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ABSTRACT Whole-genome sequencing (WGS) makes it possible to determine the
relatedness of bacterial isolates at a high resolution, thereby helping to characterize
outbreaks. However, for Staphylococcus aureus, the accumulation of within-host di-
versity during carriage might limit the interpretation of sequencing data. In this
study, we hypothesized the converse, namely, that within-host diversity can in fact
be exploited to reveal the involvement of long-term carriers (LTCs) in outbreaks. We
analyzed WGS data from 20 historical outbreaks and applied phylogenetic methods
to assess genetic relatedness and to estimate the time to most recent common an-
cestor (TMRCA). The findings were compared with the routine investigation results
and epidemiological evidence. Outbreaks with epidemiological evidence for an LTC
source had a mean estimated TMRCA (adjusted for outbreak duration) of 243 days
(95% highest posterior density interval [HPD], 143 to 343 days) compared with 55
days (95% HPD, 28 to 81 days) for outbreaks lacking epidemiological evidence for
an LTC (P � 0.004). A threshold of 156 days predicted LTC involvement with a sensi-
tivity of 0.875 and a specificity of 1. We also found 6/20 outbreaks included isolates
with differing antimicrobial susceptibility profiles; however, these had only modestly
increased pairwise diversity (mean 17.5 single nucleotide variants [SNVs] [95% confi-
dence interval {CI}, 17.3 to 17.8]) compared with isolates with identical antibiograms
(12.7 SNVs [95% CI, 12.5 to 12.8]) (P � 0.0001). Additionally, for 2 outbreaks, WGS
identified 1 or more isolates that were genetically distinct despite having the out-
break pulsed-field gel electrophoresis (PFGE) pulsotype. The duration-adjusted TM-
RCA allowed the involvement of LTCs in outbreaks to be identified and could be
used to decide whether screening for long-term carriage (e.g., in health care work-
ers) is warranted. Requiring identical antibiograms to trigger investigation could miss
important contributors to outbreaks.
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To manage Staphylococcus aureus outbreaks effectively, infection control practitio-
ners need to determine the relatedness of isolates from suspected cases. Whole-

genome sequencing (WGS) has shown superior resolution compared with standard
typing techniques (spa, pulsed-field gel electrophoresis [PFGE]) when used for individ-
ual outbreaks (1–4) and can also provide additional information about resistance,
pathogenicity, and population structure (5–8). However, it has been argued that the
accumulation of within-host diversity during S. aureus carriage could result in erroneous
inferences about transmission. This has been cited as a potential weakness in applying
sequencing to S. aureus outbreaks and may lead to the misinterpretation of genuine
transmission routes (1, 9, 10).

However, rather than within-host diversity being a limitation on sequencing-based
outbreak investigation, it could in fact be exploited to determine whether a long-term
carrier is implicated in maintaining an outbreak. This information could be used by
infection control practitioners when considering whether or not to deploy extended
screening (e.g., of health care workers).

In this study, we tested the hypothesis that WGS can be used to predict the presence
of a long-term carrier as an outbreak source. First, we examined individuals with newly
acquired S. aureus nasal carriage to ascertain whether diversity is present at acquisition
or develops over time. Next, we analyzed 20 S. aureus outbreaks, which were previously
investigated using standard typing techniques, to assess the added utility of WGS.
Finally, we compared WGS with epidemiological data to determine whether the
presence of a long-term carrier maintaining the outbreak could be inferred from the
WGS data.

RESULTS
Comparison of within-host diversity in newly acquired and long-term carriage.

Eight subjects were identified with �3 consecutive bimonthly negative nasal swabs,
followed by �1 year of swabs consistently positive for S. aureus. All isolates were
methicillin-susceptible S. aureus (MSSA), representing 7 spa types, 5 sequence types,
and 4 clonal complexes. The median time from the first to last positive sample was 490
days (range, 358 to 727 days). In total, 135 isolates were successfully sequenced from
16 samples. One isolate (case 1219, early sample) failed quality checks and was
excluded.

In 6/8 subjects, there was a significant increase in mean pairwise diversity (MPWD)
between the first and last samples (P � 0.05) (Fig. 1). In one participant (case 1236), the
increase was not significant (P � 0.52), and for another (case 1375), there was a
decrease which was marginally significant (P � 0.07). Overall, MPWD increased from
0.88 single nucleotide variants (SNVs) (95% confidence interval [CI], 0.65 to 1.11) to 3.30
(95% CI, 2.92 to 3.68) between the first and last samples (P � 0.001). An analysis of the
phylogenetic trees (see supplemental material) showed highly clonal early populations,
and in 2 participants, only a single strain was observed. One individual (case 1219) had
a more diverse early sample (MPWD, 4.57; 95% CI, 3.10 to 6.04) compared with those
of the other participants. This subject’s first positive swab was at month 12, and they
had completed a course of amoxicillin-clavulanic acid 1 day before their final negative
swab. Therefore, it is possible that this was a false negative due to antibiotic suppres-
sion, meaning that there may have been up to 4 months of carriage prior to the first
positive swab, accounting for the increased diversity.

Two participants (cases 1218 and 1219) shared the same address and had isolates of
the same spa type. Participant 1219 (donor) became positive 2 months before partic-
ipant 1218 (recipient). On a direct comparison of both early populations, we found that
the recipient had an entirely clonal initial population, identical to 4/8 of the donor’s
strains (see supplemental material).

For an additional 13 participants positive at the study entry, within-host diversity as
measured by MPWD ranged from 0 SNVs (3 individuals) to 26 SNVs. This may be due
to differences in the acquisition time to the time of the first sample, which is unknown
for these individuals.
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Outbreak characteristics. Twenty outbreaks were included in the study (Table 1).
Fourteen (70%) were hospital associated, including 5 in neonatal units, 4 in general
wards, 1 from a surgical unit, 2 from maternity units, and 2 involved multiple wards or
hospital sites. Six (30%) were community associated, including 4 households, 1 nursing
home, and 1 school. The reasons for instigating an outbreak investigation were an
increase in methicillin-resistant S. aureus (MRSA) carriage (8 outbreaks), Panton-Valentine
leukocidin (PVL)-producing skin/soft tissue infection (7 outbreaks), surgical site infec-
tions (3 outbreaks), MRSA bacteremia (1 outbreak), and staphylococcal scalded skin
syndrome (1 outbreak). Three (15%) were due to MSSA and 17 (85%) to MRSA. The
median number of outbreak cases was 7 (interquartile range [IQR], 5 to 9). The median
duration was 72 days (IQR, 44 to 188 days).

Overall, isolates from 391 cases were sequenced. Nine (2.3%) were from health care
workers (HCWs), the remainder being from patients or household members. Outbreak
samples represented 9 clonal complexes, 11 sequence types, and 12 spa types.

Phylogenetic analysis of outbreaks. Phylogenetic trees for each outbreak are
provided in the supplemental material. Two outbreaks had isolates which were equally
or more distant than comparator isolates despite having the outbreak pulsotype:
outbreak D (one isolate, 53 SNVs from the index case compared with 21) and outbreak
S (two isolates, 49 and 46 SNVs from the index case compared with 46). These were
therefore considered to be sporadic nonoutbreak isolates and were excluded from
further analysis.

The overall MPWD across all outbreak sample pairs for the remaining 388 isolates
was 13.8 SNVs (95% CI, 13.6 to 13.9) compared with 4,444 SNVs for nonoutbreak
spa-matched pairs (95% CI, 2,492 to 6,395) and 30,192 SNVs for nonoutbreak isolates
from the same units (95% CI, 29,781 to 30,603). All outbreak isolates were �30 SNVs
from the index case; 381/388 (98%) were �10 SNVs from their nearest neighbor. The 7
more distant isolates came from outbreaks lasting more than 6 months (B, G, and S). All
isolates were mapped to a standard reference genome; mapping to an alternative
reference strain (performed for 6 outbreaks) yielded only 2 additional SNVs overall (see
supplemental material), with no effect on topology.

FIG 1 All pairwise differences between early (�2 months since acquisition) and late (�12 months since acquisition)
nasal swab samples from 7 patients with previously negative nasal swabs. Included for comparison are samples
from patients positive at entry to the study (time of acquisition unknown).
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Time to most recent common ancestor and long-term carriers. Twelve outbreaks
(60%) had epidemiological evidence of a long-term carrier (LTC). Three included cases
with recurrent staphylococcal disease, in 5 an LTC was suspected due to nonoverlap-
ping ward stays, and in 4, at least one case had postoutbreak long-term carriage (Fig.
2). The pairwise distances between isolates from outbreaks with evidence for an LTC
ranged from 0 to 46 SNVs compared with 0 to 10 SNVs for outbreaks with no evidence
for an LTC (Table 2). The mean duration-adjusted time to most recent common ancestor
(TMRCA) for outbreaks with a suspected or proven LTC was 243 days (95% highest
posterior density interval [HPD], 143 to 343 days) compared with 55 days (95% HPD, 28
to 81 days) for outbreaks with no evidence for an LTC (P � 0.004) (Fig. 2). Excluding
postoutbreak carriage, an analysis of the receiver operating characteristic curve gave an
area under the curve (AUC) of 0.953 (95% CI, 0.851 to 1). Using the Youden index to

FIG 2 Duration-adjusted TMRCA for outbreaks with (i) no evidence of a long-term carrier (direct contacts
between all cases); (ii) likely LTC (indirect ward contacts or preoutbreak LTC); or (iii) LTC unclear/possible
(evidence of a postoutbreak LTC).

TABLE 2 Long-term carrier category, duration-adjusted TMRCA, and SNV range for outbreaks investigated using WGS

Outbreak Long-term carrier category
Duration-adjusted TMRCA (days [95% highest
posterior density interval])

Distance between all isolates
in cluster (SNV range)

A Indirect ward contact 285 (134–445) 0–19
B Indirect ward contact 515 (394–646) 0–24
C Direct ward contact 103 (61–228) 0–9
D Direct ward contact 78 (21–153) 0–10
E Postoutbreak LTC 96 (40–165) 0–6
F Direct ward contact 86 (36–160) 0–5
G Indirect ward contact 394 (259–539) 0–46
H Direct ward contact 46 (5–95) 0–4
I Postoutbreak LTC 30 (1–69) 0–5
J Postoutbreak LTC 161 (61–271) 0–9
K Direct ward contact 31 (0–82) 1–4
L Postoutbreak LTC 216 (134–314) 0–8
M Direct ward contact 54 (9–107) 0–4
N Indirect ward contact 156 (50–275) 0–36
O Preoutbreak LTC 378 (240–531) 9–25
P Preoutbreak LTC 54 (12–124) 1–11
Q Preoutbreak LTC 204 (108–306) 1–13
R Household 29 (0–73) 1–2
S Indirect ward contact 431 (269–599) 3–32
T School 12 (0–40) 0–2
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select the optimal threshold gave a cutoff value of 156 days, with a sensitivity of 0.875
and a specificity of 1.

Relationship between PFGE pulsotype/antibiogram and SNV distance. Five
outbreaks contained isolates differing by �1 band from the index case on PFGE. MPWD
between outbreak isolates with identical PFGE pulsotypes was 13.6 SNVs (95% CI, 13.4
to 13.7) compared with 17.3 (95% CI, 17.0 to 17.6) between isolates with differing
pulsotypes (P � 0.0001).

In 6/20 outbreaks, antimicrobial susceptibility differed across isolates, confirmed by
the presence/absence of mobile resistance determinants identified using BLAST (11);
however, these clearly belonged to the outbreak on phylogenetic analysis. MPWD
between isolates sharing an antibiogram was 12.7 SNVs (95% CI, 12.5 to 12.8) compared
with 17.5 (95% CI, 17.3 to 17.8) for isolates with differing antibiograms (P � 0.0001),
although a substantial number of isolate pairs with different antibiograms had 0 SNVs
between their core genomes (Fig. 3).

For other factors potentially related to outbreak diversity, there was no evidence of
an association between MPWD and outbreak duration, reason for investigation, epide-
miological setting, or MRSA phenotype (P � 0.05).

DISCUSSION

We have tested the use of WGS for S. aureus outbreak investigation using 20
outbreaks. By comparing observed outbreak SNV distances with nonoutbreak and
spa/multilocus sequence type (MLST)-specific diversities, we were able to distinguish
outbreak from nonoutbreak strains.

Our observation of minimal diversity in recent acquisitions of nasal carriage is
reassuring for the application of WGS data to outbreaks. For the donor-recipient pair,
we observed a narrow transmission bottleneck, with a clonal founding population
despite a diverse donor population. Although this is a single case, the findings are
supported by the minimal diversity seen in the early samples for the majority of

FIG 3 Pairwise SNV differences for all pairs within an outbreak, where isolates had differing antibiograms (a) or differing PFGE
pulsotypes (b).
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carriage study subjects, and further evidence for a narrow transmission bottleneck is
provided by the relatively short SNV distances observed across the outbreaks. Taken
together, these findings suggest that, in an acute short-term outbreak, there will be
insufficient time for diversity to accumulate.

If WGS is to be used routinely for outbreak investigation, these findings provide
evidence that single-colony sequencing is likely to identify clusters reliably in this
context, allowing for the ease of interpretation and ensuring that WGS remains an
affordable alternative to standard typing, as a requirement for sequencing multiple
colonies per case, as implied by previous investigators (1, 10), would rapidly escalate
costs and render WGS too expensive for routine use.

Previous carriage studies have found greater distances than seen here (9, 11);
however, these did not account for the estimated time of acquisition. We postulate that
the existence of a significant cloud of diversity (4, 12) may be a marker of long-term
carriage. Therefore, in outbreaks, higher diversity may indicate the involvement of an
LTC, with outbreak diversity reflecting the donor cloud.

In support of this, we observed a significant difference in duration-adjusted TMRCAs
between outbreaks with and without evidence of an LTC. The longest TMRCAs were in
hospital outbreaks with indirect links between cases (i.e., nonoverlapping ward stays).
The likelihood of “missed” cases in these outbreaks was considered low due to the
enhanced screening, and the most likely reason for the reoccurrence of the outbreak
strain was thought by the investigating teams to be either a reintroduction from the
community (outbreak G) or from a staff member with long-term carriage (outbreaks A,
I, N, and S). Staff carriage was proven in one outbreak (by sampling and subsequent
termination of the outbreak on their exclusion), but in the remaining outbreaks, HCWs
were either not sampled or HCW sampling was anonymized and positive results could
not be linked definitively with the suspected carrier.

The outbreaks included in this study necessarily reflect the circulating S. aureus
clones in the United Kingdom and the concerns of local infection control teams. The
sampling frame is therefore enriched for MRSA and PVL-positive outbreaks and those
from neonatal units. Despite this, there is a wide representation of sequence types.

In spite of the enhanced surveillance during each outbreak, there inevitably are
missing transmission links, due to missed sampling, suppression from antimicrobial
therapy, or delays in identifying contacts. One reason for missed samples may be the
use of antibiograms as an initial screening tool for identifying putative outbreak
isolates, as most investigating teams only collected isolates with identical or highly
similar antimicrobial susceptibility profiles. However, in the six outbreaks where isolates
were included with differing antibiograms, the core genomes were remarkably con-
served. This is presumably due to the ready loss/gain of mobile genetic elements (13)
and shows that reliance on antibiograms may lead to samples being wrongly excluded.

The variability of mobile elements is also important for interpreting genetic dis-
tances. Recombination events such as the gain/loss of a mobile element will introduce
a large number of SNVs even though this represents a single genetic event. Current
analysis tools which can accommodate this are computationally complex and, for large
data sets, require sizable computing resources. A simpler approach is to exclude the
“mobile-ome” from phylogenetic analyses and compare only the core genome, and the
results above demonstrate that this is an acceptable strategy. Similarly, mapping to
alternative reference strains (performed for six outbreaks) had minimal effects on SNV
analysis and phylogeny, removing the need for identification of clonal complex or
assembly of index case prior to phylogenetic analysis. This streamlined approach brings
WGS closer to routine use, as a readily deployable method with a minimal burden of
computational time and bioinformatics expertise.

In conclusion, we have demonstrated how a WGS-based approach can be applied to
S. aureus outbreak investigations. We have shown that current sampling strategies
provide sufficient information to determine whether isolates belong to an outbreak,
and that, rather than confounding the investigation, within-host diversity can be
utilized to identify the possible involvement of a long-term carrier, potentially enhanc-
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ing the infection control response. Combining this with directed multisampling of
suspected LTCs (1) may be a cost-effective method of using WGS to ensure that, where
HCWs are implicated, potentially career-altering decisions are made using the best
possible evidence.

MATERIALS AND METHODS
Comparison of within-host diversity in newly acquired and long-term carriage. Eight partici-

pants were identified from a population study of S. aureus nasal carriage in adults attending general
practices in Oxfordshire (15), in which participants had nasal swabs taken at two-month intervals, with
positive samples stored as mixed glycerol stocks taken by sweeping across multiple colonies on the
primary plates to preserve the diversity of carried strains (11). The eight participants were negative for
nasal carriage at recruitment and subsequently had consistently negative swabs for �6 months before
acquiring a strain which they carried for at least 1 year. The first and last positive samples for each
individual were retrieved from the mixed glycerol stocks. Samples were plated on Columbia blood agar
(CBA) and incubated overnight at 37°C. For each time point, 8 individual colonies (12 for case no. 1218)
were selected and further subcultured on a CBA plate and again incubated overnight at 37°C.

We also retrieved sequencing data from 13 participants previously investigated, (9) for whom the
approximate time of acquisition was unknown. Each of these had 8 to 12 individual colonies sequenced.

Collection of outbreak isolates and epidemiological data. Nineteen outbreaks were purposively
sampled in collaboration with the Public Health England (PHE) staphylococcal reference laboratory,
representing a range of sequence types and epidemiological settings and including both MRSA and
MSSA. One further outbreak was investigated in conjunction with Lausanne University Hospital, Switzerland
(14, 16). Epidemiological information was obtained from each infection control team (specimen date, site,
ward location, and where applicable, admission/discharge dates and previous screening results).

For each outbreak, additional background isolates were also included for comparison. We sequenced
all isolates submitted to PHE as part of the outbreak investigation, including those identified as
“nonoutbreak” by routine typing, to estimate the expected genetic diversity of the outbreak strain and
to ensure that the apparent outbreak strains were not part of an ongoing clonal expansion. We also
included non-epidemiologically linked isolates matched for spa type and/or MLST to provide a compar-
ison for expected within-spa distances and to provide an outgroup for phylogenetic analysis.

Isolates were retrieved from single-colony frozen stocks held at the PHE reference laboratory,
Colindale, London, or at Lausanne University Hospital. We used only the first isolate from each case and
included isolates both from clinical samples and screening swabs.

Extraction and sequencing. DNA was extracted and sequenced as previously described (6) from a
single colony subcultured on CBA and incubated for 18 to 24 h. Sequencing was performed using the
Illumina HiSeq or MiSeq platforms.

Genome assembly and construction of phylogenetic trees. For all outbreaks, reads were aligned
using Stampy v1.0.17 to a standard reference genome (MRSA252; GenBank no. NC_002952) (17). Six
outbreaks were also mapped to clonal complex-specific reference genomes obtained from in-house
collections or GenBank. Single nucleotide variants were identified across all mapped nonrepetitive sites
using SAMtools v 0.1.18 mpileup, with the extended base-alignment quality flag and masking of mobile
genetic elements. A consensus of �75% and �5 reads, including one in each direction, were required
to support an SNV, and calls were required to be homozygous under a diploid model. Maximum
likelihood trees were estimated from the mapped whole genomes using PhyML (18).

Outbreak analysis and calculation of TMRCA. The index case was defined as the earliest micro-
biologically confirmed case in each cluster. Outbreak cases were defined as those sharing related PFGE
pulsotypes (19) plus a definite epidemiological link to the index or secondary cases (�24-h stay in the
same ward or household/classroom/similar community situation with prolonged contact, e.g., childcare).
For each outbreak case, the genetic distance in SNVs was calculated from the index case and the nearest
neighbor. If an isolate was more distant from the index case than the nearest spa/MLST-matched
comparator, it was considered sporadic and excluded from further outbreak analysis.

We classified each outbreak according to the possibility of long-term carrier involvement (LTC
carrying for �6 weeks) as follows: (i) LTC not suspected, direct contact between cases, or no history of
preexisting staphylococcal disease; (ii) evidence for a pre- or perioutbreak LTC, either �1 case with a
history of recurrent staphylococcal disease or nonoverlapping hospital stays (ward case identified after
a case-free interval, indicating a possible health care worker carrier); and (iii) evidence of a postoutbreak
LTC, �1 case with positive nasal swab �6 weeks after initial swab (indicating a propensity for long-term
carriage).

To evaluate the relationship between outbreak diversity and the likelihood of a long-term carrier, we
estimated the time to most recent common ancestor (TMRCA) using BEAST v1.8.1 (20). We applied a
simple HKY substitution model with constant population size and a standardized substitution rate of
3.3 � 10�6 substitutions per genome per year (7) (see supplemental material). To control for differences
in outbreak duration, outbreaks were censored at 6 months, and the (censored) outbreak duration was
subtracted from the calculated TMRCA to obtain a duration-adjusted TMRCA.

We compared SNV distances between isolates of identical pulsotypes and those differing by one or
more band. To determine whether there was an increase in genetic diversity associated with the
acquisition of antimicrobial resistance, we also interrogated the predicted antibiograms as previously
described (21).
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Statistical analyses were performed using Stata v13.1. Mean pairwise differences were modeled using
normal linear regression using robust standard errors to account for dependence within person/
outbreak. The ability of TMRCA to differentiate between outbreaks with evidence for an LTC compared
with outbreaks with no evidence for an LTC was evaluated using a receiver operating characteristic curve
analysis.

Accession number(s). The sequences reported in this paper have been deposited in the NCBI
Sequence Read Archive under bioproject number PRJNA380544.
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