
A Context-Aware Collaborative Mobile Application for Silencing the Smartphone
during Meetings or Important Events

Remus A. Dobrican, Gilles I. F. Neyens and Denis Zampunieris

University of Luxembourg
Luxembourg, Grand-Duchy of Luxembourg

Email: remus.dobrican@uni.lu, gilles.neyens@uni.lu, denis.zampunieris@uni.lu

Abstract—This study describes a mobile application, i.e., Silent-
Meet, that uses group-driven collaboration and location-based
collaboration for automatically switching smartphones into silent
mode during meetings or important events. More precisely, for
the first step of the collaboration, a partial agreement algorithm
will be used for establishing if a meeting is confirmed by its
participants and, for the second round, confirming if the meeting
will take place, based on the location of the participants. The
application tries to avoid those cases when a meeting is accepted
but the participants are not coming to the meeting or when
participants do not reply to the meeting invitations but they
are still attending the meeting. SilentMeet uses a new technique
for exchanging information, for coordinating and for taking
distributed decisions, called Global Proactive Scenarios (GPaSs).
For executing GPaSs, a rule-based middleware architecture for
mobile devices is utilised. GPaSs and the middleware architecture
allow developers of collaborative applications to define the actions
of their applications in a structured way without having to take
care of the communication and coordination of the mobile devices.
Also, there is no need for developing a server-side application;
all the logic is integrated into GPaSs. Apart the main goal
of the application, which is to silence mobile phones during
meetings, there are three secondary objectives: a) to provide
an collaborative application capable of acquiring contextual
information from various devices, b) to check if it is possible
to achieve collective reasoning using a rule-based middleware
architecture for mobile devices, and c) to validate GPaSs in a
real-case example.

Keywords–Mobile application; Context-Awareness; Location-
based collaboration; Collective Reasoning; Proactive Computing;
Middleware architecture.

I. INTRODUCTION

This work extends the previous application [1], which was
checking if a meeting was potentially validated between the
invited users of that meeting. The new application includes
an extra checking step, based on location sharing between the
mobile devices of the participants, involving multiple rounds of
collaboration. Moreover, the application is taking into account
contextual information such as the time and the location of the
users involved in the collaboration.

Latest studies show a significant increase of mobile de-
vices all over the world [2]. This offers great advantages for
developing collaborative mobile applications. However, this
brings new challenges like how to handle the high complexity
of efficient collaborative mechanisms, how to detect various
contexts of users that are continuously on the move or how to

automate part of the user’s interaction with the applications,
as too many actions are required from the users in order to
perform even the most basic operations.

Communication and collaboration, more precisely interac-
tive collaboration, are two key aspects in today’s mobile world.
Basic mobile applications that are able to perform only local
tasks do not address the increasing needs of the users any
more. The demand for services and applications that support
communication and collaboration of mobile devices has raised
significantly in the past years [3]. The latest interest in mobile
collaboration can be explained by the large number of mobile
devices around the world, which is continuing to grow from
one year to another [4]. However, this mobile environment
capable of performing distributed operations brings new chal-
lenges, such as intermittent connectivity, data heterogeneity,
limited computational capabilities and users’ mobility. Also
important, is the fact that mobile networks, due to the high
mobility of their users [5], differ a lot from static systems,
where the users are always connected. This leads to the
issues like determining the context information needed to
trigger the collaboration process or like users being temporarily
unavailable while they are still engaged in the collaborative
operations.

Another important aspect to be addressed, when designing
collaborative applications, is to establish up to which level
will the users interact with the system. Because users may
have basic skills or only limited experience when interacting
with complex applications or because they do not want to
spend a lot of their time giving instructions to the system, the
applications can automate a lot of their processes. One of the
solutions for doing this is Proactive Systems, which are able
to act on their own initiative and to take decisions on behalf
of their users [6]. Recently, the possibility of implementing
a Proactive Engine for mobile devices was investigated [7].
The added value is that, with the help of a mobile Proactive
System, which is essentially an advanced rule-based system,
developers can directly add the functionality they want to their
applications by using Proactive Rules. From the developer’s
point of view, a Proactive Rule represents a tool for writing
a set of instructions, while from the system’s point of view,
a Proactive Rule is a piece of code that has to be executed.
More about Proactive Rules and examples with the rules used
for this study will be shown in Section V-C.

In order to have a rule-based system capable of executing
Proactive Rules on mobile devices, a middleware model was

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/42922239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


created for Android-based mobile devices [8]. This represents
an important achievement as until now only lightweight ba-
sic rule-based engines like [9] and [10] were developed for
mobile platforms. These engines would allow applications to
use simple conditional rules. The middleware model is also
providing an information sharing method between the devices
called Global Proactive Scenario (GPaS) [11]. This method
was implemented to give the possibility to the applications to
perform collaborative tasks.

In this study, we investigate how a context-aware mobile
application, i.e., SilentMeet, which uses a proactive rule-based
middleware system, is automatically turning the devices into
silent mode if a meeting is detected and confirmed between a
predefined group of users and if the location of the users is
the same as the location of the meeting, on the same date, at
approximatively the same hour.

The rest of the paper is structured as follows. Section
II discusses related work relevant to this study. Section III
introduces the problem statement and a situation that points
out the need for automatizing certain tasks and processes
inside applications in order to reduce the user’s involvement in
unnecessary situations. Section IV contains explanations about
SilentMeet’s architecture, design and about its way of reaching
a global decision based on multiple rounds of collaboration.
The Proactive Scenarios that were used for this application and
the Proactive Rules that compose them are explained in Section
V. Tests on real devices are discussed in Section VI and their
results in Section VI-B. And finally, Section VII contains the
main conclusions and future work.

II. RELATED WORK

Related work was divided into several categories consid-
ered relevant for this study. The first one examines context-
aware mobile collaborative systems, where the focus is on
the context of groups of users, the second one discusses
relevant collaborative middleware architectures, the third one
has examples of collaborative mobile applications developed
for other fields than the ones that turn the mobile phone into
silent mode and the last one contains several examples of
mobile applications developed for silencing smartphones in
various situations.

A. Context-aware mobile collaborative systems

A key characteristic of mobile collaborative systems, where
groups of users perform common activities and have the same
interests, is the ability to acquire different contextual infor-
mation from multiple sources, not only from local, individual
sources. The idea is that multiple devices can observe and
reason about the same event from different angles. Multiple
frameworks were developed to ease the creation of context-
aware mobile applications [12] [13] [14], but the aspect of
reasoning about the shared contextual information, coming
from multiple applications, was not explored. Wang et.al
[15] propose a context-aware strategy for collaborative mobile
applications based on location. However, the collaboration
process is limited as the context information depends only on
the near proximity of the participants. Despite a collaborative
strategy for sharing context between devices, the authors only
provide in [16] a simple integration of the context, which is
just added to the knowledge base.

B. Collaborative Middleware Architectures

Numerous studies [5][17][18] have been conducted that
provide middleware architectures as tools for developing col-
laborative applications. One important difference is that these
studies look at collaboration from a different angle. More pre-
cisely, they concentrate on user-centred collaboration, where
the focus is to get the users to interact more and more with
their applications on the mobile devices. The issue is that these
applications would depend too much on the actions of their
users and, if the users do not engage properly in each step
of their interaction with their devices, the applications may
remain at the same step. Opposite to this, Proactive Computing,
which was defined by Tennenhouse as a new way of comput-
ing, for and on behalf of the user [19], tries to reduce the users’
involvement by automatizing some processes. By doing so, the
users can concentrate more on the most important parts of the
collaboration. MobiSoC [20], a middleware enabling mobile
social applications, showed on initial tests indicated that this
framework provided good response times for 1000 users for
location-based matching and place-based matching.

C. Collaborative Mobile Applications

Using the WMP (WatchMyPhone) toolkit, a shared text
editing collaborative application was developed in [21] with
the help of Mobilis Framework [22]. The proposed toolkit is
compressed into a library and can be used by other collabo-
rative applications by including this library into their project.
Another domain where collaboration is crucial is represented
by mobile-based games. In [23], the authors created a mobile
game based on collaborative game play. The game was devel-
oped on top of a middleware architecture. However, the whole
framework consisted not only from a client side middleware
but also from a server side middleware.

D. Applications for silencing the Smartphone

Many mobile applications exist on the market, like
Silence[24], Go Silent [25] or Advanced Silent Mode [26],
which automatically switch off the sounds of mobile devices
based on the user’s preferences. These simple applications are
focused on one user and perform only local tasks like checking
the user’s predefined preferences or detecting calendar events.
They do not use any kind of collaboration with other devices
to make the application smarter.

For example, SilentTime [27] searches for weekly events
in the local schedule and automatically silences the user’s
phone if a future event is detected. It offers the user the
possibility to add exceptions, in case he/she is waiting for an
important phone call. However, the application has a couple
of downsides. First, it is exclusively based on the user’s input,
i.e., a calendar event or exceptions of a special situations
will only be detected if the user creates them before, and
second, it does not use any kind of communication with other
devices to check if the events will take place or not. Another
example is AutoSilent [28], which is slightly different from
SilentTime because it adds an extra step of verification before
muting the user’s phone, i.e., it will verify if the user’s location
corresponds with the event’s location at a certain time. This
extra feature is again just a simple check because it does not
use any kind of collaboration, like, for example, checking also
the location of the other participants.



(a) The main screen of the SilentMeet (b) Selecting the start and end time of
a meeting

(c) Selecting users from the same
group for sending meeting invitations

(d) Entering the location of the
Meeting

Figure 1. Creating a meeting

Figure 2. Receiving a meeting invitation

III. PROBLEM STATEMENT

There are quite a few mobile users who went through em-
barrassing situations when their phones rang during important
meetings, lectures, exams, presentations, concerts, interviews
or key talks offered at international conferences. Imagine, for
example, that during a viola recital of a famous musician, the
mobile phone of a person start ringing, like it did during a
recital in Slovakia [29]. The musician is not only interrupted
but he/she could also loose focus and find it difficult to con-
tinue. There are many more other examples when muting the
phone is a mandatory requirement. The main problem is that
each user has to manually configure his/her phone to be silent
during important events. And often, they forget. A general
common strategy or approach which performs collaborative
actions is missing.

Let us imagine the following real-world situation: an
important event is about to begin. The mobile devices of
the participants, located in their pockets, go automatically
into silent mode. The participants do not have to worry they
forgot to silence their mobile phones, they can focus more on
their important tasks. The meeting can continue without any
interruptions or embarrassing situations.

IV. A RULE-BASED SOLUTION - SILENTMEET

SilentMeet is a mobile collaborative application that is
developed in order to minimize the risk of interruptions and
their distracting effects during an important event such as
a meeting, interview or public event. Moreover, in order to
have an efficient collaboration algorithm, part of the user’s
actions are automated by using Proactive Computing. The main
difference between SilentMeet and other applications is that
SilentMeet does additional checks, based on collaboration with
the other mobile devices, to establish if a meeting is taking
place or not. More precisely, it checks, among the possible
participants of the meeting, if there are at least 2 users that
have accepted to attend the meeting and have the meeting in
their calendar, and, finally, on the date of the meeting, it will
check the location of the users 15 minutes before the start of
the meeting. The additional checks are necessary for trying to
avoid cases such as silencing a smartphone even if the meeting
is not taking place.

A. The graphical user interface (GUI)

SilentMeet is an application developed for the Android
Operating System and consists of a main Activity with a
calendar view working as a date picker, laid out in Figure 1a.
The basic idea is to provide the user with a simple interface
for creating the meeting, i.e., selecting the participants for
this meeting, the place where the meeting will take place and
the starting and ending hour of the meeting. In Figure 1, an
example of creating a meeting using SilentMeet is provided.
At the start, the user selects a date from the calendar when
the meeting should take place. The date of the meeting should
be higher or equal to the current date otherwise the meeting
will not be created. Afterwards, a new dialog opens asking the
user for the start time and end time of the meeting, as shown
in Figure 1b. Again, the start time has to be bigger than the
current time if the meeting is on the same day or, if the meeting
is on a further day, the start time has to be smaller than the
end time.

Then, the user has to select the participants for the meeting.
He/she will have to choose from a list of predefined users, as



presented in Figure 1c, i.e., the users that have agreed to be
part of the same group for creating future meetings. Additional
information about how these groups are created are given in
Section IV-B. And finally, before sending the invitation to
the other members, the user has to input the location of the
meeting, depicted in Figure 1d. The location is given by the
user as text, which is then converted into GPS coordinates.
These coordinates are stored locally on the phone, and, just
before the meeting takes place, they are compared with the
current GPS coordinates.

The members selected for the meeting receive an invitation
with the date, location, start time and end time of the meeting,
depicted in Figure 2. Then, a user can accept, reject or not
respond to the invitation by selecting another area on the
application’s screen. If the invitation is accepted, the response
is sent back to the initiator of the meeting. For a meeting
to be confirmed there needs to be at least 2 participants that
accepted to participate. The initiator of the meeting can cancel
anytime the meeting if he/she decides that the meeting should
take place only if all the invited members accept the invitation
or for other reasons.

B. Grouping the participants for a meeting

We assume that groups of people are predefined when an
event is created by each user. More precisely, when a calendar
event is created, the user also adds the participants. Users can
perform collaborative actions only if they are part of the same
group of the same event. So, users first have to build their
own groups or agree to be part of already created groups. For
example, in a company, the secretary of a department creates a
group for the employees of that department that have meetings
regularly. By joining this group, the members agree that their
mobile phones can be silenced by the application of the other
members, after multiple rounds of negotiation. More about the
negotiation process is presented in Section V-I. Also, more
conditions and checks are taken into account like the location
of the event and the participants, the date and the hour of
the event and the local preferences of each user. In Figure
1c, a user is about to start a new meeting and decides to
invite both members of his/her group, i.e., user21@gmail.com
and user22@gmail.com, to this meeting. In this example, these
members are part of the same group as the user that creates
the new meeting, i.e., user20@gmail.com. More about how
the users are recognized by the application and how their IDs
are handled and the possibility of having multiple groups is
explained in Section VI.

C. Middleware model - Proactive Engine for Mobile Devices

The Proactive Engine (PE) for mobile devices is a frame-
work created to support the development of collaborative
applications. It contains a middleware architecture capable of
executing tasks in the background, of automatically exchang-
ing information with other PEs and of performing actions
specific for each application in a structured way. From a
technical point of view, the only thing the framework needs
from the application developers is a set of Proactive Rules,
which is then analyzed, processed and executed. The Proactive
Rules represent the structured method of an application of
passing instructions to the PE.

1) The Rules Engine: The Rules Engine is the core of
the Proactive Engine and is used to process rules provided
by different applications [8]. It it composed of two Queues,
i.e., two FIFO(first in first out) lists, which contain rules to
be executed at each iteration. It is continuously checking for
rules to be executed each n seconds, where n is a parameter
for establishing the frequency of the checking.

2) Communication between PEs: PEs communicate with
each other by sending JavaScript Object Notation (JSON)
messages. The messages can contain questions, answers or
commands, depending on their purpose. For example, a Proac-
tive Engine can send a question to another engine to ask for
various context information. Based on the received answer,
if some conditions are fulfilled, the engine can then send a
command to the other engine to perform an action. Messages
are forwarded to a local server and to Google’s Cloud Messag-
ing(GCM) server on the cloud. The GCM server is in charge
of assigning each device with a device ID and with forwarding
the JSON messages to the targeted devices. They also handle
special cases such as lost JSON messages or devices that are
not temporarily available on the network. Message forwarding
is done either via WiFi or via 3G/4G, if available. The users
of SilentMeet have to have unique identifiers, e.g., in this
case unique email addresses, because the PE needs to know
where to forward the message or the request for additional
information.

V. PROACTIVE SCENARIOS

A Proactive Scenario is the high-level representation of a
set of Proactive Rules that is meant to be executed on the
Proactive Engine. It describes a situation and a set of actions
to be taken in case some conditions are met. For example,
creating a meeting with SilentMeet is achieved with the help
of a Proactive Scenario. The set of actions includes defining the
date, time, location and the members of the meeting, asking for
the members’ confirmation, altering the GUI of the application,
etc. For each of these actions a Proactive Rule is defined. The
Proactive Scenario also consists of defining the order of how
the Proactive Rules should be generated and executed by the
Proactive Engine. More precisely, a Proactive Rule that asks
members for confirming the meeting will only be triggered
after a meeting is defined, by another Proactive Rule, on the
smartphone of the person that initiated the meeting. Proactive
Scenarios are divided into two main categories: Local Proactive
Scenarios and Global Proactive Scenarios. An application can
have a combination of both types of scenarios depending on
its goals.

A. Local Proactive Scenarios (LPaSs)

This type of scenarios is used when defining a situation
where only local actions are performed and no collaboration
with other devices is needed. They range from simple scenarios
that perform simple actions like creating other scenarios when
some conditions are fulfilled to complex scenarios, e.g., when
the system needs to acquire relevant context information for
changing different parameters in order to increase the perfor-
mance of a PE. Previous examples of LPaSs include supporting
students in their learning process through the creation of
coaching messages inside their Learning Management System



(LMS) [30] and the creation, maintenance and termination of
social groups inside a LMS [31].

B. Global Proactive Scenarios (GPaSs)

On the other hand, a GPaS is a data exchange mechanism,
which involves the collaboration of one or more devices. It
is based on the data acquisition from multiple sources and it
works between all mobile devices with an integrated Proactive
Engine. The new generation of interactive applications need
collaborative methods that will allow them to find more
advanced solutions for addressing existing challenges.

The idea of SilentMeet is that the devices participating
in a collaboration process can take decisions based on global
information, coming from other PEs, which enhances the local
information. Each device is able to make use of the global
knowledge that is created by all the devices involved in the
collaboration. For example, a basic application would only be
able to detect an event based on the local information provided
by the calendar of a device. SilentMeet is able to query all the
relevant devices to obtain more precise information about that
event by using a particular GPaS.

SilentMeet uses two GPaSs: one for creating and establish-
ing if a meeting will take place and the other one to check,
just before the meeting, the location of the users and to decide
if they are close to the meeting’s location in order to put
the mobile phones into silent mode. A meeting is confirmed
in two steps: the first step checks if the participants of the
meeting have accepted the invitation to the meeting and have
that particular meeting in their calendars, and the second step
checks the location of the participants to see if it corresponds
with the meeting’s location, on the exact date, 15 minutes
before the meeting is about to start. This algorithm with all
the extra checking steps is useful because we want to avoid
false positives, i.e., those cases where the meeting is not taking
place but the phones are still put into silent mode.

1) Global Proactive Scenario 1.: The purpose of the first
GPaS is to create a meeting and establish if a meeting is
confirmed by checking with the mobile devices of the other
participants. This is only the first step of verifying if the
meeting is going to take place. It is necessary for starting the
second verification step, i.e., the second GPaS. Each device
needs additional information from the other devices before
taking a decision. The idea is that if multiple devices, part of a
collaboration group, have an event in their local calendar, with
the same date, time and location, it is very probable that the
event will take place. We presume that the same information
about an event coming from 2 different devices part of the
same group is enough for the application to decide what to do
next, e.g., in this case, it will activate the second GPaS. The
minimum number of 2 devices is motivated by the fact that
a device should not be able to mute, by itself, other devices
without any kind of agreement. This GPaS allows a decision
to be taken without the confirmation of the meeting coming
from all the participants, as this is very difficult to achieve in
real-life situations, where each user is expected to manually
add the event into the calendar.

2) Global Proactive Scenario 2.: The second GPaS is
in charge of the second verification step by exchanging the
location of participants, if they are close to the meeting’s

public abstract class AbstractRule implements
Serializable{

@DatabaseField(generatedId = true)
private long id;

private boolean activated;
protected QueueManager engine;

public AbstractRule(){} // default constructor

// methods to be implemented
protected abstract void dataAcquisition();
protected abstract boolean activationGuards();
protected abstract boolean conditions();
protected abstract boolean actions();
protected abstract boolean rulesGeneration();

@Override
public abstract String toString();

// method used for creating other Rules
// or for cloning the same rule
public final void createRule(final

AbstractRule rule){...}

// the order of the execution of the methods
public final boolean execute(){

dataAcquisition();
if(activationGuards()){

this.activated=true;
if(conditions()){

actions();
}

}
boolean ret=rulesGeneration();
return ret;

}

// setters and getters
...
}

Figure 3. The code of the AbstractRule in Java

location. So, it is not enough for accepting the invitation when
the meeting is created by a user, for example, 1 week before
the actual meeting takes place, but there are 2 extra steps to
be completed. The first one is that the users that accepted
the invitation have to be near the location of the meeting 15
minutes before the meeting will begin and the second one is
that they have to exchange their location with at least one
other participant that is also near the meeting’s location. Only
when these steps are fulfilled, the silent mode will be activated.
These extra steps of verification are useful for cases when
even if persons confirm their attendance at a meeting, they
are stuck in traffic, or they had an emergency and cannot
attend the meeting, and so, activating the silent mode on their
smartphones is not necessary.

C. Proactive Rules

GPaSs are composed of sets of Proactive Rules, which are
written by the developer and which, among others, contain



a series of instructions. These rules are to be executed by the
Proactive Engine when their activation conditions are met, such
as, when different events are detected or when they are miss-
ing. The initial structure of a Proactive Rule [32] was used for
creating the rules necessary for SilentMeet. It contains 5 main
parts such as data acquisition, activation guards, conditions,
actions and rules generation, as depicted in Figure 3, where the
code of the AbstractRule is provided in the Java programming
language used for the Android Operating System. All the other
Proactive Rules extend the AbstractRule, meaning they have
to implement its methods. These methods are important as
they decide when a rule is executed, if the rule performs its
actions, if the rule will generate other rules or will just simply
clone itself. Proactive Rules can have different execution times
because their activation depends on the local settings of each
device and on the user’s actions. For example, 2 users creating
a new calendar event at different hours on their phones, trigger,
at different time intervals, the rule that starts the negotiation
process of SilentMeet.

The SilentMeet application is composed of 2 GPaSs, each
being implemented through a small set of proactive rules.
These rules are installed together with SilentMeet’s user in-
terfaces on each mobile device equipped with a Proactive
Engine. Initially, only the Proactive Rules that will continue
to clone themselves and be in the Queue at each iteration will
be executed by the Proactive Engine. Then, all the rules can
be activated, if their execution conditions are met. One of the
rules that is executed at the beginning by the PE is called
RegisterToServerRule that registers the user on the GCM
server, if not already registered. This will give the user a unique
ID, which is then used in the communication with the other
PEs.

D. Proactive Rules that compose the first GPaS

GPaS1 is composed of 4 Proactive Rules, i.e., R011, R021,
R012 and R022. R011 is one of the rules that is running
from the beginning, when the application is installed, and is
checking for new meetings in the local database. The code of
rule R011 is shown in Figure 4. The PE executes an Iteration
each 5 seconds, so, R011 will be checking each 5 seconds for
a new meeting. When creating a meeting, as seen in Figure
1, SilentMeet registers the meeting’s location, date, start time,
end time and the persons invited to that meeting. The status
of the meeting, after it was created locally, is pending and
unsent. R011 checks for all the pending unsent meetings, this
step being part of the data acquisition method of this rule,
and, only if such meetings are detected, the actions method
will be activated. Inside this method, an invitation will be sent
to the users selected to attend the meeting. The invitation will
contain all the meeting’s details like its location, start time,
end time, date and members. The name of rule to be activated
on the receiving PEs is included among the parameters when
the message is sent to the receiving PEs. And so, rule R021
will be activated on the devices of the receivers. For example,
if user1 decides to create a meeting and invite user2 and user3
to that meeting, on the devices of user2 and user3 the PE will
activate rule R021.

When rule R021 gets activated, it means that the receiver of
the message is invited to a new meeting. In its data acquisition
phase it looks in its own calendar if there is no other meeting

@DatabaseTable(tableName="R011")
public class R011 extends AbstractRule{

// local parameters
private long startTime, date;
private boolean newMeeting = false;
private List<Meeting> meetings;

@Override
protected void dataAcquisition() {

// if a new meeting is detected
newMeeting = engine.getLpeDBWrapper().

isNewMeeting();
}
...
@Override
protected boolean conditions() {

return newMeeting;
}

@Override
protected boolean actions() {

meetings = engine.getLpeDBWrapper().
getListOfPendingMeetings();

ArrayList<Object> p; // paramsToSent

for(Meeting m : meetings) {
p = new ArrayList<Object>();
p.add(m.getMembers());
p.add(m.getDay());
...
p.add(m.getLocationLongitude());
p.add(engine.getContext().

getResources().
getString(R.string.mail));

ArrayList<String> deviceIDs = new
ArrayList<String>
(Arrays.asList(m.getMembers()));

try {
if(!engine.getLpeDBWrapper().

meetingRequestWasSent
(m.getId())){
engine.sendMessage("R021", p,

deviceIDs, 100);
SentMeeting sentMeeting = new

SentMeeting(m.getId());
engine.getLpeDBWrapper().

save(sentMeeting);
}

} catch (Exception e){
Log.e("R011", "message was not

sent");
}

}
return true;

}

@Override
protected boolean rulesGeneration() {

createRule(this);
return true;

}
...

}

Figure 4. Proactive Rule R011 in Java



public class R024 extends AbstractRule{
...
@Override

protected boolean actions() {
AudioManager am = (AudioManager)

engine.
getContext().getSystemService
(Context.AUDIO_SERVICE);

//For Silent mode
am.setRingerMode

(AudioManager.RINGER_MODE_SILENT);
return true;

}
...

}

Figure 5. Devices used for testing SilentMeet, in the process of receiving an
invitation for a meeting

on that specific date and time and if this invitation has not
already been accepted. If these conditions are satisfied, then
this rule will trigger a pop-up dialogue on the mobile phone of
this user to ask him/her if he/she accepts to attend this meeting,
as seen in Figure 2. The operations are part of the actions
phase of the rule. This rule does not generate other rules and
does not clone itself. When receiving the invitation inside the
pop-up, the user has 3 options: accepts the invitation, rejects
the invitation or does not respond to the invitation by changing
the application or by clicking on another part of the screen. In
case he/she accepts the meeting, rule R012 gets activated.

Even though R012 is one of the rules which is executed
by the PE at each iteration, it only gets activated when the
conditions are true, i.e., the user accepts or rejects a meeting.
The immediate effect, if the conditions are true, is to send
the response to all the users invited to attend the meeting.
If the answer of the user is positive and he/she accepts to
join the meeting, then, at this particular moment, there are at
least 2 persons that accepted to attend the meeting. In case the
answer is negative, the device of the same user will register
the meeting as refused and even if the meeting will still take
place with the other participants, the devices of this user will
not be switched into silent mode.

The receiving devices activate rule R022 that gets as
parameters the answer of a user with regard to a specific
meeting invitation. If the answer is positive and the meeting
is confirmed by at least 2 persons, the second GPaS will be
activated. If the answer is negative, the device of the initiator
of the meeting still waits until all the answers from the invited
members will be received. Until then, the meeting will be in
pending mode. If all the answers are negative or part negative
and part unanswered before the meeting starts, the meeting
will be considered as canceled.

E. Proactive Rules that compose the second GPaS

GPaS2 is composed of 3 Proactive Rules, i.e., R013, R023
and R024. R013 is only activated when a meeting has been
created and accepted by at least 2 participants. It will check
the current time on the device, and, if it is equal or less but not
more than the meeting’s start time minus 15 minutes, it will

{
"PARAMETER_TYPES":[

"String[]",
"Integer",
"Integer",
"Integer",
"Integer",
"Integer",
"Integer",
"Integer",
"Double",
"Double",
"String"

],
"PARAMETER_VALUES":[

[
"user20@gmail.com",
"user22@gmail.com"

],
29,
3,
2016,
19,
6,
20,
6,
49.6278694,
6.153422,
"user21@gmail.com"

]
}

Figure 6. An example of a JSON message that is passed between R011 and
R021, when a meeting is created

start to check for the location of the device. If the location also
corresponds to the location of the meeting, then the condition
for executing the rule’s actions are met. These actions include
sending a message to the other participants to confirm the
device’s presence at the meeting’s location. After sending the
message, the device of this user that activated R013 waits for
receiving at least one message from another PE of a participant
in order to activate the last rule, i.e., R024, which turns the
smartphone into silent mode. Checking for the location of the
user every 5 seconds consumes a lot of battery, so, this action
is performed only when the current timestamp approximatively
corresponds to the meeting’s timestamp.

Upon receiving the message from one user that is close to
the meeting’s location, the PE of the other participants activate
R023. This rule tells the local PE that there is at least 1 person
attending the meeting and so, has permission to switch the
smartphone into silent mode if the local PE is close to the
meeting’s location. If this last condition is carried out then the
last rule is activated, i.e., rule R024.

The last rule of GPaS2 is in charge of finally silencing
the mobile phone during that meeting. The only way this rule
is executed by the PE is to get through all the previous col-
laboration steps of both GPaSs and to fulfill all the necessary
conditions of each rule. The command for silencing the device
is given in the actions phase of the rules, as seen in Figure
5. So, a user that did not reply with yes or no for attending



Figure 7. Sequence diagram with the collaboration steps of SilentMeet

the meeting, can have his/her mobile phone switch into silent
mode if his/her device are close to the meeting’s location,
on the same date and same hour as the meeting. SilentMeet
considers that by fulfilling these conditions the device is very
likely to participate at that meeting, even though it did not
provide a precise answer. This case includes a hybrid algorithm
for establishing if a meeting will take place or not. The existing
algorithms either check for an entry in the calendar or, more
advanced applications, just check for the location of the current
user but not the other users’ location.

F. Cyclic Proactive Rules

A Proactive Rule can have the property of being cyclic if
it continues to clone itself and gets executed by the PE at each
iteration. For example, rules R011, R012 and R013 are cyclic
because they need to continuously check for new meetings,
for new answers from the users or for matching dates and
locations of meetings. Cyclic rules can be generated by other
rules and do not have to run from the beginning, when the PE
starts.

G. Non-Cyclic Proactive Rules

Rules such as R021, R022, R023 and R024 are non-cyclic
because they contain specific actions that need to be performed
only once. They are usually triggered by other rules and are
part of a chain of rules. Multiple examples of chains of rules
are given in Figure 7. For instance, one chain starts with rule
R011 and ends with R021, which receives an invitation to
attend a new meeting.

H. Message Exchange between Proactive Rules

Proactive Engines exchange information between each
other with the help of JSON messages. The messages can
contain commands to activate certain Proactive Scenarios or
they can contain just simple context information. Figure 6
shows the content of a JSON message that is exchanged

between Proactive Engines. More exactly, when a meeting
is created on the device of the user with the email address
user21@gmail.com, rule R011 gets activated and sends a
message to user20@gmail.com and to user22@gmail.com. The
devices that get the invitation to the meeting activate rule
R021, which receives precise data about the date, start time,
end time, location, sender and list of invited members of the
meeting.

I. Collaboration Process

For muting the mobile devices of the participants of a
group, after a calendar event is detected, SilentMeet passes
through a couple of rounds of collaboration. These rounds
of collaborations are depicted in Figure 7 with the help of
a sequence diagram. Moreover, it is shown how rules are
activated by other rules. This example shows what will happen
on the PE from the beginning of GPaS1, when a meeting is
created on one smartphone, until the end of GPaS2, when
the meeting is confirmed and the devices are silenced. The
first GPaS can be activated, for example, 1 week before the
meeting actually takes places but the second GPaS needs to
wait until the same date and approximatively the same hour
of the meeting to get activated. A user can receive multiple
invitations in the same time and does not have to worry
about how they will be handled. This is done automatically
by the Proactive Engine. The collaboration process depends
on the communication of PEs, which depends as well on the
connectivity setting of each mobile device. The PE performs
also error checking and handling in case a message is lost
somewhere in the network and no answer is received from
other PEs.

VI. TESTS

Tests were conducted locally at our university on 3 different
devices: a Samsung Galaxy Note 3 and two Samsung Galaxy
S6, as shown in Figure 8. All 3 devices use an Android



Figure 8. Devices used for testing SilentMeet, in the process of receiving an
invitation for a meeting

operating system and have SilentMeet on top of the Proactive
Engine middleware installed in order to be able to execute
rules and collaborate with each other. The devices were part
of a predefined group of 3 participants with the following
email addresses used as unique identifiers: user20@gmail.com,
user21@gmail.com and user22@gmail.com. During the tests,
all 3 devices were connected via WiFi to the same network.
Initially, all the devices had their sound turned on.

In the first series of tests, the user with the email address
user20@gmail.com and using the Samsung Galaxy Note 3 was
the initiator of a meeting and created it on SilentMeet’s local
calendar. The meeting was set to happen after 10 minutes of
its creation time, on the same date, in the same location as all
the devices, i.e., the campus at our university. The invitation
was displayed on the screen of the 2 other mobile phones and,
after the meeting was accepted by both guests, it was marked
in the calendar of SilentMeet. The devices started immediately
to check their locations, compared it to the meeting’s location
and shared it with the other guests, as the start time of the
meeting was very close to the current time, i.e., less then
15 minutes difference. All 3 devices were silenced when the
meeting started.

The second series of tests happened in the same conditions
as the first tests except with one minor detail: one of the invited
users did not accept or reject the meeting proposal. However,
the minimum of 2 persons that accepted the invitation was
reached and so, all the devices had activated GPaS2, which
checked their locations before the start of the meeting. Because
all the other conditions were accomplished, the 3 devices were
silenced again when the meeting started.

For the third series of tests, the 3 users that were part of
the meeting proposal accepted the invitation but only one user
was at the same location as the location of the meeting, i.e.,
the user with the email user20@gmail.com. The device of this
user did not get a location confirmation from the other 2 users
so it did not switch into silent mode. Neither the 2 devices of
the 2 other users.

A. Measurements

The main goal was to check if the application behaved as
expected in the most common cases, e.g., when all the users
confirmed their presence at a meeting and their location is
the same as the meeting’s location when it started, as well as
the unusual situations. These unusual situations include not
providing an answer of participating to a meeting but still
attending that meeting, accepting the meeting invitation but
not coming to the meeting or being the only one present at a
confirmed meeting where nobody else is present.

B. Results and discussions

The tests showed that the application behaves as expected
and that all three devices were muted after the negotiation
process. In the given settings, it took around 10 seconds
to reach a common agreement that the meeting will take
place and to mute all three devices. However, this time is
highly dependent on the frequency parameter of the Rule
Engine, meaning that setting a lower time interval between
two iterations will also lead to a faster execution of the GPaS.

VII. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate that it is possible to easily
design and implement a context-aware collaborative applica-
tion on top of a rule-based middleware engine and with the
help of Proactive Computing, more precisely, by using Global
Proactive Scenarios. SilentMeet is able to detect and acquire
relevant context-information about calendar events, to use a
collective reasoning algorithm to establish if a meeting will
take place or not and to take decisions of silencing the smart-
phone, based on the shared locations of the users. Furthermore,
the location sharing process is handled very efficient in order
to reduce the unnecessary battery consumption.

At the same time, several parts of the collaboration process
were automated and the user’s involvement reduced only to the
most important operations. SilentMeet reduces the possibility
of having meetings in the calendar that do not take place
any more or which are canceled by the other participants.
The smartphone turns into silent mode only when multiple
conditions are met, reducing thus the risk of having the
smartphone on mute when not attending any event. With only
two GPaSs, composed of seven Proactive Rules, it is enough
to achieve SilentMeet’s goals.

Short term future work includes extending the application
for checking for meetings not only in the calendar provided
by the application but on the local calendar of the smart-
phone together with the calendar of other applications that are
intensively used, such as Google’s Calendar or the Outlook
Calendar. Another point would be to enhance SilentMeet to
allow the users to create, with the help of an additional GPaS,
their own groups of people for meetings that happen more
regularly. Long term developing more complex collaborative
applications and other Global Proactive Scenarios on top of
the Proactive Engine. These applications could have different
application fields such as tele-medicine, transportation or e-
Learning, where collaboration is a key aspect.



REFERENCES

[1] R.-A. Dobrican, G. Neyens, and D. Zampunieris, “Silentmeet-a proto-
type mobile application for real-time automated group-based collabora-
tion,” in Proceedings of the 5th International Conference on Advanced
Collaborative Networks, Systems and Applications (COLLA 2015).
IARIA, 2015, pp. 52–56.

[2] Kate Dreyer. Mobile Internet Usage Skyrockets in Past 4 Years
to Overtake Desktop as Most Used Digital Platform. comScore.
[Online]. Available: https://www.comscore.com/Insights/Blog/Mobile-
Internet-Usage-Skyrockets-in-Past-4-Years-to-Overtake-Desktop-as-
Most-Used-Digital-Platform (2015)

[3] Forrester. Latest IT Trends For Secure Mobile Collaboration. Forrester
Consulting. [Online]. Available: http://www.connectedfuturesmag.com/
docs/byod forrester tap latest it trends wp en.pdf [retrieved: May,
2015]

[4] CISCO. VNI Mobile Forecast Highlights. CISCO Systems.
[Online]. Available: http://www.cisco.com/c/dam/assets/sol/sp/vni/
forecast highlights mobile/index.html [retrieved: May, 2015]

[5] V. Sacramento and et al., “MoCA: A Middleware for Developing
Collaborative Applications for Mobile Users,” Distributed Systems
Online, IEEE, vol. 5, no. 10, Oct 2004, pp. 2–2.

[6] A. Salovaara and A. Oulasvirta, “Six modes of proactive resource man-
agement: a user-centric typology for proactive behaviors,” in Proceed-
ings of the third Nordic conference on Human-computer interaction.
ACM, 2004, pp. 57–60.

[7] R.-A. Dobrican and D. Zampunieris, “Moving Towards Distributed
Networks of Proactive, Self-Adaptive and Context-Aware Systems: a
New Research Direction?” The International Journal on Advances in
Networks and Services, vol. 7, 2014, pp. 262–272, ISSN: 1942-2644.

[8] G. I. F. Neyens, R.-A. Dobrican, and D. Zampunieris, “Enhancing
Mobile Devices with Cooperative Proactive Computing,” COLLA - The
Fifth International Conference on Advanced Collaborative Networks,
Systems and Applications, 2015, to be published.

[9] M. Slazynski, S. Bobek, and G. J. Nalepa, “Migration of Rule
Inference Engine to Mobile Platform. Challenges and Case Study,”
in Proceedings of 10th Workshop on Knowledge Engineering and
Software Engineering (KESE10) co-located with 21st European
Conference on Artificial Intelligence (ECAI 2014), Prague, Czech
Republic, August 19 2014., 2014. [Online]. Available: http://ceur-
ws.org/Vol-1289/kese10-08 submission 4.pdf

[10] C. Choi, I. Park, S. J. Hyun, D. Lee, and D. H. Sim, “MiRE: A
minimal rule engine for context-aware mobile devices,” in Third IEEE
International Conference on Digital Information Management (ICDIM),
November 13-16, 2008, London, UK, Proceedings, 2008, pp. 172–177.

[11] R. Dobrican and D. Zampunieris, “A Proactive Approach for Infor-
mation Sharing Strategies in an Environment of Multiple Connected
Ubiquitous Devices,” in Proceedings of the International Symposium on
Ubiquitous Systems and Data Engineering (USDE 2014) in conjunction
with 11th IEEE International Conference on Ubiquitous Intelligence and
Computing (UIC 2014). IEEE, 2014, pp. 763–771.

[12] E. Benı́tez-Guerrero, C. Mezura-Godoy, and L. G. Montané-Jiménez,
“Context-aware mobile collaborative systems: Conceptual modeling and
case study,” Sensors, vol. 12, no. 10, 2012, pp. 13 491–13 507.

[13] E. Williams and J. Gray, “Contextion: A framework for developing
context-aware mobile applications,” in Proceedings of the 2nd Interna-
tional Workshop on Mobile Development Lifecycle. ACM, 2014, pp.
27–31.

[14] S. Elmalaki, L. Wanner, and M. Srivastava, “Caredroid: Adaptation
framework for android context-aware applications,” in Proceedings of
the 21st Annual International Conference on Mobile Computing and
Networking. ACM, 2015, pp. 386–399.

[15] W. Wang, J. Gu, J. Yang, and P. Chen, “A group based context-aware
strategy for mobile collaborative applications,” in Advanced Technology
in Teaching. Springer, 2012, pp. 541–549.

[16] L. Zavala, R. Dharurkar, P. Jagtap, T. Finin, and A. Joshi, “Mobile,
collaborative, context-aware systems,” in Proc. AAAI Workshop on
Activity Context Representation: Techniques and Languages, AAAI.
AAAI Press, 2011.

[17] J. Gabler, R. Klauck, M. Pink, and H. Konig, “uBeeMe - A platform to
enable mobile collaborative applications,” in Collaborative Computing:

Networking, Applications and Worksharing (Collaboratecom), 2013 9th
International Conference Conference on, Oct 2013, pp. 188–196.

[18] P. Coutinho and T. Rodden, “The FUSE Platform: Supporting Ubiq-
uitous Collaboration Within Diverse Mobile Environments,” Autom.
Softw. Eng, vol. 9, 2002, pp. 167–186.

[19] D. Tennenhouse, “Proactive Computing,” Communications of the ACM,
vol. 43, no. 5, 2000, pp. 43–50.

[20] A. Gupta, A. Kalra, D. Boston, and C. Borcea, “Mobisoc: a middle-
ware for mobile social computing applications,” Mobile Networks and
Applications, vol. 14, no. 1, 2009, pp. 35–52.

[21] S. Bendel and D. Schuster, “Watchmyphone - providing developer
support for shared user interface objects in collaborative mobile ap-
plications,” in Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2012 IEEE International Conference on, March
2012, pp. 166–171.

[22] R. Lübke, D. Schuster, and A. Schill, “A framework for the devel-
opment of mobile social software on android,” in Mobile Computing,
Applications, and Services. Springer, 2011, pp. 207–225.

[23] F. Klompmaker and C. Reimann, “A service based framework for
developing mobile, collaborative games,” in Proceedings of the 2008
International Conference on Advances in Computer Entertainment Tech-
nology, ser. ACE ’08. ACM, 2008, pp. 42–45.

[24] “Silence App,” 2015, URL: https://play.google.com/store/apps/details?
id=net.epsilonlabs.silence.ads [accessed: 2015-05-13].

[25] “Go Silent App,” 2015, URL: https://play.google.com/store/apps/
details?id=com.eventscheduler [accessed: 2015-05-13].

[26] “Advanced Silent Mode,” 2015, URL: https://play.google.com/store/
apps/details?id=com.joe.advancedsilentmode [accessed: 2015-05-13].

[27] “Silent Time,” 2015, URL: https://play.google.com/store/apps/details?
id=com.QuiteHypnotic.SilentTime&hl=en [accessed: 2015-05-13].

[28] “Auto Silent,” 2015, URL: https://itunes.apple.com/us/app/autosilent/
id474777148?mt=8 [accessed: 2015-05-13].

[29] Alastair Plumb. Slovakian Violist Lukas Kmit Interrupted By
Nokia Ringtone, Incorporates It Into Recital. Huffington Post. [On-
line]. Available: http://www.huffingtonpost.co.uk/2012/01/23/slovakian-
violinist-lukas-kmit-nokia-ringtone n 1223086.html [retrieved: May,
2015]

[30] R. Dobrican and D. Zampunieris, “Supporting collaborative learning
inside communities of practice through proactive computing,” in Pro-
ceedings of the 5th annual International Conference on Education and
New Learning Technologies. IATED, 2013, pp. 5824–5833.

[31] D. Shirnin, S. Reis, and D. Zampunieris, “Design of proactive scenarios
and rules for enhanced e-learning,” in Proceedings of the 4th Interna-
tional Conference on Computer Supported Education, Porto, Portugal
16-18 April, 2012. SciTePress–Science and Technology Publications,
2012, pp. 253–258.

[32] D. Zampunieris, “Implementation of a proactive learning management
system,” in Proceedings of” E-Learn-World Conference on E-Learning
in Corporate, Government, Healthcare & Higher Education”, 2006, pp.
3145–3151.


