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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Novel composite sorbents are developed. Strontium chloride (SrCl2) is selected whereas expanded natural graphite and 

nanoparticle i.e. carbon coated nickel are integrated as the additive with different densities for the better heat transfer and 

sorption performance. Thermal properties such as thermal diffusivity and conductivity are investigated by the laser flash method. 

The sorption performance is tested by the unit which is especially designed. It is indicated that the highest thermal diffusivity 

could reach 2.242 mm2·s-1 when the density is 1000 kg·m-3 and testing temperature is 20 oC. For different testing temperature and 

density, the thermal diffusivity range from 1.3 mm2·s-1 to 2.242 mm2·s-1. Also worth noting that the highest thermal conductivity 

could reach 2.5 mm2·s-1 for the environmental temperature. One paramount factor i.e. the global conversion rate of the novel 

composite SrCl2 is compared and analyzed under different working conditions. It can be found that the higher desorption 

temperature results in the faster variation of the global conversion rate. In addition, It takes about 15 minutes and 40 minutes to 

finish the reaction SrCl2 8-1 and 1-0 when the desorption temperature is 180 oC and 130 oC, respectively. For sorption process, it 

is indicated that the global conversion rate varies faster with the increase of the sorption temperature. When the global conversion 

is 0.7, it takes about 14 to 28 minutes when sorption temperature range from -5 oC to 15 oC.  
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1. Introduction 

Sorption refrigeration has drawn a burgeoning number of attentions since it is regarded as one environmental 
benign technology, which is characterized as easy to control and utilizing green refrigerants without Ozone 
Depletion Potential (ODP) and Global Warming Potentials (GWP) [1-3]. One of key parameter for sorption 
refrigeration is specific cooling power (SCP), which is mainly related with cycle time [4, 5].  The shorter cycle time 
is, the higher SCP will become, which will result in the better performance and system compactness. To shorten 
cycle time mainly lies in two parts. One is the heat and mass transfer enhancement [6, 7]. The other is the better 
sorption kinetic to accelerate the reaction rate [8]. 

For heat and mass transfer intensification, composite sorbent has been widely investigated. As one major matrix 
of composite sorbent, expanded natural graphite (ENG) has been extensively investigated for both physical and 
chemical sorbents [9], which was invented by the Carburet Company in US firstly [10]. Mauran et al. [11] 
introduced the ENG as a matrix to the consolidated composite sorbent, which demonstrated the better thermal 
conductivity for the composite metal chlorides. Tian et al. [12] investigated the heat and mass transfer performance 
for both physical and chemical composite sorbents of activated carbon and CaCl2. Results showed that the highest 
thermal conductivity of the ENG-CaCl2 and ENG-AC are 1.66 and 2.61 W·m-1·K-1, respectively with regard to the 
different densities and mass ratios of salt. Wang et al. [13] measured the effective thermal conductivity of ENG-
CaCl2-nNH3 (n = 2, 4, 8) compound sorbent by using hot wire method at a fixed pressure and temperature under 
ammonia atmosphere, and the values were in range of 7.05-9.2 W/(m.K). Tamainot-Telto and Critoph [14, 15] used 
the steady-state heat source method to test the thermal conductivity of activated carbon, which was up to 0.44 W·m-
1·K-1. Jiang et al [6, 16] investigated thermal conductivity and permeability of eight different chlorides with ENG, 
and compared the properties of different consolidated composite sorbents in sorption process. Nonetheless, since the 
anisotropic thermal conductivity and permeability had been found for compact expanded natural graphite, some 
testing methods may cause some inaccuracies [17]. 

For better sorption kinetics, nanoparticles have been regarded as one possible way to improve the working 
performance of the sorbent, which has been investigated for the sorption reaction. Franco et al. [18] investigated the 
sorption kinetic of asphaltene by means of nickel oxide nanoparticles with the silica gel as a matrix. Results 
demonstrated that isothermal sorption reaction rate increased with the increase of the nanoparticles. Later, the 
sorption reaction rate of asphaltene was accelerated by the other nanoparticles. It was indicated that on 
nanoparticulated alumina can be effectively shorten the sorption time to 2 minutes, making this sorbent a good 
candidate [19, 20]. Also for the chemisorption reaction, there are quite a lot of selections for improve the sorption 
kinetic for the sorption refrigeration[21]. Nonetheless, less concerning researches are reported ENG and 
nanoparticles as the additives for the sorption refrigeration [17, 22], which is a probably prospective way to improve 
the system performance from two different aspects. 

In this paper, strontium chloride (SrCl2) impregnated with both ENG 
and carbon coated nickel as an additive is investigated for thermal 
properties as well as the sorption characteristics since there is little 
research work on the performance of this composite sorbent.  

2.  Materials and characterization 

Compared with the conventional composite sorbent, the novelty is to 
introduce the nanoparticle i.e. carbon coated nickel into the sorbent. The 
thermochemical reaction process of SrCl2 with ammonia can be referred to 
the equations 1-3. 

The development of the SrCl2 composite sorbent can be referred to the 

 

Fig. 1. The pressing rig and sample 
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reference[23]. ENG is expanded by the optimal expanding process, i.e. heating untreated natural graphite in an oven 
at the temperature of 600 oC for 8 minutes [21]. First, ENG is dried in the oven with controlled temperature of 120 
oC. Meanwhile, the nanoparticle is dispersed in ethanol with ultrasonic bath for 30 minutes to prevent the 
aggregation of carbon coated nickel in the mixing process. SrCl2, ENG and carbon are stirred and mixed together by 
the ultrasonic treatment for another 30 minutes. The mixture will be dried in an oven at 120oC for 48 h. Finally, the 
mixture is put into a vessel and pressed by a die, which is as shown in Fig.1. The test direction is parallel to the 
pressing direction. 

Mass ratio of salt and density are two major factors in the process of developing SrCl2 composite sorbent. The 
higher density and lower mass ratio of salt 
is, the lower permeability and the higher 
thermal conductivity becomes. For testing 
the thermal properties, density is selected in 
the range of 600 kg·m-3-1000 kg·m-3 and 
the mass ratio among SrCl2, ENG and 
carbon is 40:20:1.  

3 Characterization methods 

Thermal diffusivity and thermal conductivity is investigated by the 
Laser flash measuring method, and type of the instrument is LFA467 
produced by Netzsch Company as shown in Fig.2. The Laser flash 
measuring method is explained as follows. For a certain setting 
temperature T, a beam of light pulses is emitted instantaneously by the a 
xenon flash lamp and uniformly illuminating in the sample surface, so 
that the temperature transient increases as the hot end of the one-
dimensional heat conducts to the cold end propagation. The trend of the 
temperature can be measured by using an infrared detector. By analysing the curves of temperature-versus-time and 
concerning calculation, thermal conductivity can be determined.  

For the ideal case, width of the optical pulse is almost infinitely small. Heat conduction in the interior of the 
sample is regarded as one-dimensional heat transfer from the lower surface to the upper surface. Through measuring 
semi-heating time t50 (define as the half time required as the temperature of the sample in the upper surface is raised 
after receiving the light pulse irradiation) by the following formula: 

where α is thermal diffusivity, d is the thickness of the 
testing samples, t50 is the semi-heating time. 

where λ(T) is the thermal conductivity at a certain 
temperature, α(T) is the thermal diffusivity at a certain 

temperature, Cp is specific heat at a certain temperature, ρ(T) is the density of the sample at a certain temperature. 
The random error of the equipment is less than 0.1%, and the largest relative error is 5%. 

The sorption kinetics of the novel sorbent was tested by the test unit shown in Fig.3. The test unit has two 
sorption beds, one refrigerant vessel, three cryostats, a pressure transmitter and valves, etc. The refrigerant vessel 
acts as condenser or evaporator, depending on the operation conditions. Temperature of sorption bed and the 
refrigerant vessel is controlled by two cryostat baths. The testing processes of isobaric sorption/desorption kinetics 
are as follows: 

Sorption process: Open the valves V1 and V3 in Fig.1a. Keep the refrigerant vessel at a constant pressure by 
low-temperature thermostat bath i.e. thermostat 1, and control the temperature of sorption reactor decreasing from 
high temperature to environmental temperature slowly. For each test point with predetermined refrigerant 

2

Nickel
2 3 3 2 3 SrClSrCl NH +7NH SrCl 8NH +7ΔH   (1) 

2

Nickel
2 3 2 3 SrClSrCl +NH SrCl NH +ΔH  (2) 

3 3(gas) ( ) condNH NH liq H   (3) 

 

Fig. 2. Photo of the Schematic of 
thermal conductivity testing unit 
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temperature and sorption temperature the 
fluid level in the refrigerant vessel is 
recorded by the smart pressure transmitter 
when the data doesn’t change for at least 6 
minutes.  

Desorption process: By the similar way 
the reactor is heated from environmental 
temperature to desorption temperature 
slowly, and the data of the refrigerant level 
in the refrigerant vessel is recorded. The 
sorption quantity of sorbent is calculated by 
the refrigerant level in the vessel.  

Cycle sorption quantities are calculated 
as Equation 6, where △P is the pressure 
difference for the condensation and 
evaporation process (Pa), msalt is the sorbent 

mass (kg), V is the liquid ammonia volume in the refrigerant vessel (m3), g is the gravity acceleration (9.80 m/s2), 
v’(Te) is specific volume of saturated liquid ammonia (m3/kg), Ac is the effective area of cross section of ammonia 
in the evaporator / condenser (m2).  

The sorbent mass is measured by the balance (BS2202S) with a measuring error of 0.01 g. The pressure 
difference between the vapor end and liquid end of the evaporator/condenser is tested by the smart differential 
pressure transmitter, whose testing error is 0.2%. According to Equation 7, the relative error of sorption/desorption 
quantity and cycle sorption quantity of novel sorbent are 0.37%.  

4 Performance of different sorbents 

4.1．Thermal diffusivity 

Fig.4 shows the thermal diffusivity of the novel 
composite sorbent with different densities for 
testing temperature. It is indicated that the thermal 
diffusivity increases with the decrease of testing 
temperature and the increase of the density. This is 
mainly because the higher temperature results in 
that the novel sorbent becomes friable, which leads 
to the larger thermal contact resistance. 

The highest thermal diffusivity is able to reach 
2.242 mm2·s-1 when the density is 1000 kg·m-3 and 
testing temperature is 20oC. For different testing 
temperature and densities, the thermal diffusivity 

Fig. 3. Test unit of sorption performance [24, 25] '( )1 (1- )
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Fig. 4. Thermal diffusivity vs. different density and 
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ranges from 1.3 mm2·s-1 to 2.242 mm2·s-1.  
 
4.2．Thermal conductivity 

Since thermal conductivity for different testing temperature 
shows the similar trends, environmental temperature is selected 
as one example for further elaboration. Fig.4 shows the thermal 
diffusivity of the novel composite sorbent with different 
density when the testing temperature is 20oC. As it shows, the 
highest thermal conductivity could reach 1.345 W·m-1·K-1. For 
different density, the thermal conductivity ranges from 0.5 
W·m-1·K-1to 1.345 W·m-1·K-1.  

4.3． Sorption characteristic of composite sorbent 

The global conversion rate is defined as the percentage of composite sorbent that reacted with the refrigerant, 
which is a key parameter to assess the working performance of sorption refrigeration  system[26]. For different 
sorption and desorption temperature, the global conversion rate of the novel composite SrCl2 is compared and 
analyzed which is shown in Fig.6. Fig.6a indicates the global conversion rate various with the desorption 
temperature of 180 oC and 130 oC, respectively. It can be found that the higher desorption temperature is, the faster 
the global conversion rate varies due to the larger chemisorption potential. Also noting that the two desorption 
stages proceed on condition of the working temperature. It takes about 15 minutes to finish the reaction SrCl2 8-1 
when the desorption temperature is 180oC. Comparably 40 minutes will be consumed when the desorption 
temperature is 130oC. The second stage SrCl2 1-0 will takes more time for 130oC desorption temperature. Fig.6 (b) 
indicates the global conversion rate on condition of the sorption temperature from -5oC to 15oC with 5oC increment, 
which only manifests the reaction SrCl2 1-8. It is indicated that the global conversion rate varies faster with the 
increase of the sorption temperature. When the global conversion is 0.7, it takes about 14 minutes for 15oC sorption 
temperature. It takes about 28 minutes even for the lowest sorption temperature of -5oC.  
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5 Conclusions 

Novel SrCl2 composite sorbents are developed, which is impregnated with ENG and carbon coated nickel as an 
additive. Thermal diffusivity, thermal conductivity and sorption characteristics are all tested and analyzed. The 
conclusions are yielded as follows: 

(1) Thermal diffusivity increases with the decrease of testing temperature and the increase of the density. The 
highest thermal diffusivity is able to reach 2.242 mm2·s-1 when the density is 1000 kg·m-3 and testing 
temperature is 20oC. For different testing temperature and density, the thermal diffusivity range from 1.3 
mm2·s-1 to 2.242 mm2·s-1.  

(2) The highest thermal conductivity could reach 1.345 W·m-1·K-1. For different density, the thermal 
conductivity range from 0.5 to 1.345 W·m-1·K-1 when the testing temperature is 20oC. 

(3) For the desorption kinetics, the higher desorption temperature is, the faster the global conversion rate varies. 
Also two desorption stages proceeds on condition of the working temperature. It takes about 15 minutes and 
40 minutes to finish the reaction SrCl2 8-1 and 1-0 when the desorption temperature is 180oC and 130oC, 
respectively. For sorption kinetics, the global conversion rate varies faster with the increase of the sorption 
temperature. When the global conversion is 0.7, it takes about 14 minutes for 15oC sorption temperature. It 
takes about 28 minutes even for the lowest sorption temperature of -5oC. 

For such a novel composite sorbent, heat transfer and sorption kinetics are both improved, which will be a great 
innovation for the sorption refrigeration. Under this scenario, the sorbent can greatly reduce the cycle time and 
lower the heat driving temperature. It is also worth noting that the system compactness will be increased, which 
plays an important role in the places of limited spaces. 
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