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Abstract - This paper aims to forecast wind energy 

generation. With accurate forecasting of energy generation, it 

will aid the energy sector in managing of stability and grid 

planning for supplied energy. The main focus of this project is 

Artificial Neural Network (ANN) while the training algorithms 

used in this project is a combination of Self-Organizing Maps 

(SOM) and Extreme Learning Machines (ELM). Furthermore, 

the training algorithm is applied into MATLAB and simulated 

several times in order to obtain the optimal parameters setting so 

as to accurately forecast wind energy generation. 

Index Terms – Wind energy Generation, Forecasting, 

Artificial neural network, Self-Organizing Maps, Extreme 

learning machine, MATLAB, Renewable energy resources 

I. INTRODUCTION 

Overspending of the fossil fuels causes serious 
environmental pollutions all over the world. Since there is an 
increase in demand for electrical energy. Thus, the urgency to 
exploit into the renewable energy sector. Among the several 
renewable energies, wind is the most promising source of 
energy which can be connected to the electrical power system.  

Despite wind energy generation having numerous benefits, 
it is a great challenge to accurately forecast wind energy as 
wind varies from the thermal exchanges between the surface 
and atmosphere. Not only does local climate and season affect 
the wind energy output, turbulences and chaotic processes 
further enhances the difficulty of forecasting. Fig. 1 shows the 
difference in wind energy generation in 3 consecutive days. 
Furthermore as power curves are nonlinear, any small errors in 
the forecasting of wind energy generation becomes a huge 
error in the power sent to the grid. Thus, an accurate algorithm 
to forecast wind energy generation is high in demand in the 
energy sector even today. 

Fig. 1: Wind Energy Generation Example 

The fundamental role of wind energy forecasting is to 
enable the program to successfully provide information of the 
expected wind power generation in the next few minutes, 

hours or days. Based on power system requirements, forecast 
are divided into 4 different horizons shown in Table I. 

     TABLE I. FORECASTING HORIZONS TABLE 

Types of  

Forecasting 

Timing  

Horizons 

Uses 

Immediate Short-

term 

Few seconds – 30 

minutes 

Turbine Control and Load 

Tracking 

Short-Term 30 minutes – 6 

hours 

Preload Sharing 

Medium-Term 6 hours – 24 hours Power System Management and 

Energy Trading 

Long-Term 1 day – 7days Maintenance Scheduling of Wind 

Turbines 

 

In this paper, a methodology for forecasting wind energy 
generation using SOM and ELM as the training algorithm is 
presented. The developed forecasting model has been verified 
by some simulation studies. The rest of this paper is organized 
as follows: Section II presents an overview of the literature 
available on forecasting algorithm. Section III explains the 
proposed methodology used to implement the training. Section 
IV discusses the various simulations and results. Section V 
provides the discussion. Finally, the paper is concluded in 
Section VI. 

II. BACKGROUND INFORMATION 

A. Machine Learning 

Machine Learning is a computer-based algorithm which 
“learns” from the data. This algorithm is designed to handle 
forecasting models that can incorporate many kinds of data. 
Machine learning algorithms reduce variability by capturing 
and modelling all the relevant attributes while filtering out the 
random and unpredictable fluctuations. They are classified 
into three types, supervised learning, unsupervised learning 
and reinforced learning. 

B. ANN Architecture 

Inspired by the nervous system, ANN is formed under 
class of artificial intelligence which works like a brain-like 
tool with highly interconnected simple processing units 
designed to model how the human brain performs a particular 
task [1]. Since ANN is a subset of Machine Learning.  

In this paper, the proposed methodology would be a 
combination of both unsupervised learning and supervised 
learning. 
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C. Kohonen Self-Organizing Maps 

Originally proposed by Kohonen in 1982, SOM is a type 
of ANN using unsupervised learning method, trained to cluster 
and visualize high-dimensional data into low dimensional data 
(mostly two-dimensional) through the means of grouping 
similar data together to form a map [2].  

Formation of SOM network involves three essential 
processes: Firstly, competitive process where for each input 
pattern, each neuron in the output layer compute its value for 
the distance in between to find the Best Matching Unit 
(BMU). Let m denote the dimension of the input pattern x 

𝑥 = [𝑥1 ⋯ 𝑥𝑚]𝑇    (1) 

For each neuron, the weight vector, w has dimension m. 

𝑤𝑗 = [𝑤𝑗1 ⋯ 𝑤𝑗𝑚]𝑇    (2) 

In order to find the winning neuron, there is a need to calculate 
the Euclidean distance for each neuron. The shortest distance 
is declared the BMU. 

𝑑𝑤,𝑥 = √ ∑ (𝑥𝑚 − 𝑤𝑗𝑚)2

𝑛

𝑚=1

 

    

   (3) 

Secondly, cooperative process where the BMU determines the 
spatial location of a topological neighborhood of excited 
neurons causing the neighboring neurons to cooperate. The 
lateral distance between two neurons i and j are denoted as 𝑑𝑗𝑖 

and ℎ𝑗𝑖  as a topological neighborhood to measure how close 

the neurons i and j are.  

ℎ𝑗,𝑖 = 𝑒𝑥𝑝
(
−𝑑𝑗,𝑖

2

2𝜎2 )
 

   (4) 

where σ is the effective width of neighborhood, and it 
decreases over time. 

𝜎(𝑛) = 𝜎0𝑒𝑥𝑝(
−𝑛
𝜏

) (5) 

where 𝜎0 is the initial value of 𝜎, n is the iteration number and 
τ being the time constant determining the slope of graph.  

Finally, the adaptive process where the excited neurons 
shorten their distance in relation to current input pattern via 
weight adjustments. After selecting of BMU and 
neighborhood neurons, the synaptic weights 𝑤𝑗  are updated by 

𝑤𝑗(𝑛 + 1) = 𝑤𝑗(𝑛) + 𝜂(𝑛)ℎ𝑗𝑖(𝑥)(𝑛)(𝑥 − 𝑤𝑗(𝑛))    (6)    

where x is the input pattern, 𝜂(𝑛)  is the rate of learning, 
ℎ𝑗𝑖(𝑥)(𝑛) is the function of neighborhood and -𝑤𝑗(𝑛)  is the 

forgetting term in Hebbian hypothesis which stop the weight 
from going towards infinity. Table II discusses the details of 
each step needed to obtain the output map. 

TABLE II. SOM ALGORITHM STEPS 

Steps Topologies Applications 

1 Initialization Initializing of small random values for initial weight 

values of neurons. 

2 Sampling Selecting of input vector x at random. 

3 Matching Locating of winning neuron which distance is 

smallest form input x. 

4 Updating Adjusting of synaptic weight vectors of winning 

neuron and neighbors. 

5 Iteration Repetition of steps 2-4 until no noticeable map 

changes occurs. 

 

D. Single Hidden Layer Feed Forward Network (SLFN) –

ELM 

SLFN is one of the many different types of Neural 
Networks that have been used extensively for the ability to 
directly approximate complex nonlinear mappings from input 
samples and provide large class of natural and artificial 
phenomena which are difficult to handle. However SLFN is 
not only tedious, it also relies too much on the learning 
algorithm for optimization results.  

From [3] and [4], ELM was introduced in as an 
implementation to SLFN. Furthermore, unlike 
backpropagation discussed in [5], ELM is not only faster but it 
also obtains better generalization performance. The algorithm 
for ELM is separated into two parts:  

1. Training of ELM 

Input variables, output and number of hidden nodes are 
needed to be defined at the start. x is the input matrix with m 
variables and n samples, y being the output with m samples 
and k as the number of hidden nodes. 

                                  𝑥 = [

𝑥11 ⋯ 𝑥1𝑚

⋮ ⋯ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑚

]

𝑛 × 𝑚

 
 

          (7)  

                           𝑦 = [𝑦11 ⋯ 𝑦1𝑚𝑚]𝑇            (8) 

After defining of inputs, next is randomizing weights W 

which connects the input nodes to hidden nodes, which is a 

combination of input variables and hidden nodes. 

𝑊 = [
𝑊11 ⋯ 𝑊1𝑘

⋮ ⋱ ⋮
𝑊𝑚1 ⋯ 𝑊𝑚𝑘

] 
 

(9) 

Calculation of the hidden layer matrix H by multiplying x 

with W. and using activation function g to find the hidden 

layer output matrix 𝐻𝑜𝑢𝑡 . 

𝐻 = 𝑥 𝑊 (10)   

𝐻𝑜𝑢𝑡 = 𝑔 𝐻 (11)   

The estimated output �̂�, is connected to the hidden layer 

output matrix 𝐻𝑜𝑢𝑡, through and output layer weight ß. Using 

least squares solution, ß can be obtain by using 𝐻𝑜𝑢𝑡
† which is 

the Moore-Penrose generalized inverse of 𝐻𝑜𝑢𝑡 . 

ß =  𝐻𝑜𝑢𝑡
†. 𝑦  (12) 

 �̂�, =  𝐻𝑜𝑢𝑡. ß  (13) 

 



                                                                                     
 

2. Testing of ELM 

After the system is being trained by the inputs, there is a 
need to test the performance of the system. Thus using w and 
ß obtained in the training phase, repeat (7 to 13, excluding 9 
and 12) with the new input variables and outputs.  

III. PROPOSED METHODOLOGY 

A. Overview of Proposed Methodology 

The overview of the proposed methodology is shown in Fig. 
2. SOM algorithm is done with the aid of MATLAB-GUI [6]. 

 

Fig. 2: Proposed Methodology  

B. Preprocessing of Data 

The dataset is acquired from [7] from 1
st
 December 2015 

to 1
st
 January 2016 and are sampled at an interval of 10 

minutes. These include the wind speed (m/s), wind direction, 
and energy generated (kWh). 

C. Activation Function 

When implementing activation functions in neural network 
to learn, the updating of contributions depends on the slope of 
the activation function. Is this paper, the chosen activation 
functions are log sigmoid (soft step), 𝑔(𝑥) = (1 + 𝑒−𝑥)−1 and 
hyperbolic tangent, (𝑥) = (𝑒𝑥 − 𝑒−𝑥)(𝑒𝑥 + 𝑒−𝑥)−1 . 

D. Performance Measure 

The performance of the proposed methodology is measured 

by the root mean square error (RMSE) achieved on the testing 

set data over 30 repetitive simulations. 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 

(16)   

where, �̂�𝑖 is the estimated output of the model, 𝑦𝑖  is the actual 

output, and n is the total number of samples. 

IV. SIMULATION AND RESULTS 

The simulation is done by running MATLAB on a single 
core of a 64-bit system ASUS personal laptop running on 
Windows 8.1 with dual core 2.3 GHz CPU and 8.0 GB RAM. 
Before optimal parameters are established, and initial 
simulation is done using random parameters shown in Table 
III. After obtaining RMSE, the simulation is repeated 30 
repetitions to check how much error deviates from each 
simulation.  Different simulations will be tested in order to 
obtain the optimal parameters for forecasting of wind energy 
generation.  

TABLE III. INITIAL PARAMETERS PROPOSED METHODOLOGY 

Dataset Parameters 

Days for Training 2 

Days for Testing 1 

Activation Function Log-Sigmoid 

Size of SOM 10-by-10 

No. Of Hidden Nodes 100 

 

A. Simulation 1: Number of Hidden Nodes 

The initial simulation used 2 days of dataset for training 
and 1 day for testing for short-term forecast of 4 hours. A total 
of up to 29 days of training and 1 day of testing will be 
simulated to acquire the optimal size of dataset for forecasting 
horizons. The simulations and results are shown in Table IV 
and Fig. 3. 

TABLE IV. SIMULATION 1 BEST PERFORMANCE RESULT 

Training Testing RMSE Test STD Test 

1 1 558.64 7.81 
7 1 277.30 5.84 

14 1 809.94 10.29 

 
Fig. 3: Predicted Energy (kWh) in Simulation 1 

For simulation with an equal amount of training data, the 
parameters estimates have greater variance, while for 
simulations with less training data, the performance statistic 
will have greater variance. Thus, out of the 29 simulations 
conducted, the simulation which yields the best result, has an 
approximate of 70:30 split. 

B. Simulation 2: Size of Dimension in SOM 

This simulation is allowing the network to run a total of 
100 different patterns of SOM dimension ranging from 1-by-1 
to 10-by-10. The size of dimension in SOM which yields the 
best results is 7-by-7 shown in Table V and Fig. 4. 

TABLE V. SIMULATION 2 BEST PERFORMANCE RESULT 

Dimension No. of Input 

Variables 

RMSE Test STD Test 

1-by-1 1 476.20 12.52 
7-by-7 49 238.76 11.36 

10-by-10 100 331.18 13.32 

 

Fig. 4: Predicted Energy (kWh) in Simulation 2 



                                                                                     
 

Comparing the results, it can be concluded that increasing 
of input variables does not necessarily means that the system 
may generate a better performance as “overfitting” may occur. 
In addition “underfitting” also occurs when there is a lack in 
input variables. 

C. Simulation 3: Number of Hidden Nodes in Hidden Layer 

The hidden layer must be wide enough for the forecasting 
to be accurate, and the number of hidden nodes in the hidden 
layer defines the width [8]. 1 to 100 hidden nodes are set for 
simulation 3 to determine the optimal number of hidden nodes. 
The simulations and results are shown in Table VI and Fig. 5. 

TABLE VI. SIMULATION 3 BEST PERFORMANCE RESULT 

No. Hidden Nodes RMSE Test STD Test 

2 480.07 15.33 
3 414.97 16.87 

70 225.53 14.96 

 

Fig. 5: Predicted Energy (kWh) in Simulation 3 

In order to prevent “over-fitting” [9], the optimal number of 
hidden nodes for best performance has been trial and it is 
observed that the number of hidden neurons is about 𝑛 =
log(𝑇), where T is the number of training samples inputted 
into the system. Using the formula, the estimated theoretical 
optimal number of hidden nodes should be 2 to 3 hidden 
nodes. However the simulation results proved that number of 
hidden nodes set to 70 yields the best results which shows that 
theoretical approach and practical approach differs. 

D. Simulation 4: Comparing Performance of SOM-ELM with 

ELM 

In this section, the optimal parameters obtained from the 
previous simulations will be used to compare with ELM 
algorithm to determine which algorithm is more feasible. 
Since the dataset only has three input variables, the 
dimensions of SOM will be changed to either 1-by-3 or 3-by-1 
for fair comparison. Table VII shows the comparison between 
the three cases. 

TABLE VII. COMPARISION OF PROPOSED METHODOLOGY  

Algorithm Dimension of 

Map 

No. of Input 

Variables 

RMSE Test 

ELM - 3 660.92 

SOM-ELM 3-by-1 3 356.22 

SOM-ELM 1-by-3 3 356.43 

 

V. DISCUSSION 

The simulations carried out have shown improvement of 
the RMSE from the initial test results. Through the three 

simulations, there is no standard procedure of fixing the 
parameters that can be followed to achieve the best results for 
wind energy generation. However, upon comparing the 
proposed methodology of SOM-ELM with just ELM, it is 
proven that SOM-ELM yields the better results between the 
two. Since SOM clusters the data into maps which causes the 
system to improve the forecast of wind energy generation. One 
technical merit of the work is the versatility of the system. As 
long as there are sufficient data, other renewable sources can 
also be forecasted. However, accuracy can slowly be improved 
by increasing variables and parameters which is also one of 
the limitations of this project. 

VI. CONCLUSION 

This work investigates the forecasting of wind energy 
generation using SOMs and ELM training algorithm. Firstly a 
forecasting model has been successfully setup using 
MATLAB software. Secondly efficiency of different 
parameters has been analyzed for the best result. Lastly, a 
comparison between the performance of SOM-ELM and ELM 
has been discussed. The model is evaluated using RMSE. 
Future works includes obtaining of a more detailed dataset 
which includes more parameters, integrating other ANN 
techniques to determine a more accurate forecasting algorithm 
and using other software to test the forecasting algorithm. 
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