities to 

develop SU for data-driven assessment of HDAs, to 

complement traditional validation methods to become more 

multi-level and adaptive in time, and to limit the 

dependency of methods to existing validation datasets.  

We experimented with the use of SU to improve population 

estimation based on HDA. For each of the five algorithms, 

we deployed a SU-filter, so using the calculated risks on 

spatial error associated with individual location traces. For 

each of the algorithms, results outperformed the simple 

HDAs deployed before regardless the parameters used for 

filtering. Surprisingly, SU filtering seems to eliminate, to a 

large degree, the effect of summer months in the 

performance of our algorithms. We believe these findings 

to be relevant for further research in the detection of 

meaningful places from CDR data. Most notable, we 

believe that the calculation and comparison of SU for 

different data-algorithm combinations, the multi-level and 

spatio-temporal analysis of SU, the integration of SU in the 

learning phase of more complex HDAs and the 

development of a data-driven assessment of performance 

based on SUs are promising directions of future work.   
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