

FACE-RECOGNITION BASED SECURITY ROBOT INCORPORATING

OMNIDIRECTIONAL VISION

MOHAMED TAHIR AHMED SHOANI

UNIVERSITI TEKNOLOGI MALAYSIA

FACE-RECOGNITION BASED SECURITY ROBOT INCORPORATING

OMNIDIRECTIONAL VISION

MOHAMED TAHIR AHMED SHOANI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

MAY 2015

iii

Dedicated to my parents, family & friends

iv

ABSTRACT

Security robots are gathering an increasing interest as a supplement to current

security systems due to their advantages of continuous effective surveillance and low

cost of operation. Current security robots, however, have their own limitations which is

preventing them from being used on a large scale in real world environment. The main

objective of this research is to develop a security robot that can efficiently be used in

real-world environments by overcoming the limitations of most security robots, to guard

properties and humans from intruders that may compromise the safety of the premises or

its inhabitants. The robot developed in this research uses motion detection by image

subtraction. When motion is perceived a face detection programme using the Viola

Jones method coupled with skin-color-content detection is used to find out whether the

motion was caused by a person or otherwise. If a face of a person or more is found, then

the face recognition stage is utilized to verify the familiarity of the person(s) detected by

using three different face recognition algorithms (Fisher faces, Eigen faces and LBPH

(Local Binary Pattern Histogram)) to ensure maximum identification under different

pose, facial expression and lighting conditions. If the person(s) is determined to be a

stranger, the robot would raise an alarm and navigate towards the subject to authenticate

him/her through a password entry check.

v

ABSTRAK

Robot-robot keselamatan menambahkan minat sebagai penambahbaikan ciri

keselamatan yang sedia ada yang disebabkan oleh kelebihan mereka mengawal secara

efektif dan kos operasi yang rendah. Robot keselamatan semasa, bagaimanapun,

mempunyai kekurangan mereka sendiri yang menghalang mereka daripada diguna

secara besar-besaran dalam persekitaran dunia sebenar. Objektif utama kajian ini adalah

untuk menghasilkan sebuah robot keselamatan yang berkesan yang boleh digunakan

dalam persekitaran dunia sebenar dengan mengatasi kekurangan kebanyakan robot

keselamatan, untuk menjaga keselamatan harta benda dan manusia daripada

penceroboh-penceroboh yang mungkin menjejaskan keselamatan premis atau

penghuninya. Robot yang dihasilkan dalam kajian ini menggunakan pengesanan gerakan

oleh penolakan imej. Apabila gerakan dikesan program pengesanan muka menggunakan

kaedah Viola Jones ditambah pula dengan pengesanan kandungan warna kulit digunakan

untuk mengetahui sama ada pergerakan itu disebabkan oleh seseorang atau sebaliknya.

Jika wajah seseorang atau lebih ditemui, maka peringkat pengiktirafan wajah digunakan

untuk mengesahkan pengetahuan orang yang dikesan dengan menggunakan tiga

algoritma pengecaman wajah yang berbeza (Wajah Fisher, Wajah Eigen dan LBPH

(Local Binary Pattern Histogram)) untuk memastikan identifikasi yang maksimum di

bawah cara yang berbeza, ekspresi wajah dan keadaan pencahayaan. Jika orang disahkan

untuk menjadi orang yang tidak dikenali, robot itu akan menghidupkan penggera dan

menavigasi ke arah subjek untuk mengesahkan dia melalui entri kata laluan.

vi

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION

DEDICATION

ABSTRACT

ABSTRAK

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

ii

iii

iv

v

vi

xii

xiii

xvi

INTRODUCTION 1

1.1 Problem Statement (Problem Background) 1

1.2 Research Objectives 2

1.3 Research Question 3

1.4 Research Methodology 3

1.5 Expected Findings 4

1.6 Scope and Assumptions 4

1.7 Structure of Thesis (Outline of thesis) 6

LITERATURE SURVEY 8

2.1 Security Robots 9

2.1.1 Teleoperated Security Robots 9

1

2

vii

2.1.1.1 Teleoperated Security Robots without

an Omnidirectional Camera 10

2.1.1.2 Teleoperated Security Robots with an

Omnidirectional Camera 12

2.1.2 Autonomous Security Robots 13

2.1.2.1 Autonomous Security Robots Utilizing

a non-Omnidirectional Camera 13

2.1.2.2 Autonomous Security Robots Utilizing

an Omnidirectional Camera 15

2.1.2.3 Comparison of Autonomous Security

Robots 16

2.1.3 Hybrid Security Robots 18

2.2 Surveillance 21

2.2.1 Overview 21

2.2.2 Cameras 21

2.2.3 Camera Usage 22

2.2.4 Surveillance Operations with Robots 23

2.3 Motion detection 24

2.3.1 Motion Detection in OpenCV 25

2.4 Face Detection & Methods 27

2.4.1 Skin-Color Based Face Detection 28

2.4.2 The Viola-Jones Method of Face Detection 30

2.5 Face Recognition 33

2.5.1 OpenCV Face Recognizers 33

2.6 Authentication 34

2.6.1 Biometric Based Authentication 35

2.6.1.1 Face Recognition Authentication 38

2.6.2 Knowledge based Authentication 40

2.6.2.2 Password Authentication 41

Summary 42

viii

METHODOLOGY 43

3.1 The Robot’s Design 44

3.1.1 Body 45

3.1.2 Hardware 48

3.1.2.1 Power & Performance 51

3.1.3 Software 52

3.1.4 Camera System 52

3.2 The Robot’s Surveillance Operation 53

3.3 Motion Detection 56

3.3.1 Motion Detection in Video 56

3.3.2 The Robot’s Motion Detection 57

3.4 Face Detection 61

3.4.1 Introduction 61

3.4.2 The robot’s Face Detection 61

3.4.2.1 Motion Detection 62

3.4.2.2 The Viola-Jones Method 63

3.4.2.3 Skin Color Content 66

3.4.2.4 Pixel Density 68

3.4.2.5 The Presence of Eyes 69

3.5 The Robot’s Face Recognition 71

3.5.1 Using Multiple Face Recognizers 72

3.5.2 Refreshing the Face Recognizer 74

3.5.3 Face Image Cropping 75

3.6 Face Tracking 77

3.6.1 Introduction 77

2.6.2 Challenges in Face Tracking 78

2.6.3 Practical Face Tracking 78

3.7 Obstacle Avoidance 80

3.7.1 Introduction 80

3.7.2 Types of Obstacles 80

3.7.3 Types of Sensors 81

3

ix

3.7.4 The Robot’s Obstacle Avoidance 82

3.8 Navigation 85

3.8.1 Introduction 85

3.8.2 Types of Robot Drives 85

3.8.3 Path Planning 86

3.8.4 The Employed Navigation Approach 87

3.8.4.1 The Robot’s Locomotion 88

3.8.4.2 The Robot’s Navigation 89

3.9 Authentication 92

3.9.1 Introduction 92

3.9.2 The Employed Authentication Approach 92

Summary 94

EXPERIMENTS 95

4.1 Motion Detection Related Experiments 95

4.1.1 General Objective 95

4.1.2 Camera’s Field of View Experiment 96

4.1.2.1 Objective 96

4.1.2.2 Description 96

4.1.2.3 Setting 99

4.1.2.4 Results 99

4.1.2.5 Discussion and Analysis 100

4.1.3 Threshold and Lighting Effect Experiment 101

4.1.3.1 Objective 101

4.1.3.2 Description 101

4.1.3.3 Setting 102

4.1.3.4 Results 104

4.1.3.5 Discussion and Analysis 105

4.2 Face Detection Related Experiments 107

4

x

4.2.1 General Objective 107

4.2.2 Face-Size vs Distance Experiment 107

4.2.2.1 Objective 107

4.2.2.2 Description 107

4.2.2.3 Setting 109

4.2.2.4 Discussion and Analysis 111

4.2.3 Face-Detection Effectiveness Experiment 112

4.2.3.1 Objective 112

4.2.3.2 Description 112

4.2.3.3 Setting 114

4.2.3.4 Results 116

4.2.3.5 Discussion and Analysis 117

4.3 Face Recognition Related Experiment 120

4.3.1 General Objectives 120

4.3.2 Image Size vs Performance Experiment 120

4.3.2.1 Objective 120

4.3.2.2 Description 120

4.3.2.3 Setting 121

4.3.2.4 Results 123

4.3.2.5 Discussion and Analysis 125

4.4 Obstacle Avoidance Related Experiments 127

4.4.1 General Objectives 127

4.4.2 Minimum and Maximum Detection Distance

Experiment 127

4.4.2.1 Objective 127

4.4.2.2 Description 127

4.4.2.3 Setting 128

4.4.2.4 Results 129

xi

4.4.2.5 Discussion and Analysis 130

4.5 Navigation Experiments 132

4.5.1 Practical Navigation Experiment 132

4.5.1.1 Objective 132

4.5.1.2 Description 132

4.5.1.3 Setting 134

4.5.1.4 Results 135

4.5.1.5 Discussion and Analysis 136

Summary 138

CONCLUSION 140

5.1 Research Summary 140

5.2 Contributions 141

5.2.1 Cost Comparison 142

5.2.2 Efficiency Comparison 143

5.3 Limitations and Future Work 144

REFERENCES 145

Appendix A 154

5

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

 2.1 Comparing the robot in this work with robots mentioned in

the literature 17

 4.1 The results of measuring the field of view for different

cameras 100

 4.2 The average values of the three repetitions of the

experiment 104

 4.3 The face size in pixels and subject distances gathered from

the experiment 110

 4.4 The results from the face detection experiment 116

 4.5 The results from calculating the correct and incorrect

detections 116

 4.6 Face detection efficiency comparison 118

 4.7 The number of images per subject 122

 4.8 The results from the experiment 123

 4.9 The results per image, and recognition percentage 123

 4.10 Results from the experiment of the ultrasonic sensors 130

 4.11 The results from the navigation experiment 136

xiii

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

 2.1 Motion detection using the ‘BackgroundSubtractorMOG’

of OpenCV 25

 2.2 Shadows and low FPS when using OpenCV’s

‘BackgroundSubtractorMOG’ 26

 2.3 Skin-color filter used in face detection 29

 2.4 A face image in color and grayscale 29

 2.5 Some of the background is within the threshold range for

the skin-color detector 30

 2.6 Haar-Features used in face detection 31

 2.7 A face may be detected many times 32

 2.8 Eliminating false positives by requiring the detection of a

face several times 32

 2.9 Some biometrics used for identity verification 36

 3.1 The robot’s base 45

 3.2 The design and dimensions of the robot’s body 46

 3.3 The improvements that were applied to the robot’s base

and body 47

 3.4 The ultrasonic sensors installed on the robot 49

 3.5 (a) The controllers used on the robot, (b) The block

diagram 50

 3.6 The actuators (dc motors) used on the robot 51

xiv

 3.7 The setup of the cameras used on the robot 53

 3.8 Image comparison of the same location 54

 3.9 A frame rate of over 34 frames per second was achieved 58

 3.10 A passing person was not detected in low light with a

threshold of 25 59

 3.11 A passing person was detected in low light with a

threshold of 15 59

 3.12 False motion detection when a low threshold value is

used 60

 3.13 The region of the frame image where motion was

detected 60

 3.14 A face image of less than 35 pixels is hardly useful for

face recognition 63

 3.15 The time taken to scan for a face of size 25x25 pixels 64

 3.16 Searching for a face of size 20x20 can result in a speed

of 0.85 FPS 65

 3.17 Less time is required 66

 3.18 False face detection by the Viola-Jones method. 67

 3.19 Skin-color based filtering can exclude many false

positives 67

 3.20 Face images and the thresholds used to filter non-face

images 68

 3.21 Falsely detected face images with high sharpness 69

 3.22 Falsely detected face images which do not contain eyes 70

 3.23 Deciding the correct identity of a subject 73

 3.24 The LBPH face recognizer can add an image to its

dataset 75

 3.25 Detected face images normally contain undesired extra

sections 76

 3.26 Cropping the undesired parts of a face image 77

 3.27 The face tracking rig. 79

xv

 3.28 The ultrasonic sensors used with the robot 83

 3.29 Calculating the sensor angle 84

 3.30 Choosing a different path 87

 3.31 The robot’s wheels 89

 3.32 The approach used to arrive at the desired subject 91

 3.33 A user enters his/her password on the robot 93

 4.1 Determining the camera’s field of view 97

 4.2 The camera’s used in the experiment, from left to right

 98

 4.3 The images captured by the A1-Pro webcam 98

 4.4 The camera field of view experiment setting 99

 4.5 The lab in zero and full lighting conditions 102

 4.6 The experiment setting 103

 4.7 A summary of the gathered results from the experiment 105

 4.8 A subject holding a cue card and standing 4.0 meters

away from the cameras 108

 4.9 The setting used for conducting the experiment 109

 4.10 A graph showing the relation between distance and

average face size 111

 4.11 Face images captured at a distance of 6 meters with a

640x480 pixel webcam 111

 4.12 Locations where cameras where placed to capture faces. 113

 4.13 The experiment setup at location 1 115

 4.14 The experiment setup at location 2 115

 4.15 Individual training times for the three face recognizers 124

 4.16 Individual recognition times per image for the three face

recognizers 125

 4.17 The laptop, circuit and some of the objects used in the

experiment 128

 4.18 The experiment setup 129

xvi

 4.19 The robot navigating and approaching a person during

the experiment 133

 4.20 The lab environment in which the experiment was

conducted 134

 4.21 The robot used in the experiment 135

xvii

LIST OF ABBREVIATIONS

AAM - Active Appearance Model

ASV - Autonomous Sea Surface Vehicle

ATTfa3FR - Accumulative Training Time for all 3 Face Recognizers

CIE - International Commission on Illumination

CIWS - Close-In Weapon System

Cnt - Continuous

DoF - Detection of Face

DoM - Detection of Motion

Dst - Distance

ECR - Eigen Correct Recognition

ECRP - Eigen Correct Recognition Percentage

Err - Erroneous

ERT - Eigen Recognition Time

ERTPI - Eigen Recognition Time Per Image

ETT - Eigen Training Time

ETTPI - Eigen Training Time Per Image

FCR - Fisher Correct Recognition

FCRP - Fisher Correct Recognition Percentage

FD - Face Detection

FOV - Field of View

fps - Frames Per Second

FRT - Fisher Recognition Time

FRTPI - Fisher Recognition Time Per Image

xviii

FTT - Fisher Training Time

FTTPI - Fisher Training Time Per Image

HD - High Definition

HMM - Hidden Markov Model

HSL - Hue, Saturation, Lightness

HSV - Hue, Saturation, Volume

ICA - Independent Component Analysis

LBPH - Local Binary Pattern Histogram

LCR - LBPH Correct Recognition

LCRP - LBPH Correct Recognition Percentage

LDA - Linear Discriminant Analysis

LRT - LBPH Recognition Time

LRTPI - LBPH Recognition Time Per Image

LTT - LBPH Training Time

LTTPI - LBPH Training Time Per Image

MOG - Mixture Of Gaussian

OTP - One-Time-Password

PCA - Principal Component Analysis

PDA - Personal Digital Assistant

PDBNN - Probabilistic Decision Based Neural Network

PIN - Personal Identification Number

PTZ - Pan-Tilt-Zoom

RF - Radio Frequency

RFID - Radio Frequency based Identification

RGB - Red, Green, Blue

SVM - Support Vector Machines

Thld - Threshold

VGA - Video Graphics Array

XYZ - Axis of CIE color space

YCrCb - Yellow Chroma-Red Chroma-Blue

xix

LIST OF APPENDICES

APPENDIX TITLE

PAGE

A Software Program Listing 154

CHAPTER 1

INTRODUCTION

1.1 Problem Statement (Problem Background)

Security is one of the main objectives of every creature. Everyone wants to

feel safe within their home and work environment. This security requirement

increases as the importance of the premises increases. For this reason it is usual to

see guards in places such as banks and other establishments of high importance.

Security is also highly required in areas and buildings which may be vulnerable to

attacks, such as border crossings, military departments and many others.

Security was and in many cases still is, carried out by security personnel

which carry out patrols and may use surveillance cameras for monitoring the

designated area. This approach, however, has the following disadvantages:

 Guard fatigue which may result in inadequate monitoring or even sleeping on

the job.

 Boredom which may result in the guard(s) being busy with something else

other than the main objective.

 Intrinsic human inadequacy. It’s hard for a human to monitor a number of

screens showing video streams from surveillance cameras continuously for a

long period of time.

2

 Ineffectiveness, an intruder may sneak behind a guard or even attack the

guard and neutralize him/her towards achieving the intruder’s objective.

 High cost of employing many guards to secure the area 24/7.

For these reasons, automated security systems have been sought by security

managers to limit or inhibit the disadvantages and weaknesses of human based

security systems.

Although automated security systems can be in the form of a laser beam

which signals an alarm when it’s broken or a similar method of intruder detection, a

far better approach would be a mobile robot that has the capacity to monitor an area

in all directions continuously and intercept strangers to verify their identity, thereby

solving many of the problems mentioned earlier and providing a much better solution

to securing a facility using a ‘machine + human’ approach.

1.2 Research Objectives

The general aim of this research is to design a robot capable of performing

security related tasks to help organizations as well as individuals with safeguarding

their properties or other important assets with low cost and better efficiency.

The specific aim of this research is to give a security robot several extra

capabilities that most current security robots lack such as:

 360 degree vision and surveillance using a different approach than the

catadioptric (fisheye) camera method

 Full HD vision to capture a clearer image of an unidentified person’s face.

 Subject tracking, approach and following.

 Subject verification through biometric means and authentication through

specific knowledge.

3

1.3 Research Question

There are many queries as well as difficulties surrounding robots in general,

and more specifically to those that are intended for security operations. Questions

relating to the nature of operation as well as the extent of autonomy and not least, the

real-life effectiveness of such robots are all issues that require answers.

In this project the aim is to answer the following questions:

1- Can a security robot use several wide angle cameras instead of a catadioptric

camera to conduct 360 degrees intruder detection in an indoor environment?

2- What threshold value should be used to allow a security robot to detect

intruder motion in an indoor environment using a digital camera in different

lighting conditions?

3- What is the maximum face detection distance capability of a security robot in

well-lit indoor environment using a video camera without optical

enhancement gear?

4- How efficiently can a security robot detect human faces in an uncontrolled

live indoor environment?

5- What is the best face image dimensions to be used in a security robot for the

purpose of face recognition in an uncontrolled live indoor environment.

1.4 Research Methodology

The research methodology used in this project is as follows:

 Review recent and past literature to find out what has been achieved so far

and to identify possibilities and limitations of security robots under research.

 Design a robot that possesses the strengths and possibly avoids the limitations

of past security robot.

 Plan a method of conducting surveillance and security checks using the added

capabilities of the designed robot.

4

 Test the operation and correct mistakes and errors.

 Improve the operation of the robot as much as possible.

 Verify the robot’s efficiency using real-life scenarios.

1.5 Expected Findings

This research is expected to find out the following:

 The possibility and if so, the method of using an omnidirectional vision

system employing three wide angle cameras rather than one fisheye camera

for the purpose of continuous surveillance of an indoor environment as well

as face detection of subjects within the environment at practical distances.

 The possibility of using face recognition efficiently to determine strangers

from known individuals by an autonomous security robot using only its on-

board resources.

 The possibility and method of building an autonomous security robot that is

fast enough to efficiently interact with strangers in real-life environments.

 The possibility of applying speed on a tall robot to conduct its operations and

to what extent.

1.6 Scope and Assumptions

The scope of this work is as follows:

1- The Robot:

a. Autonomous.

b. Mobile.

c. Built by candidate student.

d. Uses electrical dc motors.

e. Height: minimum 1 meter, maximum 2 meters.

5

2- The robot’s environment:

a. Indoors.

b. Unstructured.

c. Even dry floor.

d. Lighting is sufficient for a human to see around.

3- Motion Detection:

a. Detect motion of a human subject.

b. Use one or more digital cameras.

4- Human subjects:

a. Height is from 50 to 200 cm.

b. Not putting excessive makeup.

c. Not wearing a mask or other face occluding / altering objects.

d. Approach the robot in a normal walking manner.

e. Subject distance can be 1 – 7 meters from the robot’s camera.

f. Subject color and clothes color is different from background color.

g. Subjects are capable of hearing and seeing.

h. Subjects can read and write English.

i. Subjects have used a computer in the past.

5- Face Detection:

a. Live motion.

b. Uncontrolled (the subject can be anywhere within the camera’s

view).

c. Subjects’ faces may be slightly facing right or left (a few degrees).

d. Subjects’ faces may be slightly tilted clockwise or

counterclockwise (a few degrees).

e. More than one face can be present in the camera’s image.

f. More than one face can be detected in a single video frame image.

6- Face Recognition

a. Face images should be gray colored.

b. Face images are cropped from one or two sides to decrease

background.

c. Face images sharpness should be acceptable (moderate to high).

d. Faces can be tilted and/or rotated by a few degrees.

e. Use one or more face images.

6

f. Use three face recognizers.

g. A member should have a minimum of two different face images in

the database to start with.

7- Face Tracking

a. The face is detectable by the robot (see ‘Face Detection’ above)

b. Subject face movement is moderate or slow.

8- Navigation

a. The target (subject) is detectable by the robot’s camera’s (see

‘Face Detection’ above)

b. The target’s (subject’s) face is traceable by the robot’s camera’s

(see ‘Face Tracking’ above)

c. The floor surface is suitable for the robot’s movement.

d. Obstacles are detectable by the ultrasonic sensors.

9- Obstacle Avoidance

a. Obstacles are usual objects found in an office or lab environment.

b. Obstacles can be static or dynamic.

c. Obstacles may not change position or orientation at high speed.

10- Authentication

a. Members know their passwords.

b. Members do not share their passwords with strangers.

c. Members do not reveal methods to overcome the robot’s security.

d. Strangers obey the robot’s voice commands.

e. Administrators can hear (or become notified of) the robot’s alarm

when it goes off.

1.7 Structure of Thesis (Outline of thesis)

This thesis is divided into five chapters. The first chapter is the introduction

which has covered topics related to the research objectives, methodology and

expected findings. The second chapter presents a literature review of past and recent

research done on security robots and their operation as well as the two employed

methods of authentication. The third chapter outlines the methodology used in

7

implementing the robots operation. Chapter four presents the different experiments

that were conducted and discussion of the results obtained. Finally, chapter five

presents a conclusion on the work carried out and possible future work.

CHAPTER 2

LITERATURE SURVEY

Development of a security robot is well covered in the literature. Many types

of security robot with different capabilities have been built and tested inside and

outside university laboratories. In this chapter we will try to give an overview of

current and past research that is directly related to this project.

Section 2.1 outlines the types of security robots. Subsection 2.1.1 gives an

overview of teleoperated security robots, while subsection 2.1.2 covers autonomous

security robots, and finally, subsection 2.1.3 provide an overview of hybrid security

robots. These subsections provide a deeper look at the capabilities and limitations of

each of the three reviewed types of security robots when equipped with normal and

omnidirectional vision capability.

Section 2.2 outlines the approach used in conducting surveillance operations.

Subsection 2.2.1 gives a general overview of surveillance conducted by security

robots. Subsection 2.2.2 provides an outline of cameras used in surveillance and

monitoring operations. Subsection 2.2.3 provides an overview of camera usage in

security systems and security robots, and subsection 2.2.4 provides a deeper look into

surveillance operations conducted by security robots.

9

Section 2.3 outlines the approach used in detecting motion. Section 2.4

provides an overview of face detection methods. Subsection 2.3.1 takes a closer look

at skin-color based face detection, while subsection 2.3.2 provides an overview of the

Viola-Jones method for face detection. Section 2.5 outlines face recognition as well

as the methods used in OpenCV to accomplish it.

Section 2.6 covers authentication. Subsection 2.2.1 reviews biometric baased

authentication methods. Subsection 2.2.1.1 takes a deeper look at face recognition,

which is one of the biometric methods used for authentication. Subsection 2.2.2

reviews knowledge based authentication, while its subsection 2.2.2.1 takes a deeper

look at password authentication which is used in this system.

2.1 Security Robots

Many types of security related robots are mentioned in the literature, each

with its own strengths and weaknesses. In general, security related robots can be

classified into three main categories:

 Teleoperated security robots

 Autonomous security robots.

 Hybrid security robots.

 The following subsections offer an overview of the robots and research done

in these fields.

2.1.1 Teleoperated Security Robots

Teleoperated security robots are remotely controlled to carry out many

different operations such as surveillance, inspection, hostage retrieval and other law-

enforcement operations [1].

10

Human teleoperated robots come in a large variety. They are used for many

different purposes such as inspection, bomb disposal, as well as other operations with

high risks [1]. The main two reasons for using teleoperated robots rather than

autonomous robots are [1][2]:

1. The utilization of artificial intelligence may result in an emergent response

when an autonomous robot is programmed with an unconstrained learning

algorithm. Consequently the robot may exhibit a non-deterministic response

and take a critical decision, such as shooting a human with a weapon.

2. An environment is too unstructured, unpredictable or complex to be modelled

efficiently and as such a robot may not be controlled effectively.

Teleoperated robots have some advantages [3] such as:

1. Getting humans out of harm’s way, such as in hazardous or polluted areas.

2. To access areas unreachable by humans for any reason.

However, the disadvantage of teleoperated robots is that they do not operate

on their own unless equipped with some degree of autonomy, and therefore would be

useless in helping a human unless another human controls them to do so.

Teleoperated robots may be equipped with a normal or an omnidirectional camera.

2.1.1.1 Teleoperated Security Robots without an Omnidirectional Camera

There are many types of teleoperated robots that do not employ an

omnidirectional camera. However they use many different sensors to perform their

operation such as color cameras, thermal cameras, ultrasonic sensors and others.

In [4] and [5], models of teleoperated robots which utilize a range of different

sensors are offered to carry out diverse missions such as surveillance, explosive

ordinance disposal, vehicle inspection, and route clearance. The different models

have different capabilities depending on their design and sensors they employ.

11

In [6] a ball shaped robot is designed and used for surveillance and rescue

operations. It has video transmission capability, and due to its unique design, it can

be maneuver to narrow places and, hence, can also be used to find survivors in rescue

operations. In [7] a robot is used to scan an indoor location such as a house, gather

images, and send them to a website (where a user can see and use the images) and

can be controlled through a browser window through the internet and in [8] a remote

controlled robot is used to scan an area for fire or intrusion. The robot is equipped

with camera to send back video and a manipulator for firefighting purposes.

In [9] a Packbot Scout robot’s operation and utility is tested by a SWAT unit

in their operations. It can be used for scanning certain site as well as conduct

negotiations with suspects or people inside, while in [10] the prospects of using

natural language to communicate with and supervise a robot is investigated. The

robot is proposed to be used by military and security personnel in their operations. In

[11], a robot has a different ‘unique’ design. It can transform from a vehicle to a

walking robot. When the terrain is even, the vehicle mode can be used to move fast

with less energy, while the walking mode can be invoked to navigate a rough terrain.

The robot is teleoperated and is equipped with a camera to enable the user to view

the robot’s environment.

In [12], a teleoperated, semi-autonomous robot is equipped with a camera and

a GPS and can be used to conduct surveillance of an outdoor environment. The

robot’s six-wheel design enables it to traverse the rough terrain of the outdoor

environment. The robot can be controlled wirelessly and instructed to move to any

location; it then autonomously navigates the terrain and avoids obstacles to reach the

specified location. In [13] another semi-autonomous robot is used to monitor an

indoor environment. Again, the operator can set a target location, and the robot will

move to that location while avoiding obstacles in its path. The robot is equipped with

smoke and fire sensors and can notify the operators of such events during its

operation. The operators can also use the onboard camera to monitor the robot’s

environment.

In [14][15][16] a security robot can be controlled using a CDMA based

mobile phone. The system allows the user to view images from the camera onboard

12

the robot as well as command the robot’s movements, while in [17] the robot is

remotely controlled over the internet by security personnel. The robot streams the

camera view to a server which performs identification, and if an intruder is detected a

message is sent to the operator as well as the intruder.

In [18] a robot equipped with a wireless camera is controlled with a joystick

to approach desired locations. The robot is equipped with an ultrasonic sensor which

stalls the robot for five seconds when an obstacle is encountered allowing the user to

respond afterwards by moving the robot away from the obstacle. The camera is used

to capture images of any location or event in the environment.

In [19] a quad-copter is equipped with a camera and used to track people by

extracting body information. The problem with such robots is the limited payload

capability resulting in reducing the usefulness of the acquired information while

requiring high operation costs in terms of energy spent on flying and controlling the

platform.

In general, teleoperated robots may not employ omnidirectional vision as they

may not need it for their mission, however, adding such as sensor may endow the

robot and/or user with extra and improved capabilities to carry out the mission at

hand.

2.1.1.2 Teleoperated Security Robots with an Omnidirectional Camera

In [20] a robot equipped with an omnidirectional camera is used for fire and

intruder detection. When a fire or intruder is detected, the PC alerts the owner by

sending an SMS to his/her mobile phone as well as posting the captured images on

website. Although the proposed system can detect fire and alert the user, it does not

take any other action, which is a very important point in case of a fire. Also, the

robot is controlled by a PC which makes it vulnerable in locations where the signal is

lost or damaged by noise. Finally intruder detection is done by background

extraction. While being an effective method for stationary robots and fixed cameras,

13

it may be less robust on a mobile robot as the background would change constantly

during the robot motion.

2.1.2 Autonomous Security Robots

Autonomous security robots have the advantage of performing their tasks

without human intervention, thus alleviating the burden on humans by repetitive

chores or lengthy operations hours. An excellent example of such robots are those

used in security, as these robots do not require sleep and do not lose focus due to

extended working hours. In the following subsections, we will examine robots

without an omnidirectional camera as well as those employing an omnidirectional

camera in their operation.

2.1.2.1 Autonomous Security Robots Utilizing a non-Omnidirectional Camera

Many security robots perform their operation without utilizing an

omnidirectional camera. They depend on other sensors to carry out their tasks such

as pan-tilt-zoom (PTZ) cameras, thermal cameras and other sensors.

In [21] and [22], multisensory fusion is used for environment monitoring,

motion detection and surveillance using a mobile robot equipped with a number of

sensors. In [23] a set of three robots, each equipped with a CCD camera, ultrasonic

sensor, fire-detecting module and an RFID based localization unit, are used to detect

fire, gas and radiation. When detected, the robot sends a message to a web-control

center and another robot comes to confirm the accident.

In [24] a sensor network is used to detect intruders. When an intruder is

detected, the robot is instructed to jump towards the sensor location and start taking

photos once it gets there. The photos are sent to a gateway which in turn sends them

to the user.

14

In many systems, a simple autonomous robot is used to monitor an

environment and report any abnormal events such as a sound, motion, fire or other.

Examples of such robots are exhibited in [25][26][27][28][29][30][31][32] .In [25]

and [26] a robot uses a camera as well as a set of microphones to detect abnormal

activity such as fighting, running or other behaviors that may produce certain sounds

inside a home, verify the source of the sound and report an image to the master’s

mobile phone. In [27] a robot uses a microphone as well as a networked camera to

detect intruders and report to a local monitoring station. It can also report to a remote

monitoring station using the internet. In [28], [29], [30] and [31] the robot is also

used to monitor an indoor location using a camera or other sensor and when an

intruder or other event is detected the user is notified through an SMS or email, and

in [32] a dog-shaped robot was tested in a supermarket environment to interact and

report accidents and events to its supervisor center.

In [33] two robots, one fully autonomous and one partially autonomous were

used to patrol an indoor environment. The autonomous robot is equipped with an IR

sensor for detecting intruders and RFID scanner to verify them. If the intruder fails to

present a correct RFID tag, then the robot will attack the intruder, otherwise it will

continue its normal operation.

In [34] a robot operates autonomously to map and then navigate the

environment. The robot utilizes three-layer control architecture for primitive

behaviors, complex tasks and control algorithms. The robot is programmed to detect

missing object and detect intruders, when an intruder is detected, the robot will

follow him/her until the intruder stops or disappears from the scene.

In [35] and [36] a robot with a thermal sensor is used to detect the presence of

a person, and another camera is used for the face detection and recognition purposes

and in [37] a robot navigates a pre-determined path and uses a camera to recognize

the face of an intruder and an alarm is raised if the face is not recognized.

In [38] an autonomous system incorporating a camera-on-rail is used to

monitor an indoor environment and detect intruders. The merit of such a system is

that it does not require any obstacle detection or complex navigation capabilities as

15

well as being non-obstructive to humans. The disadvantage however, is the inability

to track a subject beyond the limits of the rails being used.

In [39] a mobile platform is controlled using a number of stationary cameras.

The direction of motion is decided based on the location of the person to be tracked

or followed and the presence of an obstacle which is detected by the robot. The

problem with this system is that it will be incapable of tracking a subject beyond the

scope of the stationary security cameras.

Although it is possible to design and use a robot without employing an

omnidirectional camera, it is obvious that such a sensor would increase the robot’s

awareness of its surrounding and possibly reduce the number of sensors onboard or

exterior to the robot, as well as improve the robot’s ability to track a subject and

apply suitable navigation and obstacle avoidance methods.

2.1.2.2 Autonomous Security Robots Utilizing an Omnidirectional Camera

Robots that utilize an omnidirectional camera are able to detect motion or

environment variations in any direction without having to turn or maneuver. In [40]

five different types of sensors were used; a video motion detector, a passive infrared

array, an acoustic sensor array and an ultrasonic array. Each sensor arrays covered

360 degrees and was independent of other sensor arrays. The information from the

sensors was fused to reach a conclusion of an intruder detection, which would result

in raising an alarm. Although the authors report a 99% success rate in detecting

intruders, the presented design falls short of recognizing the person’s identity. An

intruder can be one of the security personnel happening to pass by for any reason.

In [41] an autonomous sea surface vehicle (ASV) uses a set of 6 cameras to

capture a 360 degree view to monitors an area searching for other vessels and

determine whether it’s adversarial. Such a sea robot (in the form of an autonomous

ship) is highly preferential as it relieves service personnel from enduring different

conditions at sea as well as being on guard 24/7. The efficiency of such a platform,

however, is highly dependent on the sensors provided and the algorithms used.

16

In [42] a robot is trained manually to follow a certain route, during which it

registers the environment by capturing a panoramic image every few centimeters.

Later, the robot follows the same path and compares the environment images

captured by the camera with those previously stored, if a difference (anomaly) is

detected, then an alarm is raised to alert a security person to intervene. This approach

would be robust in situations where the environment does not change such as a night

shift at a museum, library or office, but would be unsuitable for situations where the

environment is volatile due to the addition or removal of any item within, or even the

passing by of a security worker for any reason.

2.1.2.3 Comparison of Autonomous Security Robots

To better highlight possible research gaps, Table 2.1 provides a general comparison

between the robot presented in this work (highlighted in blue) and previous robots

mentioned in the literature.

Heading Description

Ref. No. : The reference number in which this robot was mentioned

Robot Name : The name of the robot; if any.

Area of Operation : Indoors, outdoors, underwater, factory … etc.

Vision Coverage : The area covered by the robot’s vision system: e.g.: 90,

180, or 360 degrees.

Size : Small (5 - 35), Medium (36 - 75), Large (76 - 175)

Huge (176 - 300), Gigantic (over 300) cm

Speed of Operation : Fast, slow, or the actual speed if mentioned in the literature.

Sound Det. : Sound detection capability.

Motion Det. : Motion detection capability.

Face Det. : Face detection capability.

Face Rec. : Face recognition capability.

Authent. : Intruder authentication / verification capability.

Sensors Used : The sensors used by the robot

Research Gap : What is the research gap if any?

17

Table 2.1: Comparing the robot in this work with robots mentioned in the literature

Legend

* Not mentioned, therefore anticipated based on the robot design

** Pan & Tilt, not a built in viewing angle

*** Omnidirectional camera

Ref.

No.
Reference Title Robot Name

Area of

Operation

Visoion

Coverage

(Deg)

Size Speed

So
un

d
D

et
.

M
ot

io
n

D
et

.

Fa
ce

 D
et

.

Fa
ce

 R
ec

.

A
ut

he
nt

.

Sesors Used Problem / Research Gap

-

Face Detection Based

Autonomous Security

Robot Incorporating

Omnidirectional Vision

ASR 1.0 Indoors 360 Large Fast No Yes Yes Yes Yes Camera, Ultrasonic

21

Multi-sensor surveillance

of indoor environments

by an autonomous mobile

robot

Robot

Platform
Indoors <= 90 * Large Slow * No Yes No No No

Monocular camera, Laser

scanner, Encoders, and

RFID Devices

1- Expensive sensor: Laser

2- Monitor specific locations

rather than the whole area

22

The development of a

general type of security

robot

- Indoors <= 90 * Medium Slow * No Yes No No No

Smoke, Humidity , Flame,

CO, Temperature,

infrared, Ultrasonic, Dual-

Axis accelerometer,

Micro-Gyro, Camera,

Audio & Encoders

Uses wall following

algorithm, hence may not be

suitable for non-structured

rooms.

23

Design and implementation

of sensor fusion based

behavior strategies for a

surveillance and security

robot team

SSR Indoors 189 ** Medium Slow * No No No No No

RFID Devices, Electronic

compass, Ultrasonic,

Flame, Temperature, and

Gas

1- Wall following model.

2- RFID localization

3- No intruder detection

24

An indoor security system

with a jumping robot as

the surveillance terminal

Jumping

Robot
Indoors <= 90 * Small Slow * No

Using

off-

board

senso

rs

No No No
Camera, PIR, Angle,

Infrared

Jumping may not be practical

with the presence of humans

or fragile equipment onboard

or off-board the robot.

25

Surveillance Robot

Utilizing Video and Audio

Information

Surveillance

Robot
Indoors <= 90 * Medium Slow * Yes Yes No No No Camera, Microphone

No obstacle avoidance has

been mentioned in the paper

26
Intelligent household

surveillance robot

Surveillance

Robot
Indoors <= 90 * Medium Slow * Yes Yes No No No Camera, Microphone

No obstacle avoidance has

been mentioned in the paper

27

A design of mobile robot

based on Network

Camera and sound source

localization for intelligent

surveillance system

Mobile Robot Indoors <= 90 * Small Slow * Yes Yes No No No
Camera, Microphone,

Ultrasonic,

Does not distinguish humans

from non-humans

28

A surveillance robot with

human recognition based

on video and audio

Surveillance

Robot
Indoors <= 90 * Medium Slow * Yes No Yes Yes No

Camera, Microphone,

Infrared, Smoke, and CO

1- Subject detection distance is

not mentioned. From images in

the paper, it appears to be three

meters or less.

2- The calculations are possibly

done off-board the robot.

29
Ensuring security in a

closed region using robot
Hector Indoors <= 90 * Small Slow * Yes Yes No No No

Camera, Microphone,

Ultrasonic,

Does not distinguish humans

from non-humans

30
GPRS Based Guard Robot

Alarm System Design

Autonomous

Robot
Indoors <= 90 * Medium Slow * No No No No No Camera, Encoders

Robot only reports to user;

no action is taken.

31

Development of user-

friendly intelligent home

robot focused on safety

and security

Home Robot Indoors - Small Slow * No Yes No No No
PIR, RFID, Infrared,

Ultrasonic, Gas and Fire

1- Wall following model.

2- RFID localization

32

Development of a mobile

platform for security

robot

Mastiff-I Indoors <= 90 * Medium Slow * No Yes No No No

Camera, Microphone,

Ultrasonic, Infrared,

Compass, Smoke, and

Encoders

1- Low resolution camera

 352 x 288

2- Does not distinguish

humans from non-humans.

33
Student Projects; Security

Robot Design
Robot - A Indoors - Small Slow * No Yes No No Yes

Infrared, Sonar

(Ultrasonic)

1- Does not distinguish

humans from non-humans.

2- What if a member lost or

forgot to carry the RFID tag ?

34

An autonomous mobile

robotic system for

surveillance of indoor

environments

Robot

Platform
Indoors <= 90 * Large Slow * No Yes No No No

Monocular camera, Laser

scanner, Encoders, and

RFID Devices

1- Expensive sensor: Laser

2- Monitor specific locations

rather than the whole area

35

Active people recognition

using thermal and grey

images on a mobile

security robot

Peoplebot Indoors <= 90 * Large Slow * No No Yes Yes No

Normal camera, Thermal

camera, Laser range

finder,

1- Uses a thermal camera and

color camera combination to

track people.

2- Low resolution 320x240

3- No navigation is mentioned

36

People tracking by mobile

robots using thermal and

colour vision

Peoplebot Indoors <= 90 * Large Slow * No No Yes Yes No

Normal camera, Thermal

camera, Laser range

finder,

The research is mostly aimed

at tracking people using a

combination of thermal and

color camera.

37

Vision Based Mobile

Robot for Indoor

Environmental Security

WITH Indoors <= 90 * Small ?? No No Yes Yes No Camera

The research is focused on face

recognition. The robot is given a

route to follow. It is anticipated

that either encouders or time

delays were used, as the method

used for controlling the robot's

path is not mentioned

38
Flow-based Motion

Perception Technique for an

Autonomous Robot System

EEyeRobot Indoors <= 90 * Small Slow * No Yes No No No Camera
It's a camera on a rail with

motion detection

39

Automated Surveillance

Systems with Multi-

Camera and Robotic

Platforms

- Indoors 360 *** Medium Medium No Yes No No No

Laser scanner, Web

camera, Omnidirectional

camera, PTZ camera,

1- The robot uses a laser

scanner (expensive) for

obstacle avoidance.

2- The calculations are

possibly done off-board the

robot.

18

2.1.3 Hybrid Security Robots

In [43] a simple robot is used to monitor an environment. In autonomous

mode, the robot wanders about the environment while avoiding obstacles, and in

manual mode, a user can move the robot in any desired direction while viewing

images from the onboard camera.

In [44] a robot can autonomously navigate the environment and report a fire

or intruder event to a mobile phone or client computer. The robot also has two modes

of manual control; direct control and behavior control, in which the user can control

the robot over the internet. In [45] the same robot is used to control appliances using

and RF module, and in [46] another robot is similarly used to detect intruders and

capture images of the intruder. The user can also manipulate the robot over the

internet through a wireless network and control electrical devices at home using an

RF transmitter and receiver.

In [47] and [48], a service-oriented architecture is used to design and

implement a system and three robots. The robots can autonomously navigate to map

the environment. Once mapping is done, the robot will navigate the environment to

detect the presence of new objects or intruders. When a new object is detected the

robot sends a warning signal to the control center, and when an intruder is detected,

the robot moves towards the intruder and allows him/her to enter the correct

passcode, failing which will trigger the alarm.

In [49] and [50] a sensor network incorporating different types of sensors is

used to detect fire, intrusion and other events. When an event is detected by the one

or more sensors, the robot is moved to the event location using triangulation and

dead-reckoning using cricket nodes fixed to the ceiling. After arriving at the event

location, the robot starts transmitting images to the server which in turn forwards

them to the user. When the user is notified, he/she has the ability to give instructions

to the system. The paper, however, does not outline what commands the user can

give to the system. In [51] a number of sensor nodes are also used to detect events.

When an event is detected, the robot navigates to its location and transmits images to

19

the user. The paper emphasizes on the robot design rather than the security operation

of the robot.

Many surveillance robots have been mentioned in the literature. These robots

take on the general action of ‘Monitor & Report’. They work autonomously and

when an event occurs, the user can command the robot with varying degrees of

control. In [52] a robot is equipped with a robotic arm as well as several sensors to

detect fire, smoke or gas leak. The robot monitors the environment and sends a text

message to the user when an event occurs. The user can then control the robot using

his/her mobile phone. In [53] a robot is designed to detect intruders using a body

sensor and in [54] and [55] a home security robot is used to detect events such as a

fire, gas leak or intruders. In all of these robots, when an event is detected an alert is

sent over the internet and the user can also control the robot over the internet through

a user interface showing the camera image and the sensor readings for [53] and [54].

The robot in [55], however, has no camera installed. In [56] , the robot is provided

with face detection capability in order to track the face of an intruder and possibly

follow him/her. The user would be notified of the intrusion and images would be sent

to the user’s mobile phone or PDA.

In [57] a security robot following a predesigned route is assisted by two fixed

cameras to monitor a location and notifies the user through MSN or Facebook when

an intruder is detected. The robot can also be controlled via a smart phone or website

over a Wi-Fi network to move to a desired location to acquire real-time images of a

certain view. In [58] a system of surveillance cameras and mobile robots are

deployed to protect an oil facility in South Korea. The system consists of stationary

robots for surveillance and tracking as well as mobile robots for surveillance over

large fields. The mobile robots can patrol a specific area autonomously. When flame

or gas leak is detected, the operators are notified; the operators can then control the

mobile robots from their consoles.

In [59] and [60] RFID tags are used to localize the robot which follows a pre-

determined path and uses two cameras to monitor a home or another location. If an

intruder is detected, the robot notifies the user through MSN and SMS. The user can

20

use his mobile phone to navigate the robot a particular destination to verify the

intruder or for any other purpose.

In [61] a robot system is proposed in which RFID tags are used to identify

authorized personnel which are allowed to control the robot. The robot is equipped

with a normal camera for daylight operations and an infrared camera for night time

operations. The robot has an autonomous and a manual mode of operation, in which

it can be controlled using RF signals.

In [62] a robot is equipped with a video camera, a microphone, a laser

scanner, a motion sensor and a bumper. The robot localizes itself using triangulation

based on two IR tags mounted on the ceiling and an onboard infrared sensor. The

robot can either work autonomously or be controlled by user using a smart phone.

In [63] a spherical robot is equipped with two cameras that provide 360

degree vision. The robot is equipped with an ‘Adjustable Autonomy’ control

architecture which allows changing the level of autonomy the robot is equipped with.

The robot can be used for security surveillance, human search and rescue as well as

disaster area inspection.

Autonomous robots with manual override capability provide a good option

for security operators to intervene when a situation requires their attention or a

certain decisive action, however the main drawback being the possible hostile

takeover by an adversary (hacking) resulting in a neutralization or even using the

robot against its own purpose.

21

2.2 Surveillance

The surveillance operation is the main task of the security robot and it

encompasses many operations performed by the robot components.

2.2.1 Overview

Surveillance and/or patrolling operations are the major tasks carried out by

many security robots. Depending on the robot model, one or more of these tasks may

be carried out continuously until a certain action halts the operation.

Robot surveillance operations in general involve monitoring a certain location

without changing a robot’s position. Once an event has occurred then a certain

preprogrammed action is taken accordingly. Actions may include sounding an alarm

or notifying the owner or security personnel [25][26][27][28][29]. In some cases

other retaliatory actions may also be considered [33].

In the system of the current project, the security robot performs surveillance

operations as a precursor and originator of other action to be taken accordingly. In

the following sections, the surveillance methodology of the security robots used in

this project will be described and details will be given about its operation.

2.2.2 Cameras

In any surveillance operations, cameras would be used to monitor different

locations for possible events such as in [58] and [39]. The number of cameras used

can be one or more depending on the system specifications and required area

coverage.

Low cost security robots usually utilize webcams for their operation as they

cost less than specialized security cameras and are easier to recognize and setup in

22

the system. The number of cameras used by the robot depends on the task to be

accomplished and the approach followed for completing that task.

Surveillance cameras can be categorized into many different categories

[64][65], such as:

 Static or dynamic: Static cameras are fixed, while dynamic cameras can

usually able to rotate around any or both of two axes giving the ability to pan,

tilt and possibly zoom in on the target.

 Closed circuit or Networked: Closed circuit cameras cannot be accessed from

any entity outside the surveillance system, while networked cameras can be

accessed by anyone having the right (or ability) to do so.

 Analog or digital: Analog cameras are usually of lower video and image

quality (DVD quality at best) compared to digital cameras which can be

Megapixel cameras (e.g. 5 MP) with full HD video (1920x1080p) capability.

2.2.3 Camera Usage

In standard security systems, cameras are used by security personnel to

monitor the area for any events that require their attention and/or intervention. In

robotic systems, cameras are mostly used to monitor a particular area, while

intervention is left to the security personnel in most cases [58].

Security robots usually use one camera, which in some designs has the ability

to rotate around two axes giving it the ability to pan and tilt [13] or can be

omnidirectional [42]. Other robot models may employ two cameras to attain stereo

vision [32]. However, robots employing more cameras have also been designed using

up to six cameras for 360 degrees of vision for continuous surveillance in all

directions [41].

In robots, cameras are not only employed for security purposes; rather, their

usage can be extended for any of the following tasks:

23

 Motion detection.

 Face (or object) detection.

 Face (or object) tracking.

 Face (or object) recognition.

 Localization.

 Mapping.

 Other actions related to computer vision.

2.2.4 Surveillance Operations with Robots

Surveillance operations involve the monitoring of an area for any event which

may be of interest to the entity performing the surveillance operation. Usually it

involves guarding a facility against intruders or unauthorized people who may not be

allowed to exist inside.

Surveillance started first with human guards only. Cameras were later

introduced to enable monitoring several locations simultaneously thereby reducing

the number of guards needed to cover a large area. Finally with the advent of security

robots, the interest now is to use these to replace most of the security guards due to

the many traits of robotic systems:

 Robots do not become tired or sleepy.

 Robots may have capabilities which humans don’t such as seeing in total

darkness or seeing using an infrared camera.

 Robots can perform in high risk areas in which humans may prefer to stay

away from.

 Robots do not take leave, require salary or pension.

However, autonomous robots used in the security field, have largely been

used for surveillance operations as they are not well equipped to handle diverse

situations; for example, a robot would have a hard time discriminating an enemy

pointing a weapon at it from a little girl pointing an ice cream cone at it [66]. This is

24

due to the lag of artificial intelligence resulting in the possibility of taking the wrong

decision by a robot in a fatal situation. That being said, autonomous military robot do

exist such as the US Navy's Phalanx CIWS [2] which are programmed to be

autonomous in taking action against the enemy.

2.3 Motion detection

Motion detection in general can be accomplished using many different

sensors, such as microphones to detect sound of moving objects [25], radio

frequency energy such as in radars [67][68], infrared sensors [69], vibration sensors

[70][71], magnetic sensors such as in vehicle detection and classification for traffic

measurement [72] and cameras [38][73][74].

For security-robots operating indoors, visual motion detection using a simple

camera and some computer vision technique is a viable low cost solution as it can be

simply set up and used effectively to detect motion within the robot’s environment.

In computer vision, motion detection generally involves sensing a change in

the perceived camera image which may be interpreted as an object motion. Needless

to say that not all changes in the perceived image are indicative of object motion,

hence, other steps must be taken afterwards to verify the source of change.

In this system, the reasons for using a camera do detect motion rather than

any of the other sensors are the following:

 Need to detect motion indoors rather than outdoors.

 Need to detect motion a far (up to ten meters) and at close range.

 Need to distinguish different object at any visible distance.

 Need to detect object that do not produce sound.

 Need to be stealthy.

 Need to be fast.

 Need to have high resolution motion detection.

25

 Need to determine precise location.

 Need to be low cost.

Using a small number of cameras can achieve all the above requirements.

2.3.1 Motion Detection in OpenCV

OpenCV is an open source software library that is dedicated towards

computer vision functions [75]. In version 2.4.8 of this software library (released in

2014), motion detection is usually done using the ‘BackgroundSubtractorMOG’

function which is based on [76]. There are many implementations around the web.

One of these implementations was tested as shown in Figure 2.1 below:

(a) (b)

Figure 2.1: Motion detection using the ‘BackgroundSubtractorMOG’ of OpenCV

As can be seen from Figure 2.1, OpenCV’s ‘BackgroundSubtractorMOG’

method has the advantage of pinpointing the exact motion source; a person or

otherwise; which is very important in surveillance systems, however, as can be seen

in Figure 2.2, it has the following disadvantages:

26

 Slow: 2.5 frames per second or less per camera. This results in less than 1

frame per second in three cameras.

 Is not suitable for mobile robots as the background has to remain static for a

period of time in order to detect motion.

 Any motion during the ‘history’ buildup of the ‘background’ image results in

less-effective motion detection.

 Any lighting difference during the ‘history’ buildup of the ‘background’

image also results in less-effective motion detection.

Figure 2.2: Shadows and low FPS when using OpenCV’s

‘BackgroundSubtractorMOG’

The above disadvantages make OpenCV’s ‘BackgroundSubtractorMOG’ of

limited usefulness in autonomous mobile surveillance robots. In such systems, the

required solution must satisfy the following criteria:

1- Can be used with low resources.

2- Must be fast.

3- Must be robust against lighting changes.

4- Must be robust against noise.

5- Can quickly and adequately handle relocation of observing platform.

27

2.4 Face Detection & Methods

Face detection is a challenging problem. Not least due to the complexity of

human faces in terms of definition by standard shapes such as circles, ovals,

rectangles, triangles …etc. Some of the problems associated with recognizing a

human face can be summarized as follows [77]:

 Posture: A person’s pose towards the camera can be in any angle.

 Structural Components: A person may have beard, mustache, glasses …etc.

 Facial Expression: A person’s facial expression such as smiling, frowning

...etc., affects the appearance (and sometimes the geometry) of the face.

 Occlusion: Partial occlusion by other faces or objects changes the outline of

the face.

 Orientation: A face may be turned clockwise or counterclockwise by an

angle, although normally it would be less than 90 degrees.

 Other conditions: Lighting, camera characteristics (such as sensitivity to light

and colors …etc.) may have a large effect on how a face looks in an image.

For the reason that a face image may be hard to identify, many methods have

been proposed to solve this problem [78], some with higher degree of success others

with lower computational requirements. Depending on the technique used, face

detection methods can be classified according to one or more of the following

approaches [77][78][79]:

 Knowledge Based face detection.

 Feature Based face detection.

o Facial features.

o Texture.

o Skin-color.

 Template matching face detection.

o Predefined templates.

o Deformable templates.

 Appearance based face detection.

28

o Eigen-faces.

o Distribution-based methods.

o Neural networks.

o Support Vector Machines.

o Sparse network of Winnows.

o Naïve Bayes classifier.

o Hidden Markov Model.

o Information-Theoretical Approach

o Inductive learning.

The above methods not only differ in their approach, but also in their

performance and requirements. While some employ rules for detecting and/or

localizing a face in an image, such as the Knowledge based and Feature invariant

approaches, others, such as the Appearance based methods require training images

which captures the facial appearance variability in order to detect the faces in an

image.

While these methods have been used by different systems, our focus will be

mainly on two approaches:

 Skin-color based face detection.

 Viola-Jones method for face detection.

The above methods are widely used, the first one for its simplicity and the

second one for its robustness to illumination and color variations.

2.4.1 Skin-Color Based Face Detection

In many face detection systems, skin-color is employed to filter out non-skin

colored regions of the image, thus obtaining only the face part [79][80], as can be

seen in Figure 2.3.

29

Figure 2.3: Skin-color filter used in face detection

This approach, although useful in some cases, cannot be adequately applied

in all situations and circumstances. For example, in situations when an image is not

colored as shown in Figure 2.4; no color information is available to be used to detect

the face.

(a) Color (b) Grayscale

Figure 2.4: A face image in color and grayscale

This method may also fail if the face illumination conditions change causing

the skin color to be beyond the threshold values set for detection, or when another

object or the background has a similar color to the skin color, as can be seen in

Figure 2.5.

30

Figure 2.5: Some of the background is within the threshold range for the

skin-color detector

Although the HSV color space is widely used in systems that use the skin

color to detect a face, other methods that use different color systems also exist. Some

systems use the RGB color space, while other systems use the YCrCb color space.

Each of these color systems may have its own advantages and disadvantages.

2.4.2 The Viola-Jones Method of Face Detection

The Viola-Jones method [81][82] is one of the more robust approaches to

face detection. It has the following advantages:

 Can work with gray as well as color images.

 Is robust to illumination changes.

 Is robust to color changes.

 Can detect partially occluded faces.

The Viola-Jones method employs a cascade of Haar-like classifiers to detect

facial features and determine the presence of a face in an image. The Haar-like

classifiers; shown in Figure 2.6 are applied across the whole image to scan for faces.

The method starts off with small sized classifiers and after doing a complete scan of

the whole image, the classifiers are enlarged by a certain percentage and the image is

31

scanned again. The process continues until either the maximum stated size is reached

or the maximum possible size according to the image size is reached.

Figure 2.6: Haar-Features used in face detection

With the Viola-Jones method, it is possible to detect the face more than once,

as can be seen in Figure 2.7. This can be used to our benefit by setting a threshold

value to only accept faces that are detected more than a certain number of times,

hence eliminating false positives, as seen in Figure 2.8, in which, the resulting face

image is the average area and location of all the detected faces of that particular

person within the image.

32

Figure 2.7: A face may be detected many times

(a) (b)

Figure 2.8: Eliminating false positives by requiring the detection of a face

several times

Although the Viola-Jones approach is one of the more robust methods

around, it has some disadvantages:

 Running it with high accuracy results in slow operation making it not very

suitable for real-time face detection.

 Even with high accuracy, false positives can still occur.

 The size and exact location of the detected face area may change from frame

to frame without apparent changes in illumination or face location or pose.

33

2.5 Face Recognition

Facial recognition is used by many security systems and agencies to verify

the identity of a person. Many algorithms exist for face recognition, each having its

own strengths and weaknesses.

In this system, three different face recognition algorithms are used to identify

a detected person. The face recognition approach used will be outlined in the

following section.

2.5.1 OpenCV Face Recognizers

OpenCV (version 2.4.8) provides three different face recognizers:

 The Fisher faces face recognizer [83].

 The Eigen faces face recognizer [84].

 The LBPH face recognizer [85].

Each of these face recognition algorithms work in a different way; the Fisher

faces face recognizer uses the Linear Discriminant Analysis (LDA) approach to

identify a face, while the Eigen faces face recognizer uses the Principal Component

Analysis (PCA) approach to identify a face. LBPH uses an approach in which the

image is divided into to several sections and a binary histogram of each section is

calculated. These histograms are later used to recognize similar faces.

As stated earlier, each of these face recognizers have its own strengths and

weaknesses. The Fisher faces face recognizer has high speed learning and

recognition, but cannot be updated with new faces in the database during operation.

If new face images are to be added to the database, then it has to be retrained.

Similarly, the Eigen Faces face recognizer cannot be updated during

operation and has to be retrained when new images are added to the database;

34

however it has a higher recognition rate in certain situations involving facial

expressions and large image dataset.

Although the LPBP face recognizer is similar to the Eigen Faces face

recognizer in that it requires a long time to train and has a slower identification time

compared to the Fisher faces algorithm, the LBPH face recognizer accepts new

additions to the face image database and does not require retraining all over again as

well as its robustness to varying lighting conditions.

2.6 Authentication

Authentication is a means of verifying the identity of a person for any reason.

It can be done in a number of ways such as checking a person’s ID card or other

credentials.

Authentication can generally be divided into three types [86][87]:

 Ownership based authentication.

 Knowledge based authentication.

 Biometric based authentication.

Ownership based authentication refers to items that are possessed by a person

and can be used to verify the person’s identity such as a key, ID card, smart card

(RFID) …etc. Knowledge based authentication on the other hand refers to a piece of

information that only that person is supposed to know such as a password, an answer

to a secret question or a personal identification number (PIN). Biometric

authentication on the other hand is based on an attribute of a person such as his face,

eye iris, finger print, palm print …etc.

Authenticating a person’s identity can be intrusive such as taking a person’s

fingerprints or non-intrusive such as capturing their images while they walk past a

security camera located at a hidden or open location. Authentication can be simple

35

such as asking a person for his name or elaborate such as requiring their passport as

well as other information. Authentication can be manual such as entering the

identification data into the system by a person, or automatic such as allowing

someone access based on their iris scan while they past a security gate [88][86].

Depending on the purpose of the authentication requirement a system

utilizing one of the mentioned approaches would be used to identify subjects and

grant or forbid access to certain facilities. However, in all types of authentication

systems, the main issue is the precision, hence the correctness of the identification. If

the system is not accurate or can be deceived, then it has failed in its task no matter

how intricate or expensive it may be.

Each of these methods of authentication has its own advantages and

disadvantages, hence there’s no best or worst authentication method, but rather, an

authentication method is chosen based on its suitability to the security requirements

and conditions therewith. Consequently, the mostly used authentication method

would be the one that can suitably verify the user for the condition at hand, for

example: using a username and password for accessing an e-mail account. In the

following sections two of these methods will be looked into in more details regarding

their usage, strengths and weaknesses as well as the latest research done on them.

2.6.1 Biometric Based Authentication

One of the widely used methods of authentication is biometric authentication

[88][86][89]. Biometrics refers to the unique characteristics that distinguish a person

from others, such as the facial structure, fingerprint, eye iris …etc. Figure 2.9 shows

some of these characteristics that are used for identity verification.

36

(a) (b) (c)

Figure 2.9: Some biometrics used for identity verification

a) Face [90], b) Fingerprint [91], c) Iris [92]

Biometric features have many traits and advantages [86][88] that make them

an attractive option for identity verification, such as:

 The do not need to be carried by a person, as they are a part of his/her body.

 Presence of the authorized person is required, eliminating the possibility of

access by others during the absence of authorized members/users.

 No need to remember passwords or PINs.

 Security tokens used in biometric systems (a person’s biometric features)

cannot be lost or forged.

 Biometric features are unique to each individual and cannot be shared; this

results in creating a personalized access for that user.

 Biometric features cannot be stolen or passed (willingly or unwillingly) to

others to be used for illegal access or registration.

 Biometric systems may offer a faster method of access than some other

authentication methods such as passwords and PINs.

 Since biometric features cannot be lost, they eliminate the need to produce

replacement access tokens such as a new access cards (ID or RFID), hence

eliminating unnecessary cost and overhead for system mangers.

These features as well as the non-intrusive nature of some of the techniques

have encouraged the use of biometrics to authenticate people’s identities allowing

only authorized individuals access to locations or resources that are not available for

others.

37

In biometric authentication systems, a person is verified based on an attribute

related to his body such as his eye iris, eye retina, face, finger print, finger geometry,

palm print, hand geometry, vein pattern, voice, ear shape and others [88].

Although biometric authentication has many advantages, it has several

disadvantages [86][88][93], such as:

 In most cased, biometric authentication cannot be 100% accurate

(correct/false) as is the case with tokens such as an RFID or password, but

rather it gives a confidence level to the examined biometric feature.

 User acceptance can be another challenge, as some users consider holding

their biometric information a breach of their personal privacy.

 In some cases, a person’s biometric features may change resulting in

unrecognition by the system. For example, diabetes may affect the patient’s

eye, and chemicals may change the affected person’s fingerprint or palm-

print, and flu may affect a person’s voice rendering it inadequate for

authentication purposes.

 It is possible that certain biometric features are not available with all people.

For example, a person with an amputated arm cannot register or verify

himself using a fingerprint or palm-print scanner.

 In some cases, a biometric feature can be similar in two individuals as is the

case with twins who may have very similar face images.

 Finally, each particular biometric system has its own limitations, which may

be cost, noise, incorrect interaction by the user or other factors.

Although biometric authentication has some limitations, its advantages make

it an attractive choice in systems utilizing multi-mode authentication. One of the

methods that can provide quick, low cost, unobtrusively authentication is face

recognition. In the following section, face recognition authentication will be

examined in more detail.

38

2.6.1.1 Face Recognition Authentication

In some biometric systems face recognition authentication is used to verify a

person based on his/her face. This method has many advantages:

 Quick: It takes less than a second to recognize a person from his face.

 Unobtrusive: in contrast to fingerprint, palm-print, retina and other scanners,

face recognition can be done as the person walks past a camera which can be

hidden.

 Low cost: Although high-end face recognition systems may be costly, face

recognition authentication can be achieved with a simple system of a low cost

webcam and computer.

But, as with any other biometric system, face recognition has its own

limitations, such as [94][95]:

 Lighting and makeup can limit some systems ability to correctly recognize a

person.

 Disguise and masks can be used to deceive some face recognition systems.

 People with similar faces such as twins may be hard or even impossible to

distinguish by some face recognition systems.

Face recognition techniques can be categorized as Appearance Based, Feature

Based, and Hybrid. Many methods have been proposed for each of these techniques

[96][97]:

 Appearance Based

o The Eigen Face method.

o The Fisher Face method.

o Support Vector Machines (SVM).

o Independent Component Analysis (ICA).

o Probabilistic Decision Based Neural Network (PDBNN).

 Feature Based

o Face Recognition through geometric features.

39

o Hidden Markov Model (HMM).

o Active Appearance Model (AAM) ((2D Morphable Method))

o 3D Morphable Model.

 Hybrid

In the appearance based methods, the face image is transformed into face-

space, and then a statistical method is applied to it. In the Eigen Faces method [84],

Principal Component Analysis (PCA) is used for this goal. The Fisher Faces method

[98][83] on the other hand is based on Linear Discriminant Analysis (LDA). The

SVM method [99][100] was introduced to develop the classification performance of

PCA and LDA. The independent component analysis (ICA) method [101] is a

modified version of the PCA method with more representative power. The PDBNN

method [102] consists of a face detector, eye localizer and a face recognizer together.

The PDBNN method is concerned with the upper part of the face only.

In the Feature based methods, a structural classifier is used based on the face

geometry or local features such as the eyes, nose and mouth. In [103], Kanade used

the Euclidean distance for correlation between extracted features. The Hidden

Markov Model (HMM) approach [104] can be used with images which may vary due

to lighting, facial expression and/or orientation since it is based on the arrangement

of the face features as discrete parts. In the Active Appearance Model (AAM)

[105][106] the appearance of the face is represented as a compact set of model

parameters combining shaper variation with appearance variations. In the 3D

Morphable Model method [107], a 3D model of the face is constructed using face

images of subject. The images are taken in a good lighting conditions and the

Morphable model is used to acquire the correspondence information of the facial

components and regions.

Hybrid methods use both, the appearance (holistic) and feature based

methods to better recognize a face such as the Local Feature Analysis (LFA) method

[108], the Shape-normalized Flexible appearance method (or Gabor & Grid) [109],

and the Component-based face recognition with 3D Morphable models method

[110].

40

Another method of authentication based on face recognition is the infrared

thermal scan of a face image to identify facial characteristics [111][112][94]. The

facial thermogram method uses the infrared thermal scan of a face image to identify

facial characteristics.

Like all biometric approaches, face recognition cannot give a definite answer

regarding the identity or authenticity of a person, but rather a confidence level based

on the stored database and acquired data at the time of verification [86][93]. For this

reason, a second method which does not depend on biometric authentication is

required to be used when the confidence level is below the ‘authorization’ threshold.

For this purpose, knowledge based authentication provides a low-cost and practical

method to authenticate a user which the system is unsure of (i.e. when the confidence

level lays between the ‘authorized’ and ‘stranger’ levels).

2.6.2 Knowledge based Authentication

Knowledge based authentication are based on a piece of information that is

specific to a user or a group of users. This piece of information can be a password, a

special number (PIN: Personal Identification Number) or an answer to a question.

This information may be changed as needed.

This authentication method had some advantages and disadvantage, but it

differs from biometric authentication in that it provides solid proof (0% or 100%) of

a user’s credentials rather than a confidence rating. For this reason, such an

authentication approach can be used in situations where biometric authentication

fails to provide a confident response regarding the identity or credentials of a certain

user.

41

2.6.2.2 Password Authentication

Password authentication is one of the simplest methods of knowledge based

authentication. It involves validating a person using a password. This password can

be simple or complex, it can be a one-time password or of a recurring type, it can

also be unique to the user or shared by a group of users who are all authorized to use

a particular resource.

Although password authentication has some advantages such as being a

simple, low cost and easy to use approach, it has disadvantages such as the ability to

be lost, forgotten or guessed by unauthorized personnel [87].

The “One-Time-Password” (OTP) technique is a variation of the normal

password authentication approach and can be used to limit the vulnerabilities of the

ordinary password authentication technique. It involves allowing usage of a

password provided by the system only once, after which this password can no longer

be used for authentication purposes [113][114]. Some variations of this approach are:

 An OTP list generated by the system of which a password is crossed off by

the user and the system once it’s used.

 A date-based OTP in which the date forms a part of the password or dictates

the formation of the password.

 A function is used to generate a new password based on the old one [115].

42

Summary

This chapter provided a review of several topics that are related to the

security robot presented in this system. Based on the control approach, security

robots fall into three categories, teleoperated, autonomous and hybrid security robots.

Although omnidirectional vision provides extra capability to a robot, teleoperated

and autonomous robots may or may not use omnidirectional vision in their operation

depending on their design and application. Surveillance performed by security robots

is a primary part of their job which may causes different actions to arise such as

alarm activation, subject tracking or other actions specified by the robot builder.

Motion detection is a method widely used by many security robots to fulfill their

surveillance task enabling them to detect the presence of intruders entering their

operation area. Face detection can be done in different ways such as using skin-color

detection, cascade classifiers or others, and is used by improved security robots to

determine the cause of the motion that was detected and verify whether it was caused

by a human or otherwise. Face recognition is an elementary tool for allowing a

security robot to identify authorized personnel from strangers. This is done by

employing a face recognition method such as Fisher faces, Eigen faces, LBPH or

others. Authentication can either be ownership based, knowledge based or biometric

based. Authentication is used as decisive step to validate subjects that may not have

been acceptably identified as strangers by the face recognition stage.

CHAPTER 3

METHODOLOGY

The development of a security robot involves many disciplines. This is due to

the fact that such a robot not only has to sense the environment, but also has to

navigate autonomously, avoid obstacles as well as interact with people if and when

needed.

In this chapter, an overview is given of the different methods and techniques

used in the operation of this project’s security robot. Section 3.1 describes the robot’s

design, body and hardware. Subsection 3.1.2 provides an outline of the construction

of the robot’s body. Subsection 3.1.2 outlines the robot’s hardware; sensors,

controllers and actuators. Subsection 3.1.3 describes the camera system used and

how its connected to the robot’s main controller, the laptop.

Section 3.2 describes the surveillance operation conducted by the robot, while

section 3.3 outlines the approach used in detecting motion. Subsection 3.3.1 gives a

general overview of motion detection. Subsection 3.3.2 provides an outline of the

approaches used in detecting motion in video. Subsection 3.3.3 outlines some

methods provided by the OpenCV library for motion detection, while subsection

3.3.4 describes the approach used in this system for detecting motion.

Section 3.4 outlines face detection methods and the approach used in this

system for detecting faces. It contains three subsections: subsection 3.4.1 gives a

44

general overview of face detection. Subsection 3.4.2 outlines the use of motion

detection in video-based face detection. Subsection 3.4.3 provides a description of

skin-color based face detection. Subsection 3.4.4 provided a simple overview of the

Viola-Jones method for face detection. Subsection 3.4.5 describes the approach used

in this system for the detection of faces in the environment where the robot operates.

Section 3.5 outlines the many different aspects of face recognition as well as

the approach used to accomplish it. Section 3.6 outlines the methodology used for

tracking the face of a subject. Section 3.7 outlines the many different aspects of

obstacle avoidance as well as the methodology used in this system for accomplishing

that on the robot. Section 3.8 outlines robot navigation and the methodology used in

this system, and section 3.9 outlines the different aspects of identity authentication

and the methodology followed in this system to implement it.

3.1 The Robot’s Design

In order to well perform the operations of surveillance, face detection,

recognition as well as subject tracking and navigation, the robot was designed in a

certain way to meet the requirements of the tasks at hand.

The requirements were to construct the robot tall enough to be able to capture

subject faces from a front perspective rather than from below as would be the case

with a ‘short’ or a small robot. Also, the robot should have sufficient speed to be able

to navigate to a subject in a relatively short time. These two requirements necessarily

resulted in a third obligation, which is to make the robot stable so that it doesn’t fall

when it moves, turns and stops during its navigation operation. The following

subsections, present in some detail the robot’s body, hardware and camera system’s

design.

45

3.1.1 Body

The robot’s body was constructed in three steps:

1. Robot’s base

2. Robot’s upper body

3. Improvements

The robot’s base was borrowed from a large radio controlled vehicle sized

1:6 of the original. This approach simplified and speed up the robot’s building

process due to the fact that the base body, driving motors and wheels all come pre-

assembled and tested for correct operation. Figure 3.1 below shows the base of the

robot.

Figure 3.1: The robot’s base

30.5 cm

46

The robot’s body was built from angle slot aluminum having dimensions of

18x18 mm and a cross section of 0.5mm. This angle slot metal was chosen for its

light weight as well as its relative strength which made it suitable for the robot’s

operation. The metal slot was cut to form the robot’s body. Figure 3.2 shows the

design and dimensions of the robot’s body.

Figure 3.2: The design and dimensions of the robot’s body

116.5 - 130 cm

135.3 - 148.8 cm

Holding Clips

for height

adjustment

47

After building the robot, several improvements were applied to enhance the

robot’s operation thus giving it variable height as well as better stability during

motion and navigation operations.

(a)

(b)

Figure 3.3: The improvements that were applied to the robot’s base and body:

(a) Improving the front bumper, (b) Improving the suspension and the wheels

48

As can be seen in Figure 3.2, the robot’s height can be manually adjusted,

making it possible to extend or contract it to suit the operation environment. Other

improvements are shown in Figure 3.3 (a) where the front bumper is being attached

to a bent metal strip to improve its crash handling, so it minimizes the crash force

without breaking, as well as a couple of Styrofoam blocks to protect the ultrasonic

sensors during a crash. Figure 3.3 (b) shows the applied improvements to the robot’s

suspension and wheels. The suspension was enforced to eliminate tilting during

navigation, as well as the addition of a metal strip between the two wheels to limit

their separation due to the robot’s body and components weight. Figure 3.3 (b) also

shows the improvements that were applied to the wheels, where a hard plastic cover

was put on the wheels to eliminate vibrations due to the ridges which affected the

cameras’ picture quality.

3.1.2 Hardware

The robot’s hardware consists of sensors, controllers and actuators. It is

responsible for maintaining correct operation during the robot’s navigation towards a

subject allowing it to avoid obstacles and move in the desired path:

 Sensors: Four ultrasonic sensors were used to detect obstacles in the

robot’s path.

 Controllers: Three Arduino controllers and one DC motor controller

were used to receive signals from the sensors and send commands to

the actuators.

 Actuators: Two DC motors were used to drive the robot in the desired

direction.

The hardware system also included a small breadboard that was used to

connect the ultrasonic sensors to Arduino board as well as host the authentication key

(DIP switch) which was used in the authentication stage. In that stage, An Arduino

controller would read the switch’s value and send it to the computer which will in

turn compare it with the password entered by the subject during the verification

procedure. Figure 3.4 shows the ultrasonic sensors, Figure 3.5 (a) shows the

49

controllers, while Figure 3.5 (b) shows the robot’s operational block diagram.

Finally, Figure 3.6 shows the actuators (DC motors) that are used to drive the robot.

Figure 3.4: The ultrasonic sensors installed on the robot

Upper sensors

Lower sensors

50

(a)

(b)

Figure 3.5: (a) The controllers used on the robot, (b) The block diagram

Arduinos

12v Battery

DC Motor Controller

51

Figure 3.6: The actuators (dc motors) used on the robot

3.1.2.1 Power and Performance

The robot is equipped with a 12 volts battery, as can be seen in Figure 3.5.

This battery is the power source for the dc motors that drive the robot as well as the

Arduino board that drives the servo motors in the camera system mentioned in

section 3.1.3. The rest of the robot hardware (microcontrollers and cameras) are

powered by the laptop’s USB ports which supplies 5 volts.

The 12 volts battery provided sufficient power to drive the robot at a speed of

around 1.9 meter per second. This speed was tested more than once with the robot

fully loaded with all its operational equipment.

52

3.1.3 Software

The program used to control the robot operation was written in C++ using

Microsoft Visual Studio 2010 under Microsoft Windows 7 – 64 bit version. The

program listing is mentioned in Appendix A.

The written program made use of the open source computer vision software

library known as OpenCV [75]. The open source software was used without being

modified.

3.1.4 Camera System

The camera system used by the robot was designed to monitor the area

surrounding the robot so as to detect any intruder that may enter into the robot’s

operation area.

The system consists of three Genius F100 wide angle cameras and one full-

HD normal angle camera. The three wide angle cameras each has a 120 degrees field

of view, thus cooperatively covering 360 degrees, while the full-HD camera is used

to capture the detected subject’s face image to be later used for face recognition.

The two rear wide angle cameras are stationary, while the front wide angle

camera is stationary during the monitoring operation, but is fixed on top of a servo

motor, thus has the ability to rotate right and left during the navigation operation.

The full-HD camera is affixed to two servo motors, one rotating horizontally and the

other rotating vertically, thus enabling moving the camera left, right, up and down to

track the intruding subject. All the cameras used were connected to the main

controller (laptop) through USB. A USB hub was utilized to facilitate connecting all

the cameras to a single USB port on the laptop. Figure 3.7 shows the camera system

used on the robot.

53

3.2 The Robot’s Surveillance Operation

The surveillance operation involves giving the robot a better chance at

assessing a situation to enhance its ability in making the right decision at critical

moments, such as deciding whether to stop/arrest a subject or allowing him/her

access.

To accomplish this, a system must be capable of sensing motion in all

direction at once, thus giving the robot the ability to monitor 360 degrees around its

location. Furthermore, the robot must be able to identify the presence of subjects

(one or more persons) and allow or prevent their passage based on their identity.

To accomplish the above, a system of four cameras has been used on this

robot. Three wide angle cameras, each with a 120 degrees viewing angle to cover the

360 degrees of the environment surrounding the robot, and the fourth is full HD

camera used to verify the identity of the intruder. Figure 3.7 shows the camera setup.

(a) (b)

Figure 3.7: The setup of the cameras used on the robot

Although the image from a wide angle camera differs from the image of a

normal camera; as can be seen in Figure 3.8, the usage of the wide angle cameras

instead of normal webcams gave the system a number of advantages:

54

1- A wider angle of view, both horizontally and vertically. This is important as

some subjects are tall, others are short, and at close range either one will be

out of the normal camera view.

2- Fast motion detection. Normal cameras with low frame rate may either not be

able to detect the quick motion of a running subject, or may detect it

incorrectly, while the wide angle camera with a high frame rate can better

detect such quick motion.

3- Reduce the system load. Instead of using six or more cameras and having to

deal with many environmental images, only three cameras were used to cover

the whole 360 degree viewing space.

4- Less power consumption, more efficiency. Three cameras will consume less

power and require less power to process their images than six or more

cameras.

5- Less calibration, less effort: Three cameras require less calibration and

maintenance effort than six or more cameras.

(a)

A picture taken with a normal camera

(b)

A picture taken with a wide angle camera

Figure 3.8: Image comparison of the same location

The system of four cameras can perform the following surveillance

operations, each of which can be reported separately if required:

 Detects motion.

 Track the source of motion.

 Detect light.

55

 Track a light source.

 Detect subjects.

 Track subjects.

 Identify subjects.

Such actions are helpful to security handlers as it gives them the ability to

focus on other tasks and get involved only in certain situations when a critical event

requires their intervention.

56

3.3 Motion Detection

This section describes the motion detection system used by the robot. The

motion detection feature is used by the robot to discover the presence of an intruder.

3.3.1 Motion Detection in Video

Computer vision based motion detection can be done through the frame

subtraction method, background subtraction method, and optical flow method [116].

The frame subtraction method of motion detection in video involves

subtracting the current frame from the previous frame, then checking the pixel values

of the resulting frame to look for the differences which indicates a change in the

perceived image by the camera.

The issue of checking the pixels in the resulting frame involves a large

amount of comparison calculations. Video frame dimensions and frame rate per

second can result in huge amounts of calculations that need to be performed:

 --- (3.1)

 --- (3.2)

Where PTotal is the total number of pixels in a frame image, Pfw is the frame

image width in pixels; Pfh is the frame image height in pixels. Cps is the number of

calculations per second and Fps is the number of frames per second.

For a webcam providing a resolution of 640x480 at a rate of 15 frames per

second, Cps would be:

 PTotal = 640 x 480 = 307,200 pixels

 Cps = 307,200 x 30 = 9,216,000 calculations per second

57

As can be seen above, this huge amount of calculation can be a burden on any

system. Moreover, if the three color: Red, Green and Blue are to be checked

separately, then the number becomes three folds:

 Cps = 3 x 9,216,000 = 27,648,000 calculations per second

For Full HD video at a resolution of 1920x1080, this figure would increase

by six folds:

 Cps = 6 x 27,648,000 = 165,888,000 calculations per second

3.3.2 The Robot’s Motion Detection

One of the methods that can be used for motion detection is the ‘Differential

Images’ or ‘Frame subtraction’ [117]. This method works by simply finding the

difference between two images, if no difference is found then the two images are

identical and no motion is present, otherwise a motion has occurred in the region

where the two images differ. Although this method is simple, but depending on the

implementation, it can have some disadvantages:

 Possible false detection of motion caused by snow, rain or moving trees.

 Changes in illumination can sometimes lead to false detection of motion.

 High camera sensitivity (high ISO) induces noise in the video stream which

may result in a false detection of motion.

To overcome these advantages and increase the speed, an approach was used

whereby the size of the compared images was reduced to 160x120 pixels, which is

1/16
th

 of the original size. This resulted in the following advantages:

 Reduce the load on the system and increase the speed of calculation; a rate of

over 34 frames per second (for a single camera) was achieved as seen in

Figure 3.9.

58

 Reduce the sensitivity of the system to noise and miniscule changes (such as

flying insects or other miniature objects that may move due to wind blowing

from a fan or air conditioner ventilation openings). This reduction in

sensitivity results in more robust operation and less false positives.

Figure 3.9: A frame rate of over 34 frames per second was achieved

In the implementation of the motion detection in this project, a threshold of

‘15’ was used to detect motion. This number refers to the difference between the

luminance of two pixels. A difference value below this would not be considered.

Although the motion detection approach used relies on luminance, the

threshold value used; which refers to the sensitivity of the detection, was determined

practically by using a slider as seen in Figure 3.9 to test different values. This value

resulted in the best sensitivity/performance ratio for the lighting conditions used in

the robot environment.

Choosing a value larger than 15 results in a low sensitivity towards change in

low light and dark areas, hence a moving object may not be detected correctly or not

detected at all. Figure 3.10 and 3.11 shows a person passing in front of the camera in

the lab during working hours (daytime), but using a threshold of 25 and 15

respectively, while the overhead lights were switched off.

59

Figure 3.10: A passing person was not detected in low light with a threshold of 25

Figure 3.11: A passing person was detected in low light with a threshold of 15

Choosing a value less than 15 increases the sensitivity towards changes in

low light, but may lead to false detection of motion in normal or brightly lit areas due

to camera sensitivity or any miniscule changes in pixel luminance intensity, as can be

seen in Figure 3.12 where no motion is present, yet a motion is being reported by the

motion detection function.

60

Figure 3.12: False motion detection when a low threshold value is used

When motion is detected, the detection program used in this project returns a

rectangular region where motion was detected, as shown by the red rectangle in

Figure 3.13.

Figure 3.13: The region of the frame image where motion was detected

61

3.4 Face Detection

3.4.1 Introduction

Face detection is the process of identifying a face in an image. Many

techniques exist to try and find the face or faces within an image. Some techniques

are faster, others are more accurate.

In this section different methods of face detection will be outlined, a

description of skin-color based face detection and finally a practical approach to face

detection will be presented.

3.4.2 The robot’s Face Detection

As presented earlier, each of the face detection approaches has its own

advantages and disadvantages. However, when using face detection on a security

robot, several requirements must be met:

 Detection must be fast.

 Detection must be light on system resources.

 Detection must be robust against illumination and color changes

 Detection must be accurate:

o Very little or no false positives (i.e. non faces recognized as faces).

o Very little or no false negatives (i.e. faces recognized as non-faces).

In order to achieve all the above requirements, the following approach was

followed:

 Detect motion: Hence, static objects would be ignored.

 Apply the Viola-Jones method: In the region of the motion, look for faces

using the Viola-Jones method with parameters that result in faster operation.

62

 Check the pixel density: Check the pixel density (sharpness) of the faces

found so far and discard any face which has more than 70% pixel density.

 Check skin color content: Check faces found by the Viola-Jones method for

skin color content, and discard any face which contains less than 50% of skin

color.

 Check for the presence of eyes: Finally, if the face image does not contain

eyes, then it may not be a face, but something else, such as a part of the

human body or a shape that looks like a face and has a similar color.

The above approach resulted in an accuracy rate of around 91%.

In the following sections, the steps mentioned above will be outlined in more

details:

3.4.2.1 Motion Detection

Motion detection was used (as outlined in section 4.1) to determine areas

where motion has been detected. For face detection, this has the following

advantages:

 It avoids static objects which may contain facial features.

 It reduces the area which would be searched for the presence of a face.

The motion detection program used in this project returns a rectangular

region where motion has been detected, hence only this area needs to be scanned for

faces.

First, the area where motion has been detected is checked, if both: its width

and height are more than 35 pixels, then it’s scanned for faces otherwise it is ignored.

The reason behind this is that faces with dimensions less than 35 pixels across

would be too unclear to identify later with the face recognizer; hence there is no

63

point in capturing the face image and spending resources recognizing it. To illustrate

this point, Figure 3.14 shows the face image of a person which has a dimension of

35x35 pixels. The image is enlarged to facilitate visual comparison by the reader;

keeping in mind that the person was static to enable the capture of a good quality

face image. Had the person been in motion, the face image would have been even

lower in quality.

(a) (b) (c)

Figure 3.14: A face image of less than 35 pixels is hardly useful for face recognition

When the area of detected motion has dimensions larger than 35 pixels

across, the second phase of the face detection commences.

3.4.2.2 The Viola-Jones Method

The second phase of the face detection in this system is to apply the Viola-

Jones method. As stated earlier, this method is one of the more powerful methods in

finding faces in an image; however, it can be slow if the image to be searched has a

large size. For example: in an image of 640 x 480 pixels (the normal video frame

size), the Viola-Jones method can take as much as 959 milliseconds to complete

scanning it for faces sized 25 pixels and above, as can be seen in Figure 3.15.

64

Figure 3.15: The time taken to scan for a face of size 25x25 pixels

When checking video for faces in real time, much higher speed is required. A

good frame rate in a security system should be 15 frames per second or higher in

order to capture all moving subjects correctly. Therefore the parameters governing

the operation of the Viola-Jones method in the program had to be adapted to reduce

the required time while maintaining the effectiveness of the method.

The function implementing the Viola-Jones method in OpenCV is as follows:

detectMultiScale(Image, Array, Scale Factor, Min. No. of Neighbors,

flags, Min Size, Max Size)

The parameters’ descriptions are as follows:

Image: The image to search in

Array: This will hold the locations of all the faces.

Scale Factor: The increment factor (each time the method re-scans the image

it will increase the size of the Haar features by this factor; for example 10%)

Min. No. of Neighbors: The minimum number of times a face is detected

(The Viola-Jones method may detect a face more than once; as pointed out in the

previous section)

65

Min Size: The smallest size of a face to search for.

Max Size: The largest size of a face to search for (This parameter is optional.

If omitted, the function will continue searching until it reaches the largest possible

face size within the image)

Normally, to achieve high accuracy, the following parameters are used:

Scale Factor: 1.1; means a 10% increase on each scan

Min. No. of Neighbors: 4; this will skip any face which has been detected

less than 4 times.

Min Size: 20; this will search for faces that are 20 pixels across or larger.

Figure 3.16: Searching for a face of size 20x20 can result in a speed of 0.85 FPS

However, as can be seen from Figure 3.16, using the parameters above will

result in a speed of 0.85 frames per second (1177 milliseconds per frame) for a

640x480 camera that normally operates at 30 frames per second; which is a very

slow speed. Therefore the following changes were applied to speed up the face

detection operation without greatly undermining the accuracy of the method:

Scale Factor: 1.2; means a 20% increase on each scan. This has the effect of

doubling the speed.

Min. No. of Neighbors: 2; this will skip any face which has been detected

less than 2 times. This is important in order to capture any face. The old value of 4

66

may not capture a moving person since his face image may be distorted due to

motion.

Min Size: 35; this will search for faces that are 35 pixels across or larger.

This results in another three folds increase in the speed of detection.

As can be seen from Figure 3.17, using the above parameters as well as

scanning a sub-area of the whole frame (the area where motion was detected)

resulted in an adequate speed of 2.2 frames per second (450 - 455 milliseconds per

frame) for scanning the same area of 640x480 pixels. This makes the system more

capable of detecting subject quickly and efficiently.

Figure 3.17: Less time is required

3.4.2.3 Skin Color Content

Although the Viola-Jones method is one of the more robust approaches to

face detection, still, it may return falsely detected faces, as can be seen in Figure

3.18. The red rectangle is the detected motion area, and the purple rectangle is the

detected face within.

67

(a) (b)

Figure 3.18: False face detection by the Viola-Jones method.

To counteract this problem, the third phase in the face detection process is to

check the detected face for skin color content. This process filters out many falsely

detected images as can be seen from Figure 3.19.

(a) (b)

Figure 3.19: Skin-color based filtering can exclude many false positives

a) Skin Content = 15.19 %, b) Skin Content = 0.58 %

As pointed out earlier, many color spaces exist such as RGB, HSV, HSL,

YCrCb, and XYZ. When tested, it was found that the YCrCb color space gave very

good results compared to HSV or HSL as it was robust to illumination changes. A

program was written to test the best parameters to use with this color space. Figure

3.20 shows the results of choosing these parameters:

68

Figure 3.20: Face images and the thresholds used to filter non-face images

The method used to detect the presence and percentage of skin color in a face

image is as follows:

1. The face image is converted to the YCrCb color space.

2. OpenCV’s function ‘InRange’ is used to black-out all the pixels that do not

fall within the predefined range (the skin color range; which was determined

through experimentation as seen in Figure 3.20)

3. Non-black pixels are counted.

4. The percentage of non-black pixels to the total number of face-image pixels

is found.

5. This percentage is the percentage of Skin-Color-Content.

3.4.2.4 Pixel Density

Another step in the process of filtering false-positive face detection is to

create a pixel density or sharpness filter that would filter out images which contain

too many details. During experimentation it was found that face images usually have

a pixel density of less than 70%, therefore detected face image which have a pixel

69

density higher than 70% are ignored. This filter proved useful in filtering out certain

images which bypassed the previous phases of detection and filtering. Figure 3.21

shows a few examples of blocked false face detections:

(a) (b)

Figure 3.21: Falsely detected face images with high sharpness

a) Sharpness = 91.67, b) Sharpness = 85.75

The method used to find the sharpness (Pixel-Density) of a face image is as follows:

1. The image is converted to gray color.

2. OpenCV’s function ‘adaptiveThreshold’ is used to white-out all pixels in the

image except the pixels representing edges.

3. Black pixels are counted.

4. The percentage of black pixels to the total number of face-image pixels is

found.

5. This percentage is the image sharpness (Image-Pixel-Density).

3.4.2.5 The Presence of Eyes

It’s interesting to know that after all the filtering process done so far, some

images of false face detection can still pass. Therefore, the final step was to use a

filter that would exclude images which do not contain eyes. For this purpose,

OpenCV’s eye-detection capability was used as a tool (filter) to achieve the desired

70

outcome. This tool (filter) proved useful in eliminating certain images which

bypassed the previous phases of detection and filtering. Figure 3.22 shows a few

examples of blocked false face detections:

(a) (b) (c)

Figure 3.22: Falsely detected face images which do not contain eyes

The method used to find the presence of eyes in a face image utilized

OpenCV’s ‘detectMultiscale’ function in conjunction with three eye cascade

classifiers:

 SmallEyeCascade.

 BigEyeCascade.

 OtherEyeCascade.

The following is a line of code representing one of the operations:

SmallEyeCascade.detectMultiScale(FaceImage,DetectedE

yesIndicator,1.1,1,0|CV_HAAR_SCALE_IMAGE,Size(FaceIm

ageHeight/10,FaceImageWidth/10))

The function would return the number of eye-pairs detected

(DetectedEyesIndicator). If the number of detected eye-pairs is zero, then that means

there are no eyes present in the face image, and that it may probably be a non-face

image.

71

3.5 The Robot’s Face Recognition

In this system, face recognition is used to verify the person’s identity.

Practical face recognition using real time video from surveillance cameras has to

achieve certain qualities to be adequate:

 It must be fast: slow face recognition will slow the whole system down. A

face should be recognized in a few milliseconds.

 It must be accurate: Accuracy is important. Failing to recognize a person

correctly in a security robot could mean disaster in certain situations where a

stranger is allowed passage to the facility.

 It must be flexible: The ability to accommodate changes during operation is

an important feature. Lacking this feature may require a robot operator to

restart the face recognizer training every time a number of new images are to

be added the database; an event which may take a long time to complete.

 Can cope with sharp and blurry images: This is hard to achieve as blurry

images lack the facial details that sharp images possess.

 Can handle misaligned images.

In the current system, an effort to meet the first three requirements was made,

while the last two requirements were skipped as they required extra computations

which may slow the system performance without providing high value. For example,

since the operation is done in real-time, blurry images may not need to be sharpened

as the subject’s face image may be clear in the next video frame and recognition

operation can be done without losing resources on sharpening a blurry facial image.

The same issue goes to misaligned images. Normally a subject is walking or standing

upright, therefore misalignment may be rare, hence system resources are not spent on

re-aligning face images in this real-time setting.

72

 The face recognition approach used in this system works as follows:

 Using Multiple Face Recognizers to increase the accuracy.

 Refreshing the Face Recognizer database to improve recognition rate during

operation.

 Face image cropping to reduce disadvantageous parts of the face image.

Following is a description of the above in more detail.

3.5.1 Using Multiple Face Recognizers

In order to maximize the accuracy of the face recognition operation, all the

face recognizers provided by OpenCV (three) were used to correctly identify the

face:

 The Fisher-faces face recognizer.

 The Eigen-faces face recognizer.

 The Local Binary Pattern Histogram face recognizer.

When the three face recognizers return the same identity for a given face

image, then the decision is considered conclusive. However, it is possible that the

three different face recognizers would disagree about the identity of a face image. In

such a situation, the decision taken would be in favor of the most votes. In the

unlikely event of having three different identifications by the three different

recognizers, then the highest confidence is taken to determine the identity of the

person. This approach is outlined in Figure 3.23:

73

Figure 3.23: Deciding the correct identity of a subject

Although using this approach may consume more time than using a single

face recognizer, but the benefits outweigh the consumed resources, especially that

the total recognition time for all three recognition operations is a few milliseconds.

Start:

Receive Face to be

recognized

At least

two face-recognizers agree

that the subject

is known ?

YES

NO

Decide the identity of the

person by accumulating the

recognition of all the images

by all three face recognizers

End:

Go to Motion Detection

Is the highest

average confidence

equal or above 50%

Greet subject and

allow him to pass

YES
Stranger Detected.

Sound the alarm and

navigate towards the

subject

NO

End

Go to Authentication

74

3.5.2 Refreshing the Face Recognizer

One of the important aspects in face recognition is the ability to update the

face recognizer with more images regularly in order to increase its effectiveness.

The Fisher-faces and Eigen-faces face recognizers cannot be updated during

the robot operation, while the program is running. In order to add new images to the

training set used by these two algorithms, retraining (from the start) is necessary.

Since retraining cannot be conducted during the robot’s surveillance operation, this is

done at the end of the robot’s working shift.

During operation, the robot gathers new images of subjects which it identifies

as ‘unknown’ or ‘unfamiliar’. These images are stored, and at the end of the day

(working shift), the robot operator scans the new images and relocates each one to

the correct folder of the relative person.

The LBPH face recognizer differs from the previous two face recognizers in

its ability to be updated during operation. This allows newly acquired images to be

added to the face recognizer database and be used to increase the effectiveness of the

LBPH face recognizer in identifying subjects.

When a new image is acquired, it is checked by the three face recognizers, if

all three face recognizers agree on the identity of the person, the LBPH face

recognizer checks to see if its confidence level is low for this image, if so, it will add

it to the database to increase the confidence the next time it comes across a similar

image. If the confidence is already high, then this means that the image has high

similarity to one or more of the images in the current database, hence there’s no need

to add it. Figure 3.24 shows an outline of this operation:

75

Figure 3.24: The LBPH face recognizer can add an image to its dataset

3.5.3 Face Image Cropping

The face image returned by the face detector usually contains undesired extra

parts or sections as can be seen in Figure 3.25.

Start:

Receive recognized

face image

Is the

Highest Average Confidence

above 50% ?

YES

NO

End:

LBPH database was

not updated

Is LBPH's

confidence level between

50% - 75% for this

image ?

NO

YES

Add image to

LBPH's database

End:

LBPH database has

been updated

76

(a) (b) (c)

Figure 3.25: Detected face images normally contain undesired extra sections

a) Extra area on both sides of the image, b) Extra area on the left side of

the image, c) Extra area on the right side of the image

These extra parts or sections of the image negatively affect the operation of

face recognition as they contribute image information belonging to the background

rather than the face itself. For this reason, it is necessary to apply a cropping

operation in order to eliminate as much as possible of the undesired parts or portion

of the image while retaining as much as possible of the subject’s face.

Since faces may have different postures and have different sizes, cropping a

face image correctly is a challenging operation that has to be done in a certain way to

ensure acquiring the face image with as little as possible of the background

regardless of the face’s posture, size or location within the image.

For this purpose, the skin-color detector was employed to scan the sides of an

image and incrementally crop the image from the side that contains less skin color

until a certain predefined width has been attained. Figure 3.26 shows a face image

before and after cropping.

77

(a) (b) (c)

Figure 3.26: Cropping the undesired parts of a face image

a) Side cropped, b) Left cropped, c) Right cropped

As can be seen from Figure 3.26, the size that yielded the most satisfying

results was found to be 100 pixels for an image of 120 pixels. If the image was

cropped to become less than 100 pixels wide (e.g. 90), as required by Figure 3.26 (b),

then we would lose a part of the face from both images (a) and (c).

3.6 Face Tracking

3.6.1 Introduction

In systems where the vision sensor is non-stationary, the process of visually

tracking an object involves rotating or moving the vision sensor in such a way as to

keep that particular object within the vision sensor’s field of view. Face tracking is a

particular case of object tracking in which the object of interest is the face of a

person.

78

2.6.2 Challenges in Face Tracking

There are many challenges involved with face tracking, some of which are:

 The need to determine the existence of a face in the camera’s view.

 If there’s more than one, then it is required to determine which face, out of

the group, should be tracked.

 Keeping up (mechanically and/or electronically) with the quick motion of a

subject may be hard, especially if the person running (indoors), is too close to

the camera or is riding a vehicle (outdoors).

 Other mechanical limitations such as the maximum angle a camera can rotate

horizontally and vertically.

Other challenges related to the face pose change, occlusion and lighting

changes all fall into the primary point in which a face needs to be determined in the

first place in order for tracking to occur.

2.6.3 Practical Face Tracking

Practical face tracking involves solving all or at least most of the challenges

mentioned above. For this purpose, face tracking operations implemented in this

project use two servo motors and a webcam to track a subject’s face.

The two servo motors are mounted in such a way to allow for the first motor

to rotate in the horizontal (around the ‘y’) axis, while the other motor rotates in the

vertical (around the ‘x’) axis, while the camera is attached to the second motor.

Figure 3.27 shows a picture of the setup.

79

Figure 3.27: The face tracking rig.

When a human face has been detected by the system and is required to be

tracked, a signal is sent to the Arduino board controlling the two servo motors to

align the first (horizontal) servo motor such as the face is in the vertical middle of the

screen, and align the second (vertical) servo motor such as the face is in the

horizontal middle of the screen.

In this way, the system will try to keep the face in the middle of the screen at

all times. This approach help compensate for any sudden or quick motion that may

otherwise result in the face being off limits to the camera’s field of view.

Tracking continues until either the face is no longer detected, or is no longer

required to be tracked.

5.3 cm

80

3.7 Obstacle Avoidance

3.7.1 Introduction

In general, the act of obstacle avoidance in robotics involves steering a robot

in such a way so as to prevent a collision between the robot and the obstacle.

Obstacle avoidance is considered a cornerstone of autonomous mobile robotics; in

which a method for avoiding a collision between the robot and an obstacle is in

place.

Challenges to autonomous mobile robots in obstacle avoidance involve first

the detection and second the avoidance of the obstacle. The sensor(s) used tackle the

first part; the detection, while the robot’s drive mechanism tackles the second part,

the avoidance.

Since the robot used in this project is an autonomous mobile robot, an

obstacle avoidance method has been used to prevent collision with objects that could

be in the robot’s path.

3.7.2 Types of Obstacles

In the real world, there are many types of obstacles that a robot may come

across. From stationary object such as walls and table legs to dynamic objects such

as a person’s foot or leg.

That’s not all, there are also objects that are hollow such as a metal or plastic

mesh, or even a pipe, there are objects that are transparent such as glass or some

types of plastic, object that change shape such as cloth and finally objects that deflect

(scatter) or absorb a sensors signal rendering it invisible to the robot. Finally it is not

impossible to come across an object which combines two or more of these properties;

for example being deflective to the sensor’s signal as well as being dynamic and

deformative; an example of such an object is may be some types of cats, dogs and/or

birds.

81

3.7.3 Types of Sensors

Many types of sensors are used by the different robots to detect the multitude

of obstacles that may lie ahead. Logically, a robot designer would equip the robot

with sensors capable of detecting the obstacles most likely to appear in the robot’s

environment. A robot intended for work in an office would encounter different

obstacles from a robot intended to work outdoors, and a robot that flies may very

well encounter different obstacles to those encountered by robots moving on the

ground.

The sensors used to detect obstacles in autonomous mobile robots generally

fall into two categories: active and passive. Contact or mechanical sensors that trip

when pushed by an obstacle fall into the passive type of sensors.

Active sensors emit a signal and detect an obstacle based on the reflected

signal’s properties such as the time of flight (time between sending the signal and

receiving a reflection). Active sensors include the following:

 Infrared sensors.

 Laser scanners.

 Ultrasonic sensors.

Passive sensors on the other hand make use the signals naturally available in

the environment (such as light) for the purpose of obstacle detection. Passive Sensors

include the following:

 Infrared sensors.

 Photo diodes

 Cameras

 Gas sensors

 Contact (mechanical) sensors.

82

Depending on the type and operation, an infrared sensor can either be an

active or passive sensor. Active infrared sensors use an infrared transmitter to emit

an infrared signal and then measure the reflection. Passive infrared sensors, only

measure the level of infrared signal received without emitting any.

3.7.4 The Robot’s Obstacle Avoidance

As mentioned in the previous section, there are numerous challenges

associated with the detection of obstacles, resulting in the failure of detection and

ultimately resulting in the robot crashing into the obstacle.

For the purpose of this project, an approach has been devised to detect

obstacles naturally present within the robot’s environment such as:

 Walls: Flat

 Boxes: Flat or cornered

 Chairs and Tables: The legs can be of any shape, cylindrical or otherwise.

 Other miscellaneous objects that may be transparent, hollow or have irregular

shapes.

The sensors used in the robot in this project were ultrasonic sensors. These

sensors have many limitations, the most relevant to the current system are:

 Depending on the approach angle, the sensor’s signal can deflect (not reflect

back to the receiving sensor) of the obstacle making it undetectable.

 The sensors may reflect of other surfaces resulting in false detection of

obstacles or false reporting of obstacle distance from the robot.

To solve for these limitations and use the sensors to successfully detect

obstacles in the robot’s path, the sensors were tilted inwards at an angle. This

allowed for detecting objects that were previously undetectable by employing such

83

sensors in an outward inclination as usually implemented on mobile robots. Figure

3.28 shows the sensors and their inward inclination.

Figure 3.28: The ultrasonic sensors used with the robot

The inclination angle was calculated based on the desired minimum detection

distance of 0.8 meters as follows: R1 = 3 m, R2 >= 0.8 m, d = 0.1 m (Figure 3.29)

 --- (3.3)

By substituting the values of R2 and d, we find that:

Hence,

From this we conclude that θ (the inward inclination angle) is 7.125 degrees,

as can be seen in Figure 3.29.

84

Figure 3.29: Calculating the sensor angle

Since the sensor’s range (R1) is 3 meters, using this angle, the sensor would

also be capable of detecting objects that are 2.98 meters away.

As can be seen from Figure 3.29, two sensors were used to detect the

obstacles, so that if one sensor fails to detect the obstacle due to the angle of

approach or the obstacles’ shape, the other sensor would apply the signal from a

different angle thus allowing the robot to discover the obstacle ahead.

R

R

d

Sensor 1 Sensor 2

θ

φ φ

θ

Obstacle

85

3.8 Navigation

3.8.1 Introduction

Navigation in robotics generally involves moving the robot from one location

to another. To accomplish this task the robot has to be equipped with some means to

move it in a controlled manner.

The main challenge to robot navigation is the ability to traverse the

environment efficiently. However, the real world is a dynamic place; hence the

environment and the surface the robot is treading can change resulting in slippage or

unintended change in direction.

As the robot used in this project will be used indoors, it is equipped with four

wheels, the motion of which control the direction of the robot.

3.8.2 Types of Robot Drives

Depending on the environment in which a robot will operate, it should be

equipped with a suitable locomotion. Choosing a particular type of robot drive

affects the speed, maneuverability, and stability of the robot. Surface robots can be

equipped with any of the following types of drive systems [118][119][120]:

 Wheels: wheels are very common with many robots; they allow for good

stability, steering and speed, however, they may exhibit slippage and

jamming in certain situations. Wheeled robots can have any number of

wheels depending on the task and purpose of the robot.

 Continuous Track Locomotion (Tank Tread, Caterpillar Tracks): this

locomotion belongs to the wheel category, however they differ in having a

sort of a belt surrounding the wheels which results in a better ability to

traverse more complex and uneven terrain, but require more energy to do so.

In some cases steering can cause problems due to the large area that the

86

caterpillar belt has to sweep across the ground to accomplish the change in

direction.

 Pedals: pedals are used with more sophisticated robots. Their main advantage

is the ability to traverse rough and irregular terrain such as outdoors as well

as the ability to climb up and down stairways. The two main disadvantages

are:

o They comprise of a larger number of motors compared to wheeled

robots, hence they are more complex and require a greater level of

control than wheel drive systems.

o They are generally slower than wheel drive systems.

 Crawl: Certain robots are not equipped with wheels or pedals, instead they

use their body motion to creep or crawl on the surface. This kind of

locomotion has the advantage of being able to travel across any surface, but is

limited in speed and consumes more energy.

 Hybrid: Some robots employ a hybrid locomotion system in which a

combination of drives may be used to avail the advantages while avoiding the

disadvantages of using a single type of locomotion.

As can be concluded from the above, the more complex the terrain that the

robot has to traverse, the more complex the drive system, the slower the speed, and

the more energy the robot has to devote to achieve locomotion. Therefore it is

necessary for a robot designer to choose wisely a drive system that allows the robot

to accomplish its tasks while consuming the least amount of energy.

3.8.3 Path Planning

When a robot needs to move to a certain place or location, it has to conduct

what is known as path planning. Path planning is deciding the best route to pursue in

order to get to the desired location.

Depending on the environment and the way that the task is to be

accomplished, path planning can be a sophisticated problem as it may involve taking

a longer path instead of a shorter one in order to evade a certain obstacle or danger.

87

Figure 3.30 shows an example of such a situation in which a robot has to follow a

longer route to arrive at the desired destination.

Figure 3.30: Choosing a different path

Path planning may be local; in which a robot has to decide how to avoid an

obstacle, or global; in which a robot optimizes the overall travelled distance to the

target [121].

3.8.4 The Employed Navigation Approach

Practical navigation relies in part on the type of locomotion the robot is

equipped with. This is important as the robot’s type of locomotion may allow it to

Robot

88

skip or drive over an obstacle rather than go around it thus gaining shortening the

distance to the target and possibly saving time and energy in the process.

In the following sections, the locomotion used in the robot of this project is

outlined as well as the approach used in navigating the robot to its target.

3.8.4.1 The Robot’s Locomotion

For the robot used in this project a drive system comprising of four wheels

was chosen to navigate the robot across its indoor environment. The four wheels

have a diameter of 16 cm which makes them large enough to overcome any changes

in the surface of an indoor environment such as an uneven floor. The size of the

wheels is also adequate for overcoming small or thin obstacles that it may encounter

in an indoor environment such as a pen, some paper, a wire …etc. Figure 3.31 shows

the robot wheels besides some objects to give a sense of its size.

In this drive system, steering is accomplished by operating two wheels on one

side while stopping or reversing the wheels on the other side. This combination of

wheels and steering system has the following traits:

 The ability to steer left or right with a lower energy requirement compared to

track locomotion.

 The ability to rotate in place without requiring to drive forward or backwards

to accomplish that.

 Better traction compared to single and two wheeled robots (with one or two

castor wheels).

 Better stability compared to single and two wheeled robots as the robot

remains on four contact points all the time.

 Simpler control in comparison to castor wheels as only the side that needs to

advance forward is operated.

89

Figure 3.31: The robot’s wheels

Practical robot navigation not only involves the robot’s drive system, but also

the planning of its path to arrive at the desired destination in the least amount of time

while spending the least amount of energy.

3.8.4.2 The Robot’s Navigation

In this system an approach is used which uses local navigation with dynamic

rerouting. This is done to maximize the robot’s response to real world, real-time

changes in target location or other factors that may affect its navigation path or

target.

Local robot navigation involves obstacle avoidance as these block the robots

path and consequently the robot would have to navigate around or away from them.

The challenge in this system is to navigate the robot to accomplish the following

tasks in the shortest possible time with the least amount of energy:

90

 Approach subject: The difficulty is that the target subject may not be static;

hence the robot may have to constantly change its path (route).

 Avoid obstacles: Avoid different types of static and dynamic obstacles while

approaching the main target.

The subject is first tracked with a camera, and when the conditions requires

the robot to approach the subject; the camera angle is transmitted to the Arduino

board which controls the motion of the robot wheels. The direction of motion is

decided based on the presence of obstacles in front of any or both of the ultrasonic

sensors. Figure 3.32 is a flowchart illustrating the approach.

91

Figure 3.32: The approach used to arrive at the desired subject

Start

Received

command to move

forward ?

Stop motors

Obstacle

in front of left

motor ?

Stop right side motor or reverse it

(depending on distance to obstacle)

Obstacle

in front of right

motor ?

Stop left side motor or reverse it

(depending on distance to obstacle)

Both

sensors report an

obstacle ?

Turn in place

Is face tracking

angle >= 50 deg.

Turn 60 deg.

towards face

Move forward

YES

NO

YES

NO

YES

NO

YES

NO

YES

NO

92

3.9 Authentication

3.9.1 Introduction

Authentication generally involves verifying the identity of a person. This

action may be required to allow the person access to certain facilities or resources.

Authentication normally includes comparing of information supplied by the person

in question against information stored in the system for the purpose of confirming the

permissions available for that particular person [122].

In this system, authentication is used to verify the identity of subjects entering

or using the environment in which the robot is located. This is based on information

previously stored inside the robot for the purpose of confirming the authorized

persons from those who are not allowed access to the robot’s environment.

3.9.2 The Employed Authentication Approach

For our practical purposes, an authentication operation has to be automatic,

quick and non-intrusive in order to enable subject identification without impeding

their normal operation and to accomplish a swift and accurate verification of their

identity.

Practical authentication also involves using an approach to strengthen its

effectiveness and accuracy in determining the identity of authorized individuals from

those who should not be allowed access.

In the system used in this project, a two-tier authentication scheme has been

utilized to ensure better verification of a subject’s identity. The first level of

authentication is facial identification of the subject; when the confidence level of

facial identification is low, a second authentication action is activated requiring the

subject to enter a password to prove his/her affiliation with the facility and/or its

resources.

93

The facial identity of all authorized personnel has been previously stored in

the system, and when a human subject is encountered, his/her face is checked against

the images in the database to verify its identity.

Each member of staff has his/her own password. The password is used in

case facial identification of an authorized staff fails, in which case entrance of the

password will grant him/her access, while extra facial images are captured for later

addition to the database. The user can change his/her password to prevent possible

compromise as shown in Figure 3.33 where a user is entering his/her password on the

robot.

Figure 3.33: A user enters his/her password on the robot

94

Summary

This chapter discussed the design and function of the security robot

conducting its operations in an indoor location. The methodology can be divided into

three main operations: Motion detection to detect the presence of a moving object,

which may indicate the presence of a person. Face detection in the area where the

motion was detected. And finally face recognition is conducted on the detected face.

Each of these three operations contains sub-operations to maximize its effectiveness

and yield the best possible results in terms of speed and accuracy. The OpenCV

library of functions was used extensively in conducting these three operations.

CHAPTER 4

EXPERIMENTS

In this chapter, the different experiments that were conducted and their

settings will be outlined. Several experiments were performed to test the different

aspects of the system and reach the best setting for a practical system

The experiments can be broadly categorized into software and hardware

experiments. Software experiments are the ones related to motion detection, face

detection and face recognition, while hardware experiments are related to face

(subject) tracking, navigation and obstacle avoidance.

4.1 Motion Detection Related Experiments

4.1.1 General Objective

The objective of these experiments is to examine the aspects related to the

implementation of motion detection in the current system. Two experiments were

carried out to find out the best devices and software setting for an efficient motion

detection operation.

96

4.1.2 Camera’s Field of View Experiment

4.1.2.1 Objective

There are two objectives behind this experiment:

1. To find out the field of view of different cameras in order to use the camera

with the widest field of view in this project.

2. To compare the wide angle image of the different cameras in terms of angle

and view.

4.1.2.2 Description

In order to find the field of view of each camera, a simple apparatus was

designed to assist in determining any camera’s field of view. This apparatus was

used for measuring the camera’s field of view as follows:

1. A camera is positioned at the center of the circle as shown in Figure 4.1-a

2. A picture is captured by the camera.

3. The picture shows the markings on the apparatus, which is used to calculate

the camera’s field of view by subtracting the higher degree value on the left

of the image from the lower degree value on the right. Figure 4.1-b shows

the marking on the apparatus.

For each camera two images are captured. The first one is a normal image, while

the second one is an image taken with a fisheye lens placed on the camera’s

sensor. The experiment begins with placing a camera at the middle point, in front

of the view angle measuring apparatus; then an image of the FoV measuring

apparatus (the scale) is captured using that camera at that particular location. The

image is saved and is later viewed to determine the maximum angle of view.

97

(a)

The Apparatus

(b)

Finding the

field of view

from the

markings

Figure 4.1: Determining the camera’s field of view

A second image is then captured with a fisheye lens fixed on the same

camera’s sensor. The image is also saved and then the two images are compared to

find the total increment in the camera’s field of view using the fisheye lens. Figure

4.2 shows the cameras used in the experiment, while Figure 4.3 shows an example of

the two images captured by one of the cameras during the experiment.

The camera will be located

at this position.

Center = 90 degrees position.

98

Figure 4.2: The camera’s used in the experiment, from left to right:

The slim webcam, the A1-Pro webcam, the fisheye lens, the E72, the

Genius F100 and the Full-HD webcam

(a) (b)

Figure 4.3: The images captured by the A1-Pro webcam

a) Normal Image, b) Fisheye Image

99

4.1.2.3 Setting

For conducting the experiment, an apparatus was used to measure the

camera’s field of view. The apparatus, shown in Figure 4.1 is made up of a half-

circle, the diameter of which is 50 cm. The length of the half circle circumference is

78.54 cm and contains marking for the 180 degrees. The captured images from all

the cameras have a resolution of 640x480, except for the Genius F100, with which

three images were captured, one at 640x480, one at 1280x720 and one at 1920x1080.

Figure 4.4 shows the setting of the experiment while testing the Genius F100

webcam.

Figure 4.4: The camera field of view experiment setting

4.1.2.4 Results

The measured field of view angles from the captured images for all the tested

cameras were tabulated as shown in Table 4.1:

100

Table 4.1: The results of measuring the field of view for different cameras

Camera
Normal

FOV
Wide FOV Using

A1-Pro Webcam 34 65 Fisheye Lens

Slim Webcam 39 75 Fisheye Lens

Full-HD Webcam - VGA mode 46 93 Fisheye Lens

Full-HD Webcam - HD mode 60 98 Fisheye Lens

Genius F100 Webcam 88 112 HD & Full-HD Mode

E-72 Camera 51 100 Fisheye Lens

LG P920 Camera 51 100 Fisheye Lens

Legend: FOV: Field of View (in degrees).

4.1.2.5 Discussion and Analysis

From the results presented in Table 4.1, we find that the Genius F100 camera

has the largest field of view in comparison to all the cameras, both in normal and

wide FOV modes. This makes this camera the best choice to be used in surveillance

operations as it can cover a wide area. Using three camera of this mode in the wide-

angle FOV mode can efficiently cover the whole 360 degrees which would normally

require a minimum of eight cameras of the A1-Pro or Slim-Webcam type to do the

same job.

Also, by inspecting the results carefully, we find that normal webcams have a

narrower field of view than the mobile phone camera which in turn has a narrower

field of view than the Genius F100 camera which is originally manufactured for a

wide angle perspective. This is expected as normal webcams need only show the

person directly in front of the camera and in some cases it may be preferred to hide

as much of the surrounding as possible for privacy reasons. Mobile phone webcams

are wider than webcams as they are intended for general purpose image and video

capturing.

101

Finally, although the fisheye lens is advertised to enable 180 degree field of

view, practically, it only provides an increase in the camera’s viewing angle to

almost double.

4.1.3 Threshold and Lighting Effect Experiment

4.1.3.1 Objective

There are two objectives for this experiment:

1- To determine a suitable threshold to be used for motion detection of humans

or intruders in low and high lighting conditions.

2- To determine the minimum motion by a human subject that would trigger

detection with the chosen threshold.

The first objective is important to enable the robot to detect motion in spaces

with low lighting conditions as well as spaces that are well lit. The second objective

is important as it measures the robot’s ability to detect motions that are as equal to or

larger than as a person’s body part such as a hand, head, arm or leg movement, while

ignoring motion equal to or smaller than those caused by flying insects or other

miniature objects.

4.1.3.2 Description

To conduct the experiment, a webcam operated by a motion detection

program was used in the research room of the lab. The program was started during

daytime and in normal lighting to verify the operation of the setup, then the

experiment commenced.

102

The experiment started by placing the motion detection camera at one end of

the lab and switching off all the ceiling lights as well as closing all the curtains, so

only a small amount of light was coming from the sides of the curtains. Motion

detection was then measured by trying to capture the walking motion towards the

camera from the other end of the lab at varying speeds.

The same actions were repeated without ceiling lights, with one row of

ceiling lights, two rows and the full three rows switched on. This was done to verify

the effect of lighting conditions on the operation of the motion detector program.

Also, the motion detector program was used to check to find out whether false

detection of motion can be triggered by camera noise in bright and low lighting

conditions.

4.1.3.3 Setting

The experiment was carried out in lab P08L02 of the faculty of electrical

engineering at Universiti Technologi Malaysis. The lab contains three rows of ceiling

lights as well as windows with blue blinds. Distance signs were placed at suitable

intervals to show the distance of the subject while in motion, and the Genius F100

camera was used to conduct the experiment. Figure 4.5 and Figure 4.6 show the

setting of the experiment.

Figure 4.5: The lab in zero and full lighting conditions

The Genius

F100 webcam

103

Figure 4.6: The experiment setting

During the experiment a subject would walk from the far end of the lab

towards the camera at varying walking speeds. The experiment is repeated three

times, first slow, then normal, then at a fast walking pace, and the average value of

the distance at which a motion is detected is calculated. Other settings are as follows:

 The Genius F100 camera was capturing video at HD quality (1280x720) with

wide angle view.

 The video speed was at around 10 frames per second.

 Distance markings were placed at the 1 – 8 meters from the camera.

 The experiment was carried out during daytime with the windows blinds

down. This allowed minimal light to pass through allowing humans to see

while being dark for a normal camera as can be seen from Figure 4.5.

104

4.1.3.4 Results

The experiment was repeated three times to consolidate the results and the

average values for all iterations was calculated and recorded. Table 4.2 shows the

gathered results, and Figure 4.7 shows the results in graphical format.

Table 4.2: The average values of the three repetitions of the experiment

Lights Thld Dst for 1st

DoM

Dst for 1st

DoF

Dst for Cnt

FD

Err MD

0 10 5.67 3.83 0.00 Yes

0 15 5.17 0.50 0.00 No

0 20 2.75 0.00 0.00 No

0 25 1.75 0.00 0.00 No

1 10 12.67 11.67 9.67 Yes

1 15 13.00 13.00 7.08 No

1 20 13.00 10.17 6.08 No

1 25 11.83 7.00 5.42 No

2 10 13.00 12.17 6.92 Yes

2 15 13.00 12.50 7.50 No

2 20 13.00 6.42 4.08 No

2 25 12.33 4.25 2.50 No

3 10 13.00 13.00 10.50 Yes

3 15 13.00 9.50 7.92 No

3 20 12.83 7.67 4.92 No

3 25 12.50 6.17 4.08 No

In Table 4.2, the headings have the following meanings:

Lights : The number of ceiling lighting used

Thld : The threshold used

Dst for 1st

DoM
:

The distance (in meters) for the first detection of motion. This is

the furthest distance at which motion was detected.

Dst for 1st DoF :

The distance (in meters) for the first detection of a face based on

the detected motion area. This is the furthest distance at which a

face was detected based on the detected motion area.

Dst for Cnt FD :

The distance (in meters) for continuous face detection based on

motion detection. This is the distance at which face detection

starts and continues in the frames that follow.

Err MD : Erroneous detection of motion

105

Figure 4.7: A summary of the gathered results from the experiment

4.1.3.5 Discussion and Analysis

By examining Table 4.2, we can observe the following:

1. For the condition in which all the lights were off, the detected motion area

does not include the face of the subject in a continuous manner; sometimes

the face is within the detected motion area and sometimes not.

2. When all the lights are off, a face may be detected at close range using a low

threshold, however, using a threshold higher than 10 severely degrades

inclusion of face area within the detected motion area rendering the operation

of looking for a face in the detection motion area fruitless.

3. In all lighting conditions, a threshold of 10 (and presumably less) will cause

false detection of motion. Therefore a higher threshold value should be used.

4. In all lighting conditions, as the threshold increases, the sensitivity and hence

the detection distance increases. For this reason, the lowest possible

threshold should be used.

5. By combining the observations of 3 & 4, a threshold of 15 seems to be a

practical solution.

6. Increasing the lighting from 1 to 2 or 3 does not much affect the distance at

which motion or face detection can occur. Therefore, it is possible to operate

106

the robot efficiently with only a single strip of ceiling lights being on (the

middle one).

7. Motion detection can occur as far as 13 meters (the end of the lab), while

continuous face detection occurs at around 7 meters. This suggests that the

robot would only be able to recognize subjects that are 7 meters away. This

may not be a limitation, as the size of the face may too small for recognition

beyond that distance. The reader is advised to refer to section 4.2.2 for more

details regarding face size relation to distance from the camera.

By examining Figure 4.7, we observe that:

1. There seems to be no difference in the distance of first motion detection

between threshold 10 and 15. Therefore, choosing threshold 15 instead of 10

as pointed out in point 5 above, may have no effect on the motion detection

distance.

2. The difference in the furthest distance at which a face can be continuously

detected does not degrade substantially by choosing threshold 15 over

threshold 10 and is practically acceptable.

3. Choosing a higher threshold value, such as 25, may not significantly affect

the furthest distance at which motion is first detected, but it greatly affects the

distance at which a face is included in the detected motion area.

4. Effectiveness of the motion detection operation as well as the inclusion of the

face area within the detected motion is inversely proportional to the threshold

value applied.

Due to the above, it is recommended to use the lowest threshold value which

does not cause false detection of motion. In this case, a value of 15 seems to be a

suitable choice.

107

4.2 Face Detection Related Experiments

4.2.1 General Objective

The objective of the face detection experiments is to test the influence of

various factors on the robot (computer) ability to detect a human face. Different

experiments were carried out to find out the best possible setting for a reliable face

detection outcome.

4.2.2 Face-Size vs Distance Experiment

4.2.2.1 Objective

This experiment has three objectives:

 The first objective of this experiment is to determine the smallest detectable

face using a camera that may be used during the robot’s operation.

 The second objective is to try and find a possible relation between subject

distance and face size.

 The third objective is to find the approximate distance at which there’s

enough detail to distinguish a face of one subject from another, in order to use

this information in face recognition.

4.2.2.2 Description

This experiment was carried out in the lab. During the experiment several

stationary cameras (of different types) were simultaneously used to capture video

footage of the environment, and a face detection program was later used to detect the

face of the subject appearing in front of each of the cameras.

108

In order for the experiment to be comprehensive, eight different subjects from

four different races and different genders took part in the experiment. In each

iteration, one of the subjects would stand in front of the cameras for a few seconds at

each floor marking to allow the cameras (and later, the face detection software) to

capture the environment image and find the face within.

The cameras were placed at one end of the markings to capture the video

footage that will be used to detect and calculate the face size. In order to relate the

face size to the distance at which the subject is standing, the subjects were requested

to hold a cue card showing the distance at which they are standing from the cameras.

Figure 4.8 shows a subject standing at a floor marking holding a cue card.

Figure 4.8: A subject holding a cue card and standing 4.0 meters away from the

cameras

The face image, and face size were all determined and saved. Later they were

used to deduce a relation associating the subject’s face size to the subject’s distance

from the camera. Several face images were captured for each subject in order to

verify the face size across multiple frames.

109

4.2.2.3 Setting

The experiment settings, shown in Figure 4.9, were as follows:

 Floor markings were places 0.5 meters apart for a distance of 6.0 meters as

shown in Figure 4.9 (b).

 A built-in laptop’s camera was used to capture the images. The camera has a

resolution of 640x480.

 In this experiment several cameras were used: the laptop’s camera (640x480),

the Genius F100 (wide angle), the E-72 (320x240) and a Full-HD camera.

 The laptop’s camera was placed at a height of 150 cm to be able to capture

the face image of all the subjects, tall and short.

 The normal overhead lab lighting was used. No extra assistive lighting was

used.

 No extra lenses or other optical gear were used.

During the experiment subjects kept a standard facial expression of a normal

face. Only at very close distance of 0.5 meters that some subjects smiled or laughed.

The change in the facial expression at such a short distance had no effect on the

detection effectiveness as their faces were detected without issues.

(a)

 (b)

Figure 4.9: The setting used for conducting the experiment

a) The laptop and its built-in camera, b) The floor markings

110

Table 4.3: The face size in pixels and subject distances gathered from the

experiment

Asian Chinese Average

Distance Habib Azrai Luqman Amirah Naqiah Goh Alaa MTA For All

233.0 253.0 237.0 197.0 196.0 251.0 215.0 254.0

231.0 251.0 241.0 189.0 201.0 253.0 220.0 267.0

248.0 253.0 240.0 190.0 205.0 251.0 219.0 265.0

232.0 262.0 240.0 188.0 205.0 273.0 228.0 264.0

236.0 254.0 255.0 189.0 208.0 259.0 224.0 278.0

231.0 260.0 238.0 191.0 208.0 256.0 228.0 266.0

236.0 249.0 238.0 186.0 211.0 252.0 225.0 270.0

231.0 259.0 232.0 183.0 208.0 254.0 221.0 266.0

234.8 255.1 240.1 189.1 205.3 256.1 222.5 266.3 233.7

123.0 123.0 120.0 116.0 107.0 125.0 129.0 127.0

127.0 120.0 117.0 119.0 104.0 126.0 126.0 118.0

126.0 122.0 123.0 118.0 103.0 131.0 127.0 129.0

123.0 127.0 123.0 119.0 107.0 128.0 123.0 124.0

127.0 121.0 117.0 107.0 128.0 121.0 123.0

127.0 120.0 120.0 107.0 129.0 122.0 129.0

126.0 120.0 117.0 105.0 134.0 122.0

128.0 121.0 115.0 106.0 126.0 123.0

125.9 123.0 120.6 117.6 105.8 128.4 124.1 125.0 121.3

80.0 74.0 76.0 74.0 74.0 89.0 86.0 83.0

78.0 79.0 79.0 77.0 71.0 88.0 87.0 83.0

78.0 78.0 76.0 78.0 71.0 90.0 86.0 82.0

78.0 78.0 76.0 76.0 69.0 83.0 85.0 88.0

80.0 77.0 80.0 73.0 85.0 90.0 85.0

81.0 78.0 78.0 82.0 85.0 86.0 87.0

81.0 76.0 79.0 72.0 82.0 88.0 86.0

80.0 81.0 80.0 68.0 86.0 86.0

79.5 77.3 77.4 77.8 72.5 86.0 86.8 84.9 80.2

56.0 58.0 56.0 55.0 54.0 60.0 61.0 62.0

60.0 59.0 58.0 60.0 53.0 62.0 62.0 63.0

60.0 59.0 58.0 58.0 54.0 62.0 64.0 63.0

61.0 60.0 55.0 58.0 54.0 66.0 66.0 63.0

61.0 58.0 59.0 59.0 55.0 63.0 64.0 64.0

58.0 59.0 58.0 54.0 63.0 64.0

59.0 57.0 59.0 52.0 64.0 67.0

61.0 57.0 59.0 53.0 64.0 63.0

59.5 58.8 57.4 56.0 53.6 63.0 63.9 63.0 59.4

48.0 49.0 48.0 48.0 46.0 49.0 52.0 50.0

48.0 50.0 47.0 46.0 45.0 51.0 51.0 50.0

48.0 49.0 47.0 47.0 46.0 51.0 51.0 50.0

47.0 50.0 47.0 46.0 44.0 49.0 52.0 51.0

49.0 48.0 47.0 45.0 46.0 52.0 51.0 51.0

48.0 47.0 46.0 46.0 51.0 51.0

50.0 48.0 47.0 46.0 51.0 53.0

47.0 48.0 48.0 47.0 52.0 52.0

48.1 49.2 47.4 46.6 45.8 50.8 51.6 50.4 48.7

43.0 43.0 41.0 42.0 40.0 43.0 47.0 45.0

44.0 43.0 40.0 40.0 40.0 44.0 46.0 44.0

43.0 43.0 42.0 39.0 40.0 47.0 43.0 44.0

43.0 42.0 41.0 39.0 39.0 44.0 44.0 44.0

44.0 43.0 42.0 41.0 40.0 44.0 46.0 45.0

44.0 42.0 40.0 43.0 43.0 44.0

43.0 42.0 40.0 44.0 43.0 46.0

43.0 42.0 41.0 46.0 44.0

43.4 42.8 41.5 40.2 40.0 44.4 44.5 44.6 42.7

2.0

2.5

3.0

Malaysia Male Malaysia Female Middle Eastern

0.5

1.0

1.5

Asian Chinese Average

Distance Habib Azrai Luqman Amirah Naqiah Goh Alaa MTA For All

36.0 38.0 35.0 35.0 33.0 40.0 39.0 40.0

38.0 38.0 39.0 30.0 34.0 39.0 38.0 39.0

39.0 38.0 35.0 34.0 35.0 38.0 40.0 39.0

38.0 35.0 36.0 37.0 40.0 38.0

38.0 35.0 34.0 39.0 41.0 40.0

34.0 35.0 38.0 40.0 39.0

36.0 35.0 39.0 43.0

34.0 39.0 41.0

37.0 38.0 35.4 33.8 34.0 38.6 40.3 39.2 37.0

29.0 32.0 30.0 26.0 28.0 34.0 34.0 32.0

34.0 30.0 30.0 37.0 36.0 33.0

31.0 37.0 34.0 29.0

28.0 34.0 36.0 32.0

36.0 34.0 32.0

35.0 34.0 31.0

34.0 36.0 31.0

35.0 36.0

31.5 31.0 29.8 26.0 28.0 35.3 35.0 31.4 31.0

26.0 28.0 26.0 24.0 24.0 30.0 29.0 28.0

26.0 28.0 26.0 25.0 24.0 28.0 29.0 28.0

28.0 27.0 25.0 25.0 30.0 29.0 28.0

26.0 28.0 25.0 32.0 28.0 27.0

26.0 26.0 30.0 30.0 28.0

31.0 29.0 28.0

28.0 29.0

29.0 28.0

26.4 27.7 26.2 24.5 24.5 29.8 28.9 27.8 27.0

25.0 26.0 23.0 22.0 22.0 24.0 25.0 26.0

25.0 24.0 23.0 23.0 24.0 25.0 26.0

27.0 23.0 23.0 25.0 26.0 26.0

24.0 22.0 22.0 26.0 26.0 26.0

25.0 22.0 25.0 25.0 26.0

24.0 24.0 26.0 26.0 25.0

26.0 22.0 25.0 24.0

25.0 22.0 27.0 26.0

25.1 25.0 22.6 22.0 22.5 25.3 25.4 25.8 24.2

22.0 23.0 23.0 23.0 23.0

24.0 21.0 24.0 24.0 23.0

22.0 21.0 23.0 24.0 22.0

24.0 23.0 23.0

26.0 24.0 24.0

27.0 26.0 23.0

23.0 23.0

24.0 22.0

22.7 21.7 24.3 23.6 23.0 23.0

21.0 21.0 23.0 22.0

23.0 24.0 23.0 23.0

22.0 22.0 21.0

22.0 22.0

21.0 23.0

21.0 24.0

21.0 23.0

21.0 23.0

22.0 21.6 22.9 22.0 22.1

5.0

5.5

6.0

3.5

4.0

4.5

Malaysia Male Malaysia Female Middle Eastern

111

Figure 4.10: A graph showing the relation between distance and average face size

Habib Abdul-Rahman Mohammad Alaa

Figure 4.11: Face images captured at a distance of 6 meters with a 640x480 pixel

webcam

4.2.2.4 Discussion and Analysis

By examining the results in Table 4.3, we find the following:

 Not all faces can be detected at far distances: some faces were detected all the

way up to 6 meters, while others were not. Although enough time was given

to the software to detect the faces, it was unable to find the face in the frame

image. This seems to be due to two main factors: Skin color and sharpness of

facial features such as the eyes, nose and mouth. From this we can also

deduce that low lighting will negatively affect face detection.

112

 Faces have different sizes: at the same standing distance, some subjects show

a larger face size (in pixels) than others.

 Males have larger faces than females: overall, all female faces seem to be

smaller in size (in pixels) than their male counterparts.

From the results found, a relation connecting the average face size to the

subject distance was deduced as presented in Figure 4.10:

Finally, by inspecting the images in Figure 4.11, we see that facial features

are minimal at a distance of 6 meters when face sizes are 20 – 22 pixels. Therefore, it

is advised that facial recognition should occur when the face size is larger than 22

pixels. More details regarding the relation of face size to recognition effectiveness is

outlined in section 4.3; Face Recognition.

4.2.3 Face-Detection Effectiveness Experiment

4.2.3.1 Objective

The objective of this experiment is to measure the effectiveness of the face

detection approach used in this project. The effectiveness in terms of detecting faces

in a dynamic, uncontrolled environment, while rejecting false-positives as well as

faces of unusable quality.

4.2.3.2 Description

The experiment was conducted in the lab of P08-L01 of the Electrical

Engineering Faculty of UTM. The experiment was conducted over a period of two

weeks; one week in each of the two locations in the lab. The locations where chosen

to capture most of the passing humans during working hours. Figure 4.12 shows the

113

two locations chosen for the experiment. The arrow locations are the locations the

cameras, and the arrow directions are the directions of the cameras’ field of view.

Figure 4.12: Locations where cameras where placed to capture faces.

Location

Location

114

When the program senses a motion in the camera view, it will check for faces

in the motion area, and if a face is found, then it is checked against the following

factors:

 Sharpness: Faces with a sharpness of 70% or more will be discarded. It was

found during testing that in most cases, face images have a sharpness index of

less than 60% while images having a sharpness index of over 70% were

found to be mostly of furniture or other items. It was found that only in rare

cases that a face sharpness index would be between 60% and 70%, such as,

for example, when a subject was STANDING STILL, facing the camera at a

close distance, well-lit and wearing thick glasses.

 Skin color content: Faces that contain less than 50% of skin color are

considered false positives. The skin color threshold was chosen

experimentally with face images of different subject of different skin color as

well as false-positive facial images. The best threshold values were then

recorded and used to filter out images with low skin-color content.

 Presence of Eyes: The last check is to try and detect whether a pair of eyes

do exist in the face image or not. This last filter ensures that face images

which passed the previous two filters for any reason are checked one last time

before being discarded or allowed to pass to the face recognition phase. Face

images that may pass the previous two filters may be those of unusable

quality which are faces that are not good enough to be used for recognition

purposes.

4.2.3.3 Setting

For this experiment, an A1-Pro webcam was used. This webcam has a

resolution of 640x480 and a frame rate of 30 fps. The cameras were placed to face

the walking direction of subjects.

In the first location, the first camera was placed with its back towards the

door, so that the face of any subject leaving the room would be captured as he/she

approached from distances of 0.5 to 6 meters. The camera would also capture any

subject in the room which is in its field of view. The second camera was placed

115

facing the door, so that when a subject enters, the camera captures an image of

his/her face at a distance of one meter or less. In the second location, the cameras

were located to capture subjects walking towards camera 1 or past camera 2. Figures

4.13 and 4.14 show the camera setting for both locations and the camera’s view in

these two locations.

(a) (b) (c)

Figure 4.13: The experiment setup at location 1

a) Setting, b) View of camera ‘A’, c) View of camera ‘B’

(a)

(b)

(c)

Figure 4.14: The experiment setup at location 2

a) The setting from the right, b) The setting from the front, c) The

view of one of the cameras

Both locations were well-lit with ceiling florescent lights. However this also

resulted in the faces being better lit in the spot directly under the florescent light,

while less so in other areas.

116

4.2.3.4 Results

Once the experiment was concluded, the results were gathered and tabulated

as shown below in Table 4.4:

Table 4.4: The results from the face detection experiment

Location 1 Location 2 Totals %

Skin Pass 1641 840 2481 56%

Eye Pass 184 315 499 11%

Sharpness Reject 39 3 42 1%

Blocked 204 1210 1414 32%

Total 2068 2368 4436 100%

Once the results were gathered, the number of correctly and incorrectly

blocked face images was calculated. The results from this calculation are shown in

Table 4.5 below:

Table 4.5: The results from calculating the correct and incorrect detections

Location1 Location 2 Totals %

Correct Skin Pass 1632 797 2429 98%

Incorrect Skin Pass 9 43 52 2%

Correct Eye Pass 184 315 499 100%

Incorrect Eye Pass 0 0 0 0%

Correct Sharpness Reject 39 2 41 98%

Incorrect Sharpness Reject 0 1 1 2%

Blocked

Images

Correctly

Blocked
119 897 1016 72%

Incorrectly

Blocked
85 313 398 28%

Total Correct Detected 1974 2011 3985 90%

Total Incorrectly Detected 94 357 451 10%

117

4.2.3.5 Discussion and Analysis

By examining the results in Table 4.4, we see that the total number of

blocked images is 32%; almost one third. This either means that the system is strict,

allowing only images that are surely face images, or that the initial phase is capturing

non-phase images and consequently, the filtration process is blocking most if not all

of them.

However, by examining Table 4.5, it becomes evident that over 1000 of those

images (roughly 25%) are in fact non-faces, which leads us to believe that the

method used for the initial detection of faces is not highly accurate, or at least, is not

well-suited to face detection of an uncontrolled environment video stream.

Also, by examining table 4.5, we observe that although using three different

filters to block false face images, around 10% (451 images out 4436) managed to go

through. This indicates that the conditions surrounding the capture of these faces is

rough; i.e. contains a lot of “noise” that affects the operation of the filters and results

in allowing non-faces to pass.

However, when examining the operation of each filter individually, we find

that the filters work to a very good standard. The skin-color detector filter as well as

the sharpness filter both have an efficiency of 98%, while the eye-detection filter has

a remarkable efficiency of 100%. However, this is the passing efficiency rather than

the blocking efficiency. This means that 98% or 100% of what passes through them

is correct.

To conclude, an efficiency of 91% for a video stream of an uncontrolled

environment with VGA video quality where indoor distances are anywhere from one

to six meters seems as a good achievement when compared with what other research

and commercial systems can achieve considering that this system is operating on a

live camera stream in an uncontrolled environment. Table 4.6 presents a concise

comparison with some of the previous research:

118

Table 4.6: Face detection efficiency comparison

Title Source
Image

Size
Environment Method Used

Detection

Rate

A multimodal

face detection

system for

elderly

companion

robot*

Images

from

live

camera
1

640x480** Uncontrolled

Integral Image

+ Adaboost +

Cascade

Classifiers

84.30%
A

A Robust

Face

Detection for

Human

Interactive

Mobile Robot

Still

images
200x150 Controlled

Skin-Color-

Content +

Correlated

based matching

89.15%
B

A robust skin

color based

face detection

algorithm

Still

images
2

640x480** Controlled

Combinational

Skin-Color-

Content

95.18%

Face

Detection in

Low-

resolution

Color Images

Still

images
3

6x6 and up

to 24x24
Controlled

12- bit

Modified

Census

Transform

89.75%
C

Current

Method

Live

video

feed

from

camera

1920x1080 Uncontrolled

Cascade

Classifiers +

Filters (Skin

Color,

Sharpness, Eye

Presence)

91%

The table headings refer to the following:

Source : Live Camera, Pre-recorded Video, Still Images or other

Environment : Controlled / Uncontrolled

Method Used : AdaBoost, Skin-Color or others.

Detection Rate : Average (mean) rate of face detection achieved.

*: Focuses on face tracking

**: Based on specifications obtained from the internet

1
 10Moons USB Camera is used. Specifications can be found at: http://www.dx.com/p/10moons-

d804rc-2-0mp-usb-2-0-web-camera-webcam-w-built-in-microphone-black-blue-145cm-cable-

173402#.VNrqtnvjWK8

2
 The face images in the used IIKT database are 140x100 pixels. More details can be found at:

https://books.google.com.my/books?isbn=3642133649

3
 Georgia Tech color frontal face database

http://www.dx.com/p/10moons-d804rc-2-0mp-usb-2-0-web-camera-webcam-w-built-in-microphone-black-blue-145cm-cable-173402#.VNrqtnvjWK8
http://www.dx.com/p/10moons-d804rc-2-0mp-usb-2-0-web-camera-webcam-w-built-in-microphone-black-blue-145cm-cable-173402#.VNrqtnvjWK8
http://www.dx.com/p/10moons-d804rc-2-0mp-usb-2-0-web-camera-webcam-w-built-in-microphone-black-blue-145cm-cable-173402#.VNrqtnvjWK8
https://books.google.com.my/books?isbn=3642133649

119

A: This is the percentage obtained without using environmental perception

(microphone, ultrasonic and infrared sensors)

B: Slow operation; face detection requires one second for an image size of 200x150;

therefore it’s impractical for real-time operation.

C: This is the average of the (highest detection rate + lowest detection rate) / 2.

Other papers have been reviewed, but they contain insufficient information to be

included in the comparison table:

 A Multiple Face Detection and Tracking System Based on TLD.

 Face Detection and Tracking for Human Robot Interaction through Service

Robot.

 Face Detection and Tracking using OpenCV

 Face detection in color images.

120

4.3 Face Recognition Related Experiment

4.3.1 General Objectives

The general objectives of the face recognition experiments is to examine the

effects of different parameters on the performance of the face recognizers hence

finding the best possible combination of values to use for face recognition.

4.3.2 Image Size vs Performance Experiment

4.3.2.1 Objective

This experiment has three objectives:

1. To compare the training speed of the different face recognizers when using

different sizes of training images.

2. To compare the recognition speed of the different face recognizers when

using different sizes of training images.

3. To compare the recognition effectiveness of the different face recognizers

when using different sizes of training images.

The results from this experiment will be a used as a guideline to determine

the image size that guarantees the best performance of this system during operation.

4.3.2.2 Description

Six sets of varying sizes of the same training images were prepared. The

experiment used a computer program to read the training images from the hard disk

and store them in a stack, then a timer (within the program) is started and a face

recognizer is allowed to use the images in the stack for its training. When the training

operation has completed, the timer is stopped and the elapsed time is measured and

recorded.

121

Then for the recognition phase, a timer is started prior to the recognition

event and stopped immediately after it. The elapsed time was calculated and stored in

a variable. The variable used accumulated all the recognition times for the all the test

images. When the recognition phase is over, the accumulative recognition time for

all the test images was saved.

The same operation was repeated for all the three face recognizers. The

experiment was then repeated for the same images, but of different dimensions. The

experiment started with a training image set of size 50x60 pixels, and progressively

used image sets of a larger size until it reached 300x360 pixels.

The same was done for the test images. Six sets were used starting with a size

of 50x60 pixels and gradually increasing up to 300x360. The number of test and

training images used was the same in all iterations.

4.3.2.3 Setting

The experiment was carried out on a laptop with the following specifications:

 Processor: i5 second generation, running at 2.3 GHz.

 Memory: 4 GB of RAM

 OS: Windows 7, 64 bit

The number of training images used was 219 facial images of 18 different

subjects with different posture, skin colors and facial expressions. The number of test

images used was 35, some relating to the people in the training set and others who

are considered as strangers.

Since the aim is not to measure the recognition capability of the recognizers

themselves, but rather to compare their relative capability and to give a sense of

practicality to the experiment, the number of training images was not uniform for all

the subjects. This is done to relate to practical situations in which a database may

contain a large number of training images for some subjects, but less training images

122

for other subjects for any reason. Table 4.7 shows the number of training images for

every subject:

Table 4.7: The number of images per subject

No. Name No. of Images

1 Luqman 3

2 Amirah 4

3 Marwan 5

4 Amri 8

6 Azrai 10

8 Vivi 10

10 Saifuddin 11

11 Ibraheem 13

12 Abdul-Rahman 15

13 Mahmood 15

14 Muhaimin 19

15 Go 21

16 Alaa 22

17 Habib 27

18 Mohammad 38

123

4.3.2.4 Results

During the experiment, the results were saved in a text file. The results were

later tabulated and Table 4.8 below shows the results from the experiment.

Table 4.8: The results from the experiment

Image

Size
FTT ETT LTT FRT ERT LRT FCR ECR LCR

50x60 4.798 4.229 3.451 0.023 0.168 1.751 19 13 15

100x120 11.828 15.365 14.919 0.078 1.198 4.178 22 15 19

150x180 23.207 31.088 33.010 0.132 2.670 7.425 22 13 17

200x240 37.699 54.025 59.537 0.216 4.989 11.663 21 14 14

250x300 57.335 83.760 93.398 0.286 7.528 17.060 21 15 12

300x360 78.193 115.522 131.602 0.387 10.777 23.252 20 15 11

Following is the legend for the abbreviations mentioned in the table above:

FTT : Fisher Training Time (milliseconds)

ETT : Eigen Training Time (milliseconds)

LTT : LBPH Training Time (milliseconds)

FRT : Fisher Recognition Time (milliseconds)

ERT : Eigen Recognition Time (milliseconds)

LRT : LBPH Recognition Time (milliseconds)

FCR : Fisher Correct Recognition (no. of images)

ECR : Eigen Correct Recognition (no. of images)

LCR : LBPH Correct Recognition (no. of images)

Table 4.9: The results per image, and recognition percentage

Image Size FTTPI ETTPI LTTPI FRTPI ERTPI LRTPI ATTfa3FR FCRP ECRP LCRP

50x60 21.909 19.312 15.760 0.105 0.766 7.995 8.866 54% 37% 43%

100x120 54.009 70.161 68.123 0.355 5.469 19.076 24.900 63% 43% 54%

150x180 105.967 141.953 150.729 0.604 12.192 33.903 46.699 63% 37% 49%

200x240 172.143 246.688 271.858 0.986 22.781 53.254 77.021 60% 40% 40%

250x300 261.805 382.466 426.476 1.306 34.373 77.900 113.578 60% 43% 34%

300x360 357.044 527.496 600.921 1.767 49.209 106.175 157.151 57% 43% 31%

124

Following is the legend for the abbreviations mentioned in Table 4.9:

FTTPI : Fisher Training Time Per Image (milliseconds)

ETTPI : Eigen Training Time Per Image (milliseconds)

LTTPI : LBPH Training Time Per Image (milliseconds)

FRTPI : Fisher Recognition Time Per Image (milliseconds)

ERTPI : Eigen Recognition Time Per Image (milliseconds)

LRTPI : LBPH Recognition Time Per Image (milliseconds)

ATTfa3FR : Accumulative Training Time for all 3 Face Recognizers (milliseconds)

FCRP : Fisher Correct Recognition Percentage

ECRP : Eigen Correct Recognition Percentage

LCRP : LBPH Correct Recognition Percentage

Figure 4.15: Individual training times for the three face recognizers

125

Figure 4.16: Individual recognition times per image for the three face recognizers

4.3.2.5 Discussion and Analysis

By examining the results in Table 4.8, we observe the following:

1. The training times are directly related to the size of the test images.

2. The recognition times are also directly correlated to the size of the test

images.

3. The image size of 100x120 seems to be the one that results in the highest

recognition rates across all the tested face recognizers.

4. Increasing the face image size does not ensure better recognition rate as can

be seen from the results. Using a moderately sized image size may yield

better results.

Examining Table 4.9 shows that the Fisher Faces face recognizer achieves the

highest recognition rate in all iterations of the experiment. This, coupled with the low

recognition time per image, makes the Fisher Faces face recognizer the best out of

the three. The Eigen Faces shows an almost steady recognition rate across all face

sizes, with a slight decrease at image sizes of 150x180 and a slight increase in

smaller and larger images. Also, as observed in Table 4.8, the image size of 100x120

achieves the best recognition results across the board, while requiring the minimum

(excluding the 50x60 size) time for training and recognition.

0

20

40

60

80

100

120

Ti
m

e
in

 M
ill

is
e

co
n

d
s

Image Size

Recognition Time Per Image

FRTIPI

ERTPI

LRTPI

126

By examining Figure 4.15, we observe that the training time for all the face

recognizers is quite low at the beginning for small sized images such as 50x60 pixels,

however, as the image size increases; the recognition times increases more rapidly

for the Eigen Faces, and even more so for the LBPH face recognizer. This means that

the rate-of-increment for the required training time vs. the image size is the lowest

for small images and highest for the largest image set to be used. Also the rate-of-

increment for the required training time vs. the image size is the lowest for Fisher

Face recognizer and the highest for the LBPH face recognizer.

By examining Figure 4.16, we observe the following:

1. The recognition time for all the Fisher and Eigen Faces face recognizers is

almost the same at the beginning for images sized 50x60 pixels, however, as

the image size increases; the recognition times increases rapidly for the Eigen

Faces as well as for the LBPH face recognizers. Since all three face

recognizers will be used in this project, Figure 4.16 suggests that using a

small image size such as 50x60 or at most 100x120 will ensure a low

accumulative recognition time, while using large images will increase the

accumulative recognition time to over 150 milliseconds rendering the system

less capable in responding to a volatile environment.

2. The recognition time for the Fisher face recognizer increases very little with

the increment in image size, while the recognition time for the LBPH face

recognizer increases by around ten folds and is almost 90x the recognition

time of the Fisher Faces face recognizer. This strongly rules out the use of

LBPH in systems where a large image size is to be used in face recognition

operations, and advices against its use in dynamic face recognition systems

unless necessary.

From the above figures and tables we conclude:

1. Using an image size of 100x120 yields the best results in training time,

recognition time, and recognition rate.

2. If the system seems to be slow in responding to a more dynamic environment,

then it may be possible to drop the Eigen Faces as well as the LBPH face

recognizers and only keep the Fisher Faces for face recognition operations.

127

3. In another scenario, it could be possible to use the Fisher face recognizer for

initial recognition, and only use the Eigen Faces or the LBPH face

recognizers, if the confidence returned by the Fisher Faces face recognizer is

low.

4.4 Obstacle Avoidance Related Experiments

4.4.1 General Objectives

The objective of this experiment was to test the effectiveness of the obstacle

avoidance capability feature of the robot and to adjust the sensor angles if necessary.

Two experiments were carried out and the specific objective of each experiment is

mentioned thereof.

4.4.2 Minimum and Maximum Detection Distance Experiment

4.4.2.1 Objective

The objective of this experiment is to test whether the sensors can detect

different objects or not, and if so at what distance. This is very important with

ultrasonic sensors as they have a limited range and their signal can deflect in

different directions depending on the geometry of the sensed object. This is the

reason why ultrasonic sensors fail to detect some objects in certain cases.

4.4.2.2 Description

This experiment was done in the lab while the sensors was stationary and the

different objects were advanced and/or retreated to measure the reading of the

sensors in different distances. Figure 4.17 shows the laptop and some of the objects

used in the experiment.

128

Figure 4.17: The laptop, circuit and some of the objects used in the experiment

In sequence, the different objects were placed at varying distances and the

sensor readings were recorded for the minimum and maximum detection distances.

4.4.2.3 Setting

The experiment was done in the lab on a table. This facilitated conducting the

experiment. Other settings are as follows:

 Sensor range is reported by the supplier (Cytron) to be 2 – 400 cm.

Other specifications can be obtained from Cytron’s website [123]

 Wall facing the sensor was 356 cm away (reported by the sensor as 3099 (that

means infinity according to the used sensor’s capability of 3 meters))

 Sensor angle = 7.8 degrees (This is due to the difficulty in obtaining an angle

of 7.125 degrees which was found by mathematical calculation in section

3.6.4)

 Sensor height from the ground (table top) = 8.8 cm. This was similar to the

actual height of the sensor when it is on the robot on the floor.

 Distance between the two sensors = 20 cm. This is corresponding to the value

in section 3.6.4 and matches the sensor placement on the robot.

 Sensors were horizontally placed.

A metal grid was

also tested as an

obstacle

129

Figure 4.18 shows different images taken before and during the experiment

that show the experiment setting.

Figure 4.18: The experiment setup

4.4.2.4 Results

The results obtained from the experiment show the readings from the left and

right sensors for each of the objects. Table 4.10 lists the values for the minimum and

maximum detection distance for the objects used in the experiment.

The measured distance columns contain two numbers each: the detected

distance (by the left of right sensor) and the actual measured distance using a

measuring tape. Although the sensor’s vendor specifies 2 cm as the minimum

detection distance, the sensor was practically capable of reporting distances as short

as 1 cm during detecting the distance to a carton box, as mentioned in Table 4.10.

(a) (b) (c)

130

Table 4.10: Results from the experiment of the ultrasonic sensors

4.4.2.5 Discussion and Analysis

The objects used in the experiment are examples of objects that the robot may

come across laying on the floor; flat objects resembling boxes, doors or walls,

cylindrical objects resembling plastic water bottles or soda cans as well as many

other types of objects of different shapes and sizes.

By examining the obtained results we find the following:

 Flat Objects: The sensors have no problem detecting a flat surface of any size

provided it’s on the same or higher than level than the sensors, which are at

8.8 cm above ground level. The sensors did not detect the small box which is

Left / Actual Right / Actual Left / Actual Right / Actual

Non Non Non 3099/356 3096/356 3099/356 3096/356

Box 13.5 x 31.5 9/7 9/7 263/263 134/132

Box 27.7 x 37.0 1/1 1/1 153 / 154 220/218

Box 39.0 x 31.5 1/1 1/1 220/218 232/234

Box 1.5 x 12.7 72/70 24/19 102/101 120/118

Box 12.7 x 1.5 none none none none

Small Bottle 6.6 x 23.0 24/19.5 32/28 38/35 71/68

Large Bottle 8.8 x 30.6 20/15 13/7 101/99 104/102

Corners Angle = 90 Deg. H = 37 8/0 6/0 47/20 22/17

Spherical Tennis ball 6.25 x 6.25 none none none none

Chair leg -

wheel in
4.0 x 9.5 29/4 33/27 97/90.2 128/97.3

Chair leg -

wheel out
4.0 x 9.5 45/0 23/0 90/70 43/38

Mesh metal

sheet, bent

inward

37.0 x 31.0 8/9 10/9 88/81 119/119

Mesh metal

sheet, bent

outward

37.0 x 31.0 7/3.3 6/3.3 69/64 70/64

Pole 25.5 x 132 40/36 23/18 68/65 53/66

Two Poles (36.5

cm in between)
25.5 x 132 non non non non

Two Poles (24

cm in between)
25.5 x 132 22/19.5 non 45/42 non

Max. Distance (cm)

Flat Objects

Cylindrical

Irregular

Non-Solid

Type Object
Diameter x H

OR W x H (cm)

Min. Distance (cm)

131

only 1.5 cm high, but then again, this kind of obstacle may not obstruct the

operation of the robot.

 Cylindrical: The sensors successfully detected the small and large water

bottles as well as the soda can at a reasonable distance.

 Spherical: The tennis ball was not detected, but this is not a problem because

objects such as a tennis ball, ping pong, or even a large spherical object such

as a football can safely collide with the robot and roll on.

 Irregular: Protruding chair legs were successfully detected by the sensors in

several orientations.

 Non-Solid: in this category, two distinct items were tested, one being the

metal mesh and the other being two steel poles. The sensors successfully

detected the metal mesh in both settings; inward bend and outward bent. The

poles were used to determine whether the robot would correctly sense the

distance in between and pass through or whether it will retract. The results

show that when the distance between the poles is large enough for the robot

to pass through (36.5 cm, while the robot is only 31 cm wide), then they are

not detected by the sensors, but when they are close to each other that they

block the passage of the robot (24 cm), then they are detected by the sensors.

An important factor is the maximum detection distance. This is because if the

robot can detect the obstacle at a far enough distance, then it can maneuver smoothly

without problems. If the distance was too close, then this could lead to a possible

collision if the robot failed to stop or change its course of motion.

132

4.5 Navigation Experiments

4.5.1 Practical Navigation Experiment

During the robot’s operation, it may detect subjects that are unrecognized and

therefore need to be authenticated to confirm whether they are permitted to be

present in the robot’s environment or not. For this reason this experiment was

conducted.

This experiment is important to test the potential of the system in

approaching and/or chasing subjects that are not authorized within the robot’s

environment.

4.5.1.1 Objective

The objective of this experiment is to test the operation and accuracy of the

tracking and navigation system of the robot in different situations. This is important

as it will highlight potential issues that may need attention, especially in dynamic and

volatile environments.

4.5.1.2 Description

The experiment starts off by allowing a subject to appear within the robot’s

environment. The robot is programmed to navigate to this person as would normally

happen when an unrecognized and unverified subject is encountered by the robot.

First, the robot’s motion and face detection cameras would locate the

subject’s initial location relative to the robot. The location information is passed onto

the tracking camera which tracks the motion and change in subject location. Next the

most recent location is used to determine the best approach path. Finally the robot

starts to approach the subject based on the latest location information.

133

If an obstacle is encountered the robot will avoid it by adjusting its path. The

tracking camera adjusts its direction to keep the subject within sight, once the

obstacle is avoided; the robot adjusts its path to continue to approach the subject.

The subject is allowed to move about whether to approach the robot or to try

to keep away from it, or even escape through the lab’s door. This is done to emulate

real-life situations in which a subject may respond by cooperating or holding back

from authenticating him/herself. Figure 4.19 shows the robot while navigating a

narrow corridor to approach a subject during the experiment.

(a) (b)

(c) (d)

Figure 4.19: The robot navigating and approaching a person during the experiment

134

4.5.1.3 Setting

The experiment was conducted in the P08 L02 research lab of the Faculty of

Electrical Engineering in UTM. The lab contains tables, chairs, as well as many other

different objects. Figure 4.20 shows the experiment environment setting.

Figure 4.20: The lab environment in which the experiment was conducted

A wide angle camera of 120 degrees and a 640x480 resolution was used to

locate and track the subject. The camera is positioned at a height of approximately

1.5 meters. The camera height can be adjusted to accommodate different

requirements and/or work environments. Positioning the camera at this height allows

the detection of short as well as tall humans. Figure 4.21 shows the robot used in the

experiment.

The robot was equipped with two ultrasonic sensors tilted inwards at

approximately 7 degrees to facilitate detection of different types of obstacles. Kindly

refer to the obstacle avoidance section for details regarding the ultrasonic sensors

used.

135

(a) The camera at the top (b) The equipment at the base

Figure 4.21: The robot used in the experiment

During the experiment, the subjects were allowed to move about (be

dynamic) to keep the robot from reaching them. The subjects were also allowed to

move the obstacles to test the robots maneuverability and change of path capability.

4.5.1.4 Results

The experiment was conducted in lab P08-02 in building P08 of the electrical

engineering department of UTM. Several experiments were conducted to test the

robot’s ability to detect subjects and approach them while avoiding obstacles. Table

4.11 shows the results that were gathered:

Camera

Ultrasonic
Sensors

136

Table 4.11: The results from the navigation experiment

Action
Completed

Successfully
Notes

Navigating towards

a static subject
Yes

The robot turns around to face the subject and

then continues to move towards him/her.

Navigating towards

a dynamic subject
Yes

The robot detects the subject initial position,

and turns around towards him/her. The robot

then continues to move towards the subject.

When the subject changes his/her location

during the robot’s approach, the robot changes

its course accordingly.

Navigating towards

a static subject with

an obstacle on the

way

Yes

The robot starts to move towards the subject,

when the robot encounters the obstacle; it

avoids it by changing its direction. When the

robot has cleared from the obstacle, it turns

around towards the subject to continue its

approach.

Navigating towards

a dynamic subject

with an obstacle on

the way

Yes

The robot starts by detecting the subject’s

initial position and starts moving towards

him/her. When the robot encounters the

obstacle on the way, it avoids it by changing

its movement direction. Since the robot is

equipped with a wide angle camera, it can

locate the position of the subject after clearing

the obstacle and turns around towards the

subject to continue its approach.

4.5.1.5 Discussion and Analysis

The results gathered from the experiment give several indications:

1. The robot is capable of detecting a subject from other object in the

background.

2. The robot is able to locate the subject with reference to the robot correctly.

137

3. The robot is able to navigate around obstacles while remaining on the same

task of approaching the subject.

4. Dynamic subject relocation does not affect the robot’s capability of tracking

and continuous approach of the subject.

During the experiment, the following issues were also observed:

 Vibrations resulting from the robot’s motion limits or prevents the robots

from detect faces in the video frame. Operation effectiveness is inversely

proportional to robot speed.

 The robot had to move somewhat slowly. This was due to increased

instability as the speed increased. Robot stability is inversely proportional to

robot speed.

 The faster the robot moves, the more complicated it becomes to coordinate

the programs in the laptop and Arduino (microcontroller). Component

operation coordination is inversely proportional to robot speed.

 The robot can steer smoothly towards the subject according to his/her

position with reference to the robot’s pose.

138

Summary

Many experiments were carried out to evaluate the different aspects relating

to the security robot. Each of the robot’s abilities were tested to find out the effects of

different parameters on their operation as well as their effectiveness in different

situations.

The camera’s field of view experiment helped to discover the most practical

camera to be used in the project which is capable of covering all 360 degrees with

the fewest number of cameras. The motion detection experiments helped in finding

the most suitable threshold to use to achieve the best balance between effectiveness

and stability in different lighting conditions.

The face size experiment helped in finding an equation to determine the

approximate distance of the subject from his/her face size as well as determining the

furthest distance for obtaining a practically usable face image using a Full-HD

camera rather in comparison to a camera with lower resolution such as normal HD or

VGA. The face detection experiment helped in finding the parameters that achieved

maximum operation speed while allowing a high accuracy of correct face detection.

The navigation experiment helped in coordinating the robot’s direction of

motion with the angle of the camera that is tracking the subject’s location. This was

done by applying proportionate voltage levels to the dc motors driving the wheel

relative to the location of the subject and the presence of obstacles.

The obstacle distance detection experiment helped in determining the

effectiveness of the sensors as well the used tilt angle, while the navigation

experiment helped shed light on the challenges associated with detecting a human

face on a moving robot while avoiding obstacles and calculating the required motion

to approach that person.

The face recognition experiment helped in finding the operational differences

between the different face recognizers as well as determine the best face image size

to be used to achieve best performance in terms of speed and accuracy.

139

The mentioned experiment were not the only conducted experiments. many

other minor experiment were also conducted during the project to test the operation

of the equipment, synchronizing them, coordinating their operation and determine

the best setting.

CHAPTER 5

CONCLUSION

5.1 Research Summary

In this research an attempt was made to design and build an autonomous

security robot that conducts its operation based on face recognition and password

authentication. The main robot operation involves many sub-tasks:

 Motion detection.

 Face detection.

 Face recognition.

 Navigation.

 Obstacle avoidance.

 Authentication.

Each of these processes is based on previously researched work conducted by

fellow researchers around the world. Here these processes were tested and

implemented based on a practical evaluation of the parameters involved. This

practical evaluation was done in order to fine tune the applied parameters and refine

and module’s operation and improve the outcome of the methods. In some cases new

approaches or novel methods were used to optimize the operation of these modules

to increase the efficiency of the robot operation.

141

The research objectives mentioned in section 1.2 have been met as follows:

 The robot has been equipped with 360 degree vision using three wide angle

cameras.

 The robot has been equipped with a fourth camera featuring Full-HD video

recording and image capturing capability. This camera was used to capture

images of detected subject.

 The robot successfully tracked and approached subjects as mentioned in

section 4.5.1.4 and shown in videos provided in the accompanying disk.

 Biometric subject verification was successfully performed using face-

recognition as mentioned in section 4.3.2.5

 Subject authentication was also successfully carried out as shown in Figure

3.33.

5.2 Contributions

The contributions of this work are divided into the following areas:

 Using three wide angle cameras to simultaneously conduct motion detection

of the area surrounding the robot resulting in the following benefits

eliminating the need for catadioptric (fisheye) cameras.

 The use of a Full-HD wide angle camera for face detection using the Viola

Jones method with skin-content verification. Face detection systems normally

use normal cameras in their operation; however, since the robot used in this

project conducts surveillance operations, the same wide-angle cameras used

for surveillance have been employed for face detection purposes.

 Simultaneous localization-of and navigation-towards a dynamic target based

on face or body location while avoiding static and dynamic obstacles in a

non-structured environment by an autonomous mobile robot.

142

 The use of multiple and diverse face recognition algorithms for recognizing a

person’s face in live video on a mobile robot. The Fisher faces method, Eigen

faces method and Local Binary Pattern Histogram method were used together

to recognizer a person’s face and determine his/her familiarity.

 Robot design: A different design of a security robot in which two dc motors

are used to drive four big wheels in a differential manner to increase stability

while maintaining high speed capability. Also, the robot has variable height

(150 – 160 cm) with the observation and monitoring apparatus located at the

top of the robot while the main robot weight is located at the base to improve

stability during operation.

5.2.1 Cost Comparison

One of the objectives of this work was to build a cost effective security robot. To

better highlight the contribution of this work, a comparison has been made between

the security robot presented in this work as well as commercially available security

robots in cost as well as specification.

Cost Comparison: (The prices are in US$)

Cost ASR 1.0 Knightscope’s K5 Gamma2Robotics’ Vigilant

Initial 1,000 - 45,000

3-Years Contract - 164250* 66,000

*K5’s cost breakdown:

1 hour = US$6.25; 24 hours = US$150.0

1 Year = 54,750.0; 3 Year = 164,250.0

143

5.2.2 Efficiency Comparison

The robot presented in this work boasts better efficiency than previous robots

research robots. Table 2.1 presents a general comparison of this robot in with

previous autonomous security robots used in research.

As can be seen in the table, the robot presented in this research is the only one

that performs all of the following inclusively:

 Better vision: 360 degrees vs. 90 degrees for most other robots.

 Face detection: Many of the other robots do not perform face

detection.

 Face recognition: Many of the other robots do not perform face

recognition.

 Authentication: Most of the other robots do not perform password

authentication.

All the above in addition to the speed of the robot (1.9 meters/second)

deduces a more efficient security operation when compared to previous autonomous

security robots.

144

5.3 Limitations and Future Work

Although the current work has been successful in conducting security

operations in the indoor environment of the robot, several possibilities for future

work exist:

 Using a PTZ camera to capture the eye image of a subject and use it to extract

the image of eye iris. This iris image can be used to further determine the

identity of the person. This would result in a more efficient security operation

and may limit or eliminate having to request a password entry by

unrecognized subjects. This would greatly automate the robot’s operation and

limit the number of times the robot has to approach a subject to request

him/her to verify his/her identity with a password entry or otherwise.

 Adding a capturing capability to enable the robot to capture intruders who fail

to verify their identity and refuse to leave the site. This could be a mechanical

structure attached to the robot body and activated in predetermined scenarios

and situations.

145

REFERENCES

[1] T. Theodoridis and H. Hu, “Toward Intelligent Security Robots: A Survey,”

IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev., vol. 42, no. 6, pp.

1219–1230, Nov. 2012.

[2] P. Lina, G. Bekeyb, and K. Abneyc, “Robots in War : Issues of Risk and

Ethics,” in Ethics and Robotics, 2009, pp. 49–67.

[3] D. Gonzales, D. Criswell, and E. Heer, “Automation and robotics for the

Space Exploration Initiative: results from Project Outreach,” 1991.

[4] “iRobot Robots for Defense & Security,” 2014. [Online]. Available:

http://www.irobot.com/us/learn/defense.aspx.

[5] A. Birk and H. Kenn, “Roboguard, a teleoperated mobile security robot,”

Control Eng. Pract., vol. 10, no. 11, pp. 1259–1264, 2002.

[6] M. Rasheed and I. Hussain, “Cost Effective Spy Ball Robot for Surveillance,

Rescue and Exploration,” Trans. Electron. Commun., vol. 57, no. 1, pp. 3–8,

2012.

[7] S. Ushio, K. Okada, Y. Kido, T. Kitahara, H. Tsuji, S. Moriguchi, M. Narita,

and Y. Kato, “A Home Security Service Robot System Using the Network

Service Platform and Its Implementation,” 2011 IEEE/IPSJ Int. Symp. Appl.

Internet, pp. 402–407, Jul. 2011.

[8] Y. Takahashi and I. Masuda, “A visual interface for security robots,” in Robot

and Human Communication, 1992. Proceedings., IEEE International

Workshop on, 1992, pp. 123–128.

[9] C. Lundberg and H. I. Christensen, “Assessment of man-portable robots for

law enforcement agencies,” Proc. 2007 Work. Perform. Metrics Intell. Syst. -

Permis ’07, pp. 76–83, 2007.

[10] H. R. Everett, E. B. Pacis, G. Kogut, N. M. Farrington, and S. Khurana,

“Towards a Warfighter’s Associate: Eliminating the Operator Control Unit

H.R.,” pp. 267–279, Dec. 2004.

[11] C. h. Kuo, C. c. Chen, W. c. Wang, Y. c. Hung, E. c. Lin, K. m. Lee, and Y.

m. Lin, “Remote Control Based Hybrid-Structure Robot Design for Home

Security Applications,” 2006 IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp.

4484–4489, Oct. 2006.

[12] J. Lee, H. S. S. Oh, J. Hong, J. Kyounghwan, H. Kwon, and J. Kim,

“Operating a six-legged outdoor patrol robot,” 2007 Int. Conf. Control. Autom.

Syst., pp. 1034–1039, 2007.

146

[13] L.-Y. Chung, “Remote Teleoperated and Autonomous Mobile Security Robot

Development in Ship Environment,” Math. Probl. Eng., vol. 2013, pp. 1–14,

2013.

[14] J. Ryu, B. Yoo, and T. Nishimura, “Service Robot Operated by CDMA

Networks for Security Guard at Home,” in Service Robot Applications,

Yoshihiko Takahashi, Ed. INTECH, 2008.

[15] J.-G. Ryu, S.-K. Kil, H.-M. Shim, S.-M. Lee, E.-H. Lee, and S.-H. Hong, “SG-

Robot: CDMA network-operated mobile robot for security guard at home,” in

IEEE International Conference on Intelligence and Security Informatics,

2006, pp. 633–638.

[16] Je-Goon Ryu, H.-M. Shim, S.-K. Kil, E.-H. Lee, H.-H. Choi, and S.-H. Hong,

“Design and implementation of real-time security guard robot using CDMA

networking,” in ICACT, 2006, pp. 1901–1906.

[17] J. Liu, M. Wang, and B. Feng, “iBotGuard: an Internet-based intelligent robot

security system using invariant face recognition against intruder,” Syst. Man,

Cybern. Part C Appl. Rev. IEEE Trans., vol. 35, no. 1, pp. 97–105, 2005.

[18] A. Eydgahi, T. Olowoporoku, and P. Matin, “Design and Implementation of a

Wireless Security Robot,” in laccei.org, 2011, pp. 1–10.

[19] B. L. Sefidgari, “Human Body Detection and Safety Care System for a Flying

Robot,” in ICAITA, 2013, pp. 317–325.

[20] Y. Do, G. Kim, and J. Kim, “Omnidirectional vision system developed for a

home service robot,” 2007 14th Int. Conf. Mechatronics Mach. Vis. Pract., pp.

217–222, Dec. 2007.

[21] D. Di Paola, D. Naso, A. Milella, and G. Cicirelli, “Multi-sensor surveillance

of indoor environments by an autonomous mobile robot,” Int. J. Intell. Syst.

Technol. Appl., vol. 8, no. 1, pp. 18–35, 2010.

[22] R. Li, L. Zhao, L. Ge, L. Sun, and T. Gao, “The development of a general type

of security robot,” in Robotics and Biomimetics, 2007. ROBIO 2007. IEEE

International Conference on, 2007, pp. 47–52.

[23] T.-H. S. Li, C.-Y. Chen, H.-K. Huang, and Y.-C. Yeh, “Design and

implementation of sensor fusion based behavior strategies for a surveillance

and security robot team,” 2008 SICE Annu. Conf., vol. 2, no. d, pp. 2968–

2972, Aug. 2008.

[24] J. Zhang, G. Song, G. Qiao, T. Meng, and H. Sun, “An indoor security system

with a jumping robot as the surveillance terminal,” IEEE Trans. Consum.

Electron., vol. 57, no. 4, pp. 1774–1781, Nov. 2011.

147

[25] X. Wu, H. Gong, P. Chen, Z. Zhong, and Y. Xu, “Surveillance Robot Utilizing

Video and Audio Information,” J. Intell. Robot. Syst., vol. 55, no. 4–5, pp.

403–421, Jan. 2009.

[26] X. Wu, H. Gong, P. Chen, Z. Zhi, and Y. Xu, “Intelligent household

surveillance robot,” 2008 IEEE Int. Conf. Robot. Biomimetics, pp. 1734–1739,

Feb. 2009.

[27] J. Park and K. B. Sim, “A design of mobile robot based on Network Camera

and sound source localization for intelligent surveillance system,” 2008 Int.

Conf. Control. Autom. Syst., pp. 674–678, Oct. 2008.

[28] Z. Cheng, X. Zhang, S. Yu, Y. Ou, X. Wu, and Y. Xu, “A surveillance robot

with human recognition based on video and audio,” 2010 IEEE Int. Conf.

Robot. Biomimetics, pp. 1256–1261, Dec. 2010.

[29] P. Bedi, R. Singh, and T. Matharu, “Ensuring security in a closed region using

robot,” Comput. Intell. …, 2010.

[30] M. Li, L. Sun, and Q. Huang, “GPRS Based Guard Robot Alarm System

Design,” in Internet Computing for Science and Engineering (ICICSE), 2009

Fourth International Conference on, 2009, pp. 211–216.

[31] K. Lee and C. Seo, “Development of user-friendly intelligent home robot

focused on safety and security,” in International Conference on Control,

Automation and Systems, 2010, pp. 389–392.

[32] Z. DehuaI, X. Gang, Z. Jinming, and L. Li, “Development of a mobile

platform for security robot,” in International Conference on Automation and

Logistics, 2007, no. 200642, pp. 1262–1267.

[33] D. Vu, K. Hoganson, and D. Ph, “Student Projects : Security Robot Design,”

in The 49th Annual Southeast Regional Conference, 2011, pp. 287–289.

[34] D. Di Paola and A. Milella, “An autonomous mobile robotic system for

surveillance of indoor environments,” Int. J. Adv. Robot. Syst., vol. 7, no. 1,

pp. 19–26, 2010.

[35] A. Treptow, G. Cielniak, and T. Duckett, “Active people recognition using

thermal and grey images on a mobile security robot,” 2005 IEEE/RSJ Int.

Conf. Intell. Robot. Syst., pp. 2103–2108, 2005.

[36] G. Cielniak, “People tracking by mobile robots using thermal and colour

vision,” Orebro University, 2007.

[37] S. W. Gordon, S. Pang, R. Nishioka, and N. Kasabov, “Vision Based Mobile

Robot for Indoor Environmental Security,” in ICONIP 2008, 2009, pp. 962–

969.

148

[38] A. M. Pinto, a. P. Moreira, M. V. Correia, and P. G. Costa, “A Flow-based

Motion Perception Technique for an Autonomous Robot System,” J. Intell.

Robot. Syst., vol. 75, no. 3–4, pp. 475–492, 2014.

[39] C. H. Chen, “Automated Surveillance Systems with Multi-Camera and

Robotic Platforms,” University of Tennessee - Knoxville, 2009.

[40] R. P. Smurlo, “Intelligent Security Assessment for a Mobile Robot,” San

Diego, CA, USA, 1993.

[41] M. T. Wolf, C. Assad, Y. Kuwata, A. Howard, H. Aghazarian, D. Zhu, T. Lu,

A. Trebi-Ollennu, and T. Huntsberger, “360-Degree Visual Detection and

Target Tracking on an Autonomous Surface Vehicle,” J. F. Robot., vol. 27,

no. 6, pp. 819–833, Nov. 2010.

[42] P. Chakravarty and A. Zhang, “Anomaly detection and tracking for a

patrolling robot,” in Australasian Conference on Robotics and Automation,

2007.

[43] M. tiga Zacharie, “Intelligent OkiKoSenPBX1 security patrol robot via

network and map-based route planning,” J. Comput. Sci., vol. 5, no. 1, pp. 79–

85, 2009.

[44] R. Luo, T. Hsu, and K. Su, “The development of a multisensor based

intelligent security robot: Chung Cheng# 1,” Mechatronics, 2005. ICM’05.

IEEE …, pp. 970–975, 2005.

[45] R. Luo, T. Hsu, T. Lin, and K. Su, “The development of intelligent home

security robot,” in International Conference on Mcchatronics, 2005, pp. 422–

427.

[46] M. Chiu, T.-S. Lan, and S. Hwang, “Development of a Real-Time Task

Editable Service-Oriented Security Robot,” J. Interdiscip. Math., vol. 15, no.

4–5, pp. 239–259, Aug. 2012.

[47] Y. Chen, S. Abhyankar, L. Xu, W. T. Tsai, and M. Garcia-Acosta,

“Developing a Security Robot in Service-Oriented Architecture,” in 12th

IEEE International Workshop on Future Trends of Distributed Computing

Systems, 2008, pp. 106–111.

[48] Y. Chen and W. Tsai, “Development of a Security Robot in Service-Oriented

Architecture,” 2008.

[49] Y. Kim, H. Kim, S. Lee, and K. Lee, “Ubiquitous Home Security Robot Based

on Sensor Network,” 2006 IEEE/WIC/ACM Int. Conf. Intell. Agent Technol.,

pp. 700–704, 2006.

[50] Y. Kim, H. Kim, S. Yoon, S. Lee, and K. Lee, “Home Security Robot based

on Sensor Network,” in SICE-ICASE International Joint Conference, 2006,

pp. 5977–5982.

149

[51] G. Song, K. Yin, Y. Zhou, and X. Cheng, “A surveillance robot with hopping

capabilities for home security,” IEEE Trans. Consum. Electron., vol. 55, no. 4,

pp. 2034–2039, Nov. 2009.

[52] G. K. Dey, R. Hossen, M. S. Noor, and K. T. Ahmmed, “Distance controlled

rescue and security mobile robot,” 2013 Int. Conf. Informatics, Electron. Vis.,

pp. 1–6, May 2013.

[53] R. Luo and P. Wang, “Navigation and mobile security system of intelligent

security robot,” in International Conference on Industrial Technology, 2005,

pp. 260–265.

[54] C. Chang, K. Chen, H. Lin, C. Wang, and J. Jean, “Development of a patrol

robot for home security with network assisted interactions,” SICE Annu. Conf.

2007, pp. 924–928, Sep. 2007.

[55] T. L. Chien, K. L. Su, and J. H. Guo, “The Multiple Interface Security Robot –

WFSR-II,” in International Workshop on Safety, Security and Rescue

Robotics, 2005, no. June, pp. 69–74.

[56] R. Luo, Y. Chou, and C. Liao, “NCCU security warrior: An intelligent

security robot system,” in The 33rd Annual Conference of the IEEE Industrial

Electronics Society, 2007, vol. Nov., pp. 2960–2965.

[57] H. Lee, W. Lin, and F. Lian, “Hybrid Wireless Indoor Surveillance Robotic

System,” Inf. Technol. J., vol. 13, no. 13, pp. 2187–2195, 2014.

[58] K. Kim, S. Bae, and K. Huh, “Intelligent surveillance and security robot

systems,” in IEEE Workshop on Advanced Robotics and its Social Impacts,

2010, pp. 70–73.

[59] H.-T. Lee, W.-C. Lin, and C.-H. Huang, “Indoor Surveillance Security Robot

with a Self-Propelled Patrolling Vehicle,” J. Robot., vol. 2011, pp. 1–9, 2011.

[60] H. Lee, W. Lin, C. Huang, and Y. Huang, “Wireless Indoor Surveillance

Robot,” 2011, pp. 2164–2169.

[61] P. Prashanth, “Wi-Bot In Defence Using Ad-Hoc Communication Networks,”

Int. J. Innov. Res. Dev., vol. 2, no. 8, pp. 361–367, 2013.

[62] W. Yu, J. Lee, H. Chae, K. Han, Y. Lee, and M. Jang, “Robot task control

utilizing human-in-the-loop perception,” RO-MAN 2008 - 17th IEEE Int.

Symp. Robot Hum. Interact. Commun., pp. 395–400, Aug. 2008.

[63] M. Seeman, M. Broxvall, and A. Saffiotti, “Virtual 360° Panorama for

Remote Inspection,” in International Workshop on Safety, Security and

Rescue Robotics, 2007, no. September.

[64] A. C. Caputo, Digital Video Surveillance and Security. Butterworth-

Heinemann, 2014.

150

[65] H. Kruegle, CCTV Surveillance: Video Practices and Technology.

Butterworth-Heinemann, 2011.

[66] B. P. Lin, “Drone-Ethics Briefing : What a Leading Robot Expert Told the

CIA,” The Atlantic, no. 15, pp. 1–12, 2011.

[67] A. R. Hunt, “Use of a Frequency-Hopping Radar for Imaging and Motion

Detection Through Walls,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5,

pp. 1402–1408, 2009.

[68] R. Rinehart and E. Garvey, “Three-dimensional storm motion detection by

conventional weather radar,” Nature, pp. 287 – 289, May-1978.

[69] R. Suzuki and S. Otake, “Monitoring daily living activities of elderly people in

a nursing home using an infrared motion-detection system,” Telemed. J. e-

Health, vol. 12, no. 2, pp. 146–155, 2006.

[70] H. Everett, “Robotic security systems,” Instrumentation & Measurement

Magazine, IEEE, no. 4, pp. 30 – 34, 2003.

[71] R. Barnard, Intrusion detection systems. Springer Science & Business Media,

2008.

[72] S. Cheung, S. Coleri, and B. Dundar, “Traffic measurement and vehicle

classification with single magnetic sensor,” Transp. Res. Rec. J. Transp. Res.

Board, vol. 1917, pp. 173–181, 2006.

[73] T. Gandhi and M. M. Trivedi, “Motion analysis for event detection and

tracking with a mobile omnidirectional camera,” Multimed. Syst., vol. 10, no.

2, pp. 131–143, Aug. 2004.

[74] R. Stolkin, D. Rees, M. Talha, and I. Florescu, “Bayesian fusion of thermal

and visible spectra camera data for region based tracking with rapid

background adaptation,” 2012 IEEE Int. Conf. Multisens. Fusion Integr. Intell.

Syst., pp. 192–199, Sep. 2012.

[75] G. Bradski, “{The OpenCV Library},” Dr. Dobb’s J. Softw. Tools, 2000.

[76] P. Kaewtrakulpong and R. Bowden, “An Improved Adaptive Background

Mixture Model for Real- time Tracking with Shadow Detection 2 Background

Modelling,” pp. 1–5, 2001.

[77] M. Yang, D. J. Kriegman, S. Member, and N. Ahuja, “Detecting Faces in

Images : A Survey,” vol. 24, no. 1, pp. 34–58, 2002.

[78] C. Patil and G. Dhoot, “Face Detection Techniques-A Review,” Int. J. Curr.

Eng. Technol., vol. 3, no. 5, pp. 1809–1813, 2013.

[79] R. Hsu, “Face detection in color images,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 24, no. 5, pp. 1–23, 2002.

151

[80] S. K. Singh, D. S. Chauhan, M. Vatsa, and R. Singh, “A Robust Skin Color

Based Face Detection Algorithm,” vol. 6, no. 4, pp. 227–234, 2003.

[81] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of

simple features,” in Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2001, vol. 1.

[82] P. Viola and M. Jones, “Robust real-time face detection,” Int. J. Comput. Vis.,

vol. 57, no. 2, pp. 137–154, 2004.

[83] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs.

fisherfaces: Recognition using class specific linear projection,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, 1997.

[84] M. a. Turk and a. P. Pentland, “Face recognition using eigenfaces,”

Proceedings. 1991 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

pp. 586–591, 1991.

[85] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with local binary

patterns,” in Proc. of the European Conference on Computer Vision (ECCV),

2004, pp. 469–481.

[86] Q. Xiao, “Trusted User Authentication Using Biometrics,” Ottawa, Canada,

2002.

[87] A. Jesudoss and N. P. Subramaniam, “A Survey on Authentication Attacks

and Countermeasures,” Indian J. Comput. Sci. Eng., vol. 5, no. 2, pp. 71–77,

2014.

[88] R. Awasthi and R. Ingolikar, “A Study of Biometrics Security System,” Int. J.

Innov. Res. Dev., vol. 2, no. 4, pp. 737–760, 2013.

[89] B. R. Fussell, “Authentication : The Development of Biometric Access

Control,” ISSA J., no. July, 2005.

[90] “Face Authentication,” 2014. .

[91] “Fingerprint scanner,” 2014. .

[92] “Iris Authentication,” 2014. .

[93] K. Delac and M. Grgic, “A survey of biometric recognition methods,” in 46th

International Symposium Electronics in Marine, 2004, no. June, pp. 16–18.

[94] R. Shoja Ghiass, O. Arandjelović, A. Bendada, and X. Maldague, “Infrared

face recognition: A comprehensive review of methodologies and databases,”

Pattern Recognit., vol. 47, no. 9, pp. 2807–2824, Sep. 2014.

152

[95] S. G. Kong, J. Heo, B. R. Abidi, J. Paik, and M. a. Abidi, “Recent advances in

visual and infrared face recognition—a review,” Comput. Vis. Image Underst.,

vol. 97, no. 1, pp. 103–135, Jan. 2005.

[96] G. Ramkumar and M. Manikandan, “Face Recognition - Survey,” Int. J. Adv.

Sci. Technol., vol. 1, no. 1, pp. 260–268, 2013.

[97] P. W. Han, C. Ji, S. M. Wang, D. X. Zhang, and D. Yang, “Design of an

Authentication System Based on Face Recognition and the Second Generation

ID Detection,” Adv. Mater. Res., vol. 542–543, pp. 968–971, Jun. 2012.

[98] G. H. Fisher and R. L. Cox, “Recognizing human faces,” Appl. Ergon., vol. 6,

no. 2, pp. 104–109, 1975.

[99] G. Guo, S. Li, and K. Chan, “Face recognition by support vector machines,” in

Fourth IEEE International Conference on Automatic Face and Gesture

Recognition, 2000.

[100] B. Heisele, P. Ho, and T. Poggio, “Face recognition with support vector

machines: Global versus component-based approach,” in Eighth IEEE

International Conference on Computer Vision, 2001, no. Vol 2., pp. 688 –

694.

[101] M. Bartlett and T. t Sejnowski, “Independent componentsof face images: A

representationfor face recognition,” 1997.

[102] S. H. Lin, S. Y. Kung, and L. J. Lin, “Face recognition/detection by

probabilistic decision-based neural network.,” IEEE Trans. Neural Netw., vol.

8, no. 1, pp. 114–32, Jan. 1997.

[103] T. Kanade, Computer recognition of human faces. Birkhauser Verlag Basel,

1977.

[104] F. Samaria and S. Young, “HMM-based architecture for face identification,”

Image Vis. Comput., vol. 12, no. 8, pp. 537–543, Oct. 1994.

[105] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models

’98,” Comput. Vision—ECCV’98, pp. 484–498, Jun. 1998.

[106] T. Cootes, G. Edwards, and C. Taylor, “Active appearance models 2001,”

IEEE Trans. pattern …, vol. 23, no. 6, pp. 681–685, 2001.

[107] V. Blanz and T. Vetter, “A morphable model for the synthesis of 3D faces,”

Proc. 26th Annu. Conf. Comput. Graph. Interact. Tech. - SIGGRAPH ’99, pp.

187–194, 1999.

[108] and J. J. A. Penev, Penio S., “Local Feature Analysis: A General Statistical

Theory for Object Representation,” Netw. Comput. neural Syst., vol. 7, no. 3,

pp. 477–500, 1996.

153

[109] a Lanitis, C. Taylor, and T. Cootes, “Automatic face identification system

using flexible appearance models,” Image Vis. Comput., vol. 13, no. 5, pp.

393–401, Jun. 1995.

[110] J. Huang, B. Heisele, and V. Blanz, “Component-based face recognition with

3D morphable models,” in 4th International Conference, AVBPA, 2003, pp.

27–34.

[111] S. Angle, R. Bhagtani, and H. Chheda, “Biometrics: A further echelon of

security,” in The First UAE International Conference on Biological and

Medical Physics, 2005.

[112] D. Bryliuk and V. Starovoitov, “Access control by face recognition using

neural networks,” УДК, vol. 681, no. 01, pp. 681–327, 2002.

[113] C. Adams, “One-Time Password,” in Encyclopedia of Cryptography and

Security, Henk C. A. van Tilborg, Ed. Springer US, 2005, pp. 443–452.

[114] M. O. Rayes, “One-Time Password,” Encycl. Cryptogr. Secur., pp. 885–887,

2011.

[115] L. Lamport, “Password authentication with insecure communication,”

Commun. ACM, vol. 24, no. 11, 1981.

[116] L. Zhang and Y. Liang, “Motion Human Detection Based on Background

Subtraction,” 2010 Second Int. Work. Educ. Technol. Comput. Sci., pp. 284–

287, 2010.

[117] Z. Minghan, L. Dayong, and C. Qianxia, “Moving objects detection algorithm

based on two consecutive frames subtraction and background subtraction,”

Comput. Autom. Meas. Control, vol. 3, 2005.

[118] G. McComb, Robot builder’s bonanza. McGraw-Hill, Inc., 2003.

[119] L. Bruzzone and G. Quaglia, “Review article: locomotion systems for ground

mobile robots in unstructured environments,” Mech. Sci., vol. 3, no. 2, pp. 49–

62, Jul. 2012.

[120] O. Jahanian and G. Karimi, “Locomotion Systems in Robotic Application,”

2006 IEEE Int. Conf. Robot. Biomimetics, pp. 689–696, 2006.

[121] T. W. Manikas, K. Ashenayi, and R. L. Wainwright, “Genetic Algorithms for

Autonomous Robot Navigation,” IEEE Instrumentation & Measurement

Magazine, no. 6, pp. 26–31, Dec-2007.

[122] Y. J. Shen and B. C. Zhong, “Intelligent Access Control and Monitoring

System,” Appl. Mech. Mater., vol. 437, pp. 659–662, Oct. 2013.

[123] Cytron, “Cytron’s Website,” 2014. .

154

APPENDIX A

Below is the software program listing that was used on the laptop driving the robot.

The program is written in C++ and uses the libraries of OpenCV 2.4.8.

#include "stdafx.h" // required by Visual Studio

#include <iostream> // for screen input & output
#include <fstream> // for file input & output
#include <string> // for handling strings and wide-strings ((names
and the like))
#include <Windows.h> // for organizing the different windows on the screen
#include <direct.h> // for 'mkdir' ((Creating folders))
#include <ctime> // for calculating time intervals
#include <sapi.h> // for speech

#include "contrib\contrib.hpp" // for <FaceRecgnizer> and
createFisherFaceRecognizer>
#include "highgui\highgui.hpp" // for VideoCapture & waitKey
#include "objdetect\objdetect.hpp" // for cascade classifiers
#include "imgproc\imgproc.hpp" // for cvtColor, resizes &
equalizeHist

#define Ffactor 46000 // A division factor which results in the
Fisher confidence being between 0 & 100 % (sometimes more than 100)
#define Efactor 240000 // A division factor which results in the
Eigen confidence being between 0 & 100 % (sometimes more than 100)
#define Lfactor 3250 // A division factor which results in the LBPH
confidence being between 0 & 100 % (sometimes more than 100)

#define RightCam 1
#define FrontCam 0
#define LeftCam 2
#define FHDcam 4

using namespace std;
using namespace cv;

/**
/////////////////////// START of EXTERNAL FUNCTIONS /////////////////////*/

//========== INITIALIZATION ==========
// A welcome and introduction message
HWND IntializeWelcome(void);

// Reads the images and labels for face recognition for face recognition
purposes
int ReadTrainingImages(vector<Mat>&,vector<int>&); // vector=the images
and their labes

//========== MAIN OPERATIONS ==========

155

// This function finds whether motion has occured, and if so, where in the
frame image
// Rect : Area of detected motion.
// Image1 : The first image to be compared for motion detection
// Image2 : The second image to be compared for motion detection
// Threshold: The threshold to be used (15 is best)
// Extra : Expand the are motion of motion by 'Extra' pixels in each
direction.
int LMX3(Rect Motion_Matrix[], Mat Image_1,Mat Image_2,int Threshold, int
Xtra,int Separation_Distance);

// This function aims the Full-HD camera towards the area where motion has
been detected
void AimFHDcam5_2(Mat Frame_Image, Rect Face_Region, int FoV, int FHDAngle[6],
float Increase_in_angle_Percentage);
void CenterFHDcam(void);

// This function aimes the Non-Stationary wide angle camera while approaching
the subject
int AimWAcam3(Mat Frame_Image, Rect Face_Region, int FoV, int Previous_Angle);
int CenterWAcam(void);

// This function finds the largest face inside the 'Image' using the haar
cascades (Viola Jones) method
Rect FindLrgstFace3(CascadeClassifier TheDetector, Mat Image_To_Be_Searched,
int FaceSize_To_Search_For, float Skin_Thrshld, float Sharpness_Thrshld,bool
Save_Image);

// This function finds the largest body inside the 'Image'
Rect FindLrgstBody(Mat Image, CascadeClassifier
FirstBodyCascade,CascadeClassifier SecondBodyCascade,CascadeClassifier
ThirdBodyCascade, int Sz);

// This function makes the robot approach the subject using left and right
motor power level control
void Approach7wi(int Tracking_Camera_Angle,int Power_Level_Percentage, Mat
Frame_Image,int Frame_Img_Counter);

void RobotMotors(int LeftMotor,int RightMotor);

// This function checks the frame image for corruption
bool CheckFrame(VideoCapture Camera, Mat CameraFrame, int Iterations);

// This function shows text on a graphic window
void Print(Mat The_Image_Name,int The_Line_Number,String The_Text);

// This function shows an image with two rectangles in it and waits for a
certain period. It may also resize the image before displaying it
void Show2(Mat Image2BDisplayed,string Window_Title, Rect First_Rect_Red, Rect
Second_Rect_Purple, int Wait_Period, bool Destroy);
void Show2(Mat Image2BDisplayed,string Window_Title, int x_Coord, int y_Coord,
Rect First_Rect_Red, Rect Second_Rect_Purple,
 int Wait_Period, bool Destroy);

void Show2(Mat Image2BDisplayed,string Window_Title, int x_Coord, int y_Coord,
Rect First_Rect_Red, Rect Second_Rect_Purple,
 int Wait_Period, bool Destroy, int Resiz_To_Width, int
Resiz_To_Height);

// Show (graphic window) and wait (waitKey) for some time

156

int SnW(int Wait_Tim_Millisec);

// This function outputs the message as speech as well as display it on the
console window
bool Say(string saying);

// This function copies a part of an array to another array (both intger)
void CopyArray(int Source_Array[], int Starting_Cell, int Last_Cell, int
Destination_Array[]);

// This function crops the face image from one or two sides
Mat FixedFaceCrop(Mat Face_Image,int Desired_Face_Width_To_Crop_To);

// This function reads the DIP switch
int ReadDIP(void);

////////////////////////// END of EXTERNAL FUNCTIONS ///////////////////////
/**/

// General Declerations
HWND CMDhandle; // CmndWnd is the handle number of
the command window
Mat Status; // The image that is dedicated to
showing text information that's related to the program operation
string Names[100]; // The array that will be used to
find the name of a subject from his label
string PixFolder="D:\\Faces\\100x120\\"; // The folder containing the images
and the text file of the names

//===
//-------------------------------- START OF MAIN ---------------------------

int main()
{
//############################## DECLARATIONS ###############################
// Video & Camera Capture Related
 int CrCm=0; // The current camera which is being viewed
 int PrvCm; // The previous camera that was being viewed
 string Ans;
 VideoCapture Cam[5];

// Motion Detection Related
 int ImgCounter=0; // This counter is used to give the saved
images a number so as not to overwrite one another
 int NMR=0; // Number of Motion Regions
 int LMR; // Largest Motion Region
 int LMW; // Largest Motion Width
 Mat WAFrame; // The Current Frame image to detect motion
 Mat PrvFrame[3]; // The previous frame image that will be
compared with (continue reading in the next line)
 Mat SrchRgnImg; // The image in which a face will be
searched for
 Mat DisplayedFrame; // The frame to be displayed
 Rect Motion[50]; // The rectangle containing the motion in
the frame
 Rect LFRg(0,0,0,0); // Largest Detected Face Region during
motion detection

157

 Rect LBRg(0,0,0,0); // Largest Detected Body Region during
motion detection
 Rect LSRg(0,0,0,0); // Largest Detected Subject Region. This
will either become LFRg or LBRg during operation depending on calculations
 String DtctdRgn;

//// Face Detection Related
// General
 int fd; // The face detector loop counter variable
 CascadeClassifier FaceDetector[5];
 string FaceDetectorName[5];
 FaceDetectorName[0]=
"C:\\OpenCV2.4.8\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml
";
 FaceDetectorName[1] =
"C:\\OpenCV2.4.8\\sources\\data\\haarcascades\\haarcascade_frontalface_alt2.xm
l";
 FaceDetectorName[2] =
"C:\\OpenCV2.4.8\\sources\\data\\haarcascades\\haarcascade_frontalface_alt_tre
e.xml";
 FaceDetectorName[3] =
"C:\\OpenCV2.4.8\\sources\\data\\haarcascades\\haarcascade_frontalface_default
.xml";
 FaceDetectorName[4] =
"C:\\OpenCV2.4.8\\sources\\data\\haarcascades\\haarcascade_profileface.xml";
 vector <Rect> DetectedFaces; // A sort of an array holding
all the Detected Faces
// Wide Angle Cam Specific
 int FaceWin; // The face-search window size
 Rect WALFRg; // Largest face region in the Full HD camera.

// Body detection related
 Rect FoundBody;
 CascadeClassifier Bdy[3];
 string BodyCascadeName[3];
 BodyCascadeName[0] =
"C:\\OpenCV2.4.8\\sources\\data\\haarcascades\\haarcascade_upperbody.xml";
 BodyCascadeName[1] =
"C:\\OpenCV2.4.8\\sources\\data\\haarcascades\\haarcascade_mcs_upperbody.xml";
 BodyCascadeName[2] =
"C:\\OpenCV2.4.8\\sources\\data\\haarcascades\\haarcascade_fullbody.xml";
 vector <Rect> DetectedBodies;

// Eye detection related
 CascadeClassifier SmallEyeCascade;
 CascadeClassifier BigEyeCascade;
 CascadeClassifier OtherEyeCascade;
 string SmallEyeCascadeName =
"C:\\OpenCV2.4.8\\sources\\data\\haarcascades\\haarcascade_mcs_eyepair_small.x
ml";
 string BigEyeCascadeName =
"C:\\OpenCV2.4.8\\sources\\data\\haarcascades\\haarcascade_mcs_eyepair_big.xml
";
 string OtherEyeCascadeName =
"C:\\OpenCV2.4.8\\sources\\data\\haarcascades\\haarcascade_eye_tree_eyeglasses
.xml";
 vector <Rect> DetectedEyes;

//// Face Tracking Related
 bool AngleError=false;

158

 int FaceNotFound; // 0.2 This variable counts how many times a
face was not found when looking for it.
 int FHDFcCntr; // The counter which will count the
number of captured faces during tracking
 int FHDAngle[6]={90,90,0,0,0,0};// The horizontal and vertical angles
of the full HD camera to start with.
 int PrvFHDAng[2]; // The previous horizontal and vertical
angles of the full HD camera to start with.
 Mat FHDframe;
 Mat FHDFSimg; // The face tracking/search area image that
is extracted from the FHD frame.
 Mat FHDFace[15]; // Faces that will be used for recognition.
Up to 5 faces can be captured during tracking
// Rect FHDFSRgn(400,200,1120,680); // The face search/tracking area
inside the FHD frame
// Rect FHDFSRgn(350,150,1220,780); // The face search/tracking area
inside the FHD frame
 Rect FHDFSRgn(200,100,1520,880); // The face search/tracking area
inside the FHD frame
 Rect FHDLFRg; // Largest face region in the Full HD
camera.

//// Face Recongnition Related
 double Fcnf,Ecnf,Lcnf;
 float SbjCnf[100][2]; // This array will hold the confidence
values for up to 100 subjects [score][times] => average=score/times
 float HighestCnf=0;
 float HstAvgCnf; // Calculated by dividing the highest
confidence over the number of times the face images were recognized as this
same person
 int SvdFcCntr=0;
 int index; // This points to the person with the
highest confidence
 int NmbOfSbj;
 int Fprd,Eprd,Lprd;
 Mat Face,GrayFace;
 string Person;
 string FaceNameF,FaceNameE,FaceNameL;
 Ptr<FaceRecognizer> Fisher = createFisherFaceRecognizer();
 Ptr<FaceRecognizer> Eigen = createEigenFaceRecognizer();
 Ptr<FaceRecognizer> LBPH = createLBPHFaceRecognizer();
 vector<int> FcLblsVct;
 vector<Mat> FcImgsVct;

// Approaching Related
 bool FndTrkFc=false; // A flag, when true it means a face was found
during face tracking
 bool Fresh;
 bool Arrived=false; // A flag that becomes 'true' when the robot
arrives at the subject
 float x_ratio,y_ratio;
 int cols,rows;
 int FrmCnt=0; // Frame Counter. This is used to number the
images saved
 int LFFW; // Last Found-Face Width
 int RMPL; // Robot Motors Power Level. Used to
gradually increase the speed of the robot
 int WAAngle=90;
 int PrvWAAngle=90; // The current angle of the servo motor
rotating the Wide Angle camera

159

 Mat WAFTimg; // Wide Angle Face Tracking image
 Rect WAFrect; // Wide Angle Face rectangle
 Rect WAFTRg; // Wide Angle Face Tracking Region

// Identity Verification
 string Password="hi"; // The password that should be entered by
the stranger
 int PSW; // The password that will be entered by the
stranger
 int DIPsw;

//// Timing Related
 float FrontCamStartTime=clock()-4*CLOCKS_PER_SEC;
 float FrontCamElapsedTime;

// Others
 HWND hDesktopWnd=GetDesktopWindow();
 HWND handle = GetConsoleWindow();
 int TmpVal; // a temporary variable used to calculate
values in lengthy calculations
 int TmpAng[6]; // a temporary variable used to hold the
angle values of the FHD cam
 Mat tmpFrame; // A temporary image used to display
whatever image is to be displayed
 Rect Zero(0,0,0,0);

//############################ INITIALIZATIONS ##############################

 CMDhandle=IntializeWelcome();

 MoveWindow(CMDhandle, 685,400,700,320,TRUE);

 printf("\n\nStopping the robot");
 RobotMotors(100,100);

 printf("\n\nResetting the cameras to center position");
 CenterFHDcam();
 Sleep(750);
 CenterWAcam();

 Status.create(Size(700,200),1);

//=============== Fill in the previous frames ===============//

 printf("\n\nShall I check the camera directions and initialize PrvFrm
?\n");
 cin >> Ans;

 if(Ans=="Y" || Ans=="y")
 {

 printf("\n\nNow initializing the first few frames.\n");

 //// Use this line instead of the camera-reading lines if you
want to use a video file

160

 //Cam[4]=VideoCapture ("D:\\MTA\\UTM\\Research\\Master
Related\\Security Robot\\C++ Code\\Full App\\In the Lab - HD - 1.avi");

 // The followin lines will capture a frame for every camera in
order to fill the 'PrvFrame'
 // variable with the image of the frame previous to the one
being analyzed for motion
 for(int iii=0;iii<3;iii++)
 {

 Cam[iii]=VideoCapture (iii);
 Cam[iii].set(CV_CAP_PROP_FRAME_WIDTH,1920);
 Cam[iii].set(CV_CAP_PROP_FRAME_HEIGHT,1080);

 for(int tmp=0; tmp<5; tmp++)
 Cam[iii] >> PrvFrame[iii]; // The frame capturing
is repeated in order to get a good, stable image

 while(PrvFrame[iii].rows==0 || PrvFrame[iii].cols==0)
 {
 printf("\n\nThis is the 'Previous Frame'
initialization procedure ...");
 printf("\nI'm releasing and recapturing camera %d
as it is not responding",iii);
 Cam[iii].release();
 Sleep(500);
 Cam[iii] = VideoCapture(iii);
 Sleep(500);
 Cam[iii] >> PrvFrame[iii];
 }

 PrvFrame[iii].copyTo(tmpFrame);

 if(iii==FrontCam)
 putText(tmpFrame,"Front
Cam",Point(10,40),1,3,CV_RGB(255,0,0),3);

 if(iii==RightCam)
 putText(tmpFrame,"Right
Cam",Point(10,40),1,3,CV_RGB(255,0,0),3);

 if(iii==LeftCam)
 putText(tmpFrame,"Left
Cam",Point(10,40),1,3,CV_RGB(255,0,0),3);

 Show2(tmpFrame,format("Camera
%d",iii),0,0,Zero,Zero,3000,1,630,360);

 Cam[iii].release();
 Sleep(500);
 }

 } // End of camera direction and PrvFrm initialization

//=========== Loading the Face, Eye & Body Detectors ===========//

 printf("\n\nLoading the face detection cascades");

161

 for(int fc=0;fc<5;fc++)
 {
 FaceDetector[fc].load(FaceDetectorName[fc]);
 if (FaceDetector[fc].empty())
 {
 printf("\nCould not load face cascade [%d]. Press any key
to exit",fc);
 system("pause");
 return -1;
 }
 }

 for(int bc=0;bc<3;bc++)
 {
 Bdy[bc].load(BodyCascadeName[bc]);
 if (Bdy[bc].empty())
 {
 printf("\nCould not load body cascade [%d]. Press any key
to exit",bc);
 system("pause");
 return -1;
 }
 }

 SmallEyeCascade.load(SmallEyeCascadeName);
 BigEyeCascade.load(BigEyeCascadeName);
 OtherEyeCascade.load(OtherEyeCascadeName);
 if (SmallEyeCascade.empty() || BigEyeCascade.empty() ||
OtherEyeCascade.empty())
 {
 printf("Could not load one of the eye detection haar cascades.
Press any key to exit");
 system("pause");
 }

//================ Face Recognizer Training ================//

 // Read the training face images
 cout << "\n\nNow reading the training images.";
 NmbOfSbj=ReadTrainingImages(FcImgsVct,FcLblsVct);

 //Train the Face Recognizers
 cout << "\n\nI'm now going to train the face recognizers; this may take
a few minutes...";
 cout << "\n\nTraining the Fisher face recognizer...";
 Fisher->train(FcImgsVct,FcLblsVct);

 cout << "\n\nTraining the Eigen faces recognizer...";
 Eigen->train(FcImgsVct,FcLblsVct);

 cout << "\n\nTraining the LBPH faces recognizer...";
 LBPH->train(FcImgsVct,FcLblsVct);

//############################### CALIBRATIONS #############################

 printf("\n\n\n\t\t\tTESTING & CALIBRATION");

162

 printf("\n\nFirst: Please check that all the ultrasonic sensors are
operating correctly\n\n");
 system("pause");

 printf("\n\nNow Performing front & FHD camera calibration");
 printf("\n\nPress 'Enter' when your face (in a purple rectangle)
appears to be");
 printf("\nin the middle of the tracking region (red).");
 printf("\n\nIf not, then adjust the WA camera and press 'Space Bar' or
any other key");

 // Calibrate the direction of the Full HD camera
 FHDAngle[0]=90;
 FHDAngle[1]=90;

 // The Front camera will be captured temporarily to be used for
calibration
 Cam[FrontCam] = VideoCapture(FrontCam);
 Cam[FrontCam].set(CV_CAP_PROP_FRAME_WIDTH,1920);
 Cam[FrontCam].set(CV_CAP_PROP_FRAME_HEIGHT,1080);

 while(1)
 {
//------------------ Capturing a WA frame ----------------------

 // Capture three frames to get a good image
 Cam[FrontCam] >> WAFrame;
 Cam[FrontCam] >> WAFrame;
 Cam[FrontCam] >> WAFrame;

 while(!WAFrame.rows || !WAFrame.cols)
 {
 printf("\n\nCalibration Procedure: retrying to capture WA
cam");
 Cam[FrontCam].release();
 Sleep(250);
 Cam[FrontCam] = VideoCapture(FrontCam);
 Sleep(250);
 Cam[FrontCam].set(CV_CAP_PROP_FRAME_WIDTH,1920);
 Cam[FrontCam].set(CV_CAP_PROP_FRAME_HEIGHT,1080);
 Cam[FrontCam] >> WAFrame;
 }

//------------------ Face Detection in WA Frame ----------------------

 // First we try to find the face of the subject using a maximum
of four haar cascade classifiers
 LSRg=FindLrgstFace3(FaceDetector[0],WAFrame,90,50,30,0);

 WAFrame.copyTo(tmpFrame);
 if(LSRg.width>0)
 {

 putText(tmpFrame,format("Size=%d",LSRg.width),Point(LSRg.x,LSRg.y-
20),1,3,CV_RGB(255,0,255),3);
 Show2(tmpFrame,"Front Camera",0,0,Zero,LSRg,10,0,640,360);
 }
 else
 {

163

 Show2(tmpFrame,"Front Camera",0,0,Zero,LSRg,10,0,640,360);
 continue; // If no faces are found, then grab a new
frame
 }

//------------------ Face Found = Aim FHD Cam ----------------------

 // 0.3 Backup FHDAngle as it may change during 'AimFHDcam5_2'
function call
 CopyArray(FHDAngle,0,1,TmpAng);

 // 1.0 Aiming the FHD cam at the subject using the coordinates
from the WA cam
 AimFHDcam5_2(WAFrame,LSRg,120,FHDAngle,0);

 // 1.1 Check whether an angle is beyond the limits
 //printf("\n\nAiming angle problem at cell number %d,
value=%d\n",jjj,FHDAngle[jjj]);
 if(FHDAngle[2]!=0)
 printf("\n\nUnrealistic horizontal angle adjustment;
value=%d\n",FHDAngle[2]);

 if(FHDAngle[3]!=0)
 printf("\n\nUnrealistic vertical angle adjustment;
value=%d\n",FHDAngle[3]);

 if(FHDAngle[4]!=0)
 printf("\n\nUnrealistic horizontal angle;
value=%d\n",FHDAngle[4]);

 if(FHDAngle[5]!=0)
 printf("\n\nUnrealistic vertical angle;
value=%d\n",FHDAngle[5]);

 for(int iii=2;iii<6;iii++)
 {
 if(FHDAngle[iii]!=0)
 AngleError=true;
 }

 // 1.2 If an angle is beyond the limits, then the camera was not
aimed, so no face detection is required
 // and therefore we should restore FHDAngle values and return to
motion detection.
 if(AngleError)
 {
 CopyArray(TmpAng,0,1,FHDAngle); // restore FHDAngle
 AngleError=false; // Reset
AngleError
 continue; // Go
back to motion detection
 }

//------------------ Capturing a FHD frame ----------------------

 // This line will release the front camera and capture the Full
HD Camera causing a few milliseconds delay

164

 // which is necessary to allow the FHD cam to stabilize after
aiming.
 Cam[FrontCam].release();
 Cam[FHDcam] = VideoCapture(FHDcam);
 Cam[FHDcam].set(CV_CAP_PROP_FRAME_WIDTH,1920);
 Cam[FHDcam].set(CV_CAP_PROP_FRAME_HEIGHT,1080);

 // Capture three frames to get a good image
 Cam[FHDcam] >> FHDframe;
 Cam[FHDcam] >> FHDframe;
 Cam[FHDcam] >> FHDframe;
 while(!FHDframe.rows || !FHDframe.cols)
 {
 printf("\n\nCalibration Procedure: retrying to capture FHD
cam");
 Cam[FHDcam].release();
 Sleep(250);
 Cam[FHDcam] = VideoCapture(FHDcam);
 Sleep(250);
 Cam[FHDcam].set(CV_CAP_PROP_FRAME_WIDTH,1920);
 Cam[FHDcam].set(CV_CAP_PROP_FRAME_HEIGHT,1080);
 Cam[FHDcam] >> FHDframe;
 }

//------------------ Face Detection in FHD Frame ----------------------

 // The above is based on face location, the below is based on
screen center
 FHDFSRgn.x=max(0,960-LSRg.width*4); // Middle of
screen - Face Width * 3
 FHDFSRgn.y=max(0,540-LSRg.height*3); // Middle of screen -
Face Height * 2
 FHDFSRgn.width=min(WAFrame.cols-FHDFSRgn.x-1,9*LSRg.width);
 FHDFSRgn.height=min(WAFrame.rows-FHDFSRgn.y-1,7*LSRg.height);

// This debug line serves to show the area inside which this section is going
to look for a face (in red)
// as well as a rectangle (in purple) showing the face search window that will
be used
Show2(FHDframe,"FHD Cam - Mapping WA Frame",650,0,FHDFSRgn,LSRg,10,0,640,360);

 // Extract the section that's expected to contain the face
 FHDframe(FHDFSRgn).copyTo(FHDFSimg);

 for (fd=0;fd<2;fd++)
 {

 FHDLFRg=FindLrgstFace3(FaceDetector[fd],FHDFSimg,LSRg.width,30,35,0);
 if(FHDLFRg.width>0)
 break; // This breaks from the inner 'for' loop
 }

//---------------------------- Face Found ---------------------------------

 // 3.2.2 If a face is found, then add it to the array of faces
to be used later by the face rec. section
 if(FHDLFRg.width>0)
 {

165

 FHDLFRg.x=FHDLFRg.x+FHDFSRgn.x;
 FHDLFRg.y=FHDLFRg.y+FHDFSRgn.y;

 // Show the face area and the tracking area in the FHD
frame image
 Show2(FHDframe,"FHD Cam - Face
Capturing",0,360,FHDFSRgn,FHDLFRg,10,0,640,360);
 }

 if(waitKey(0)==13 && FHDLFRg.width>0)
 break;
 else
 {
 // Reset the Full HD camera angles
 CenterFHDcam();
 Cam[FHDcam].release();
 FHDAngle[0]=90;
 FHDAngle[1]=90;

 // Re-captur the front wide angle camera
 Cam[FrontCam] = VideoCapture(FrontCam);
 Cam[FrontCam].set(CV_CAP_PROP_FRAME_WIDTH,1920);
 Cam[FrontCam].set(CV_CAP_PROP_FRAME_HEIGHT,1080);

 }
 }

 CenterFHDcam();
 Cam[FrontCam].release();
 Cam[FHDcam].release();

 destroyWindow("Front Camera");
 destroyWindow("FHD Cam - Face Capturing");
 destroyWindow("FHD Cam - Mapping WA Frame");

//########################### MAIN OPERATIONS #############################//

 printf("\n\nSurveillance operations have started.");

 while (1)
 {
//============================ CAMERA SWITCHING ===========================//

 // First, we will release the FHD cam, just in case it's still
captured (you see, only one-cam-at-a-time is allowed)
 Cam[FHDcam].release();

 // This line calculates the time that has passed since the robot
rotated towards a suspected
 // intruder or the time elapsed since the front cam detected a
motion.
 // In such cases, it is necessary too keep the front cam active
to verify the source of motion
 FrontCamElapsedTime=(clock()-FrontCamStartTime)/CLOCKS_PER_SEC;

//-- Switch or Keep Current Cam ---

 // If more than 4 seconds have passed since rotating the robot
towards the subject or since

166

 if (FrontCamElapsedTime>4) //
detecting motion using the front camera
 {// then resume normal 360 degree surveillance (camera juggling)
 Cam[CrCm].release();

 PrvCm=CrCm;
 CrCm++;
 if(CrCm>2) CrCm=0;

 Cam[CrCm] = VideoCapture(CrCm);
 }

//-- Capture Frame from Current Cam ---

 Cam[CrCm] >> WAFrame;
 Cam[CrCm].set(CV_CAP_PROP_FRAME_WIDTH,1920);
 Cam[CrCm].set(CV_CAP_PROP_FRAME_HEIGHT,1080);
 Cam[CrCm] >> WAFrame;
 Cam[CrCm] >> WAFrame;

 // Verify that the captured frame does not have zero rows or
columns
 while(!WAFrame.cols || !WAFrame.rows)
 {
 printf("\n\nI'm releasing and recapturing camera %d as it
is not responding",CrCm);
 Cam[CrCm].release();
 Sleep(250);
 Cam[CrCm] = VideoCapture (CrCm);
 Sleep(250);
 Cam[CrCm] >> WAFrame;
 }

//============================ MOTION DETECTION ============================//

//Print(Status,1,"In Motion Detection");
//printf("\n\nIn Motion Detection. Camera %d",CrCm);

//-- COMPARE FRAMES & DETECT MOTION ---
 NMR=LMX3(Motion,WAFrame,PrvFrame[CrCm],15,0,10);
 WAFrame.copyTo(PrvFrame[CrCm]);

//-- Show Detected Motion ---

 // Set the largest motion region width to zero. Later we will
check, if the largest motion region is big enough, then a face search will be
conducted
 LMW=0;

 for(int Rgn=0; Rgn<NMR;Rgn++)
 {

 // If a motion area's side is smaller than 12 pixels, then
it's not worth searching for faces as the face will not be clear
 if(Motion[Rgn].width<12 || Motion[Rgn].height<12)
 continue;

167

 // find the largest motion region
 if(Motion[Rgn].width>LMW)
 {
 LMW=Motion[Rgn].width;
 LMR=Rgn;
 }

 // Draw a rectangle around the detected motion and display
the camera feed
 // The rectangle is drawn in a tmpframe to keep the
'CurrentFrame' intact
 WAFrame.copyTo(tmpFrame);
 destroyWindow(format("Motion Detection - Camera
%d",PrvCm)); // this ensures showing only the current active camera

 putText(tmpFrame,format("Camera[%d]",CrCm),Point(5,40),1,3,CV_RGB(255,0
,0),3);
 Show2(tmpFrame,format("Motion Detection - Camera
%d",CrCm),0,0,Motion[Rgn],Zero,10,0,640,360);

 // A motion area larger than 200,000 sq. pixels (500x400)
is probably a false motion area caused by some pixel fluctuations

 if(Motion[Rgn].area()>=(0.75*WAFrame.cols*0.75*WAFrame.rows))
 {
 printf("\nIgnoring Motion Area, because its too big
= %d",Motion[Rgn].area());
 continue;
 }
 }

 // If a motion area's width is smaller than 12 pixels, then it's
not worth searching for faces as the face will not be clear
 if(LMW<12)
 continue;

 // MOTION has been DETECTED, so we will search for a face in the
search area

//========================= FACE & BODY DETECTION =========================//

 // This counter is used to give the saved images a number so as
not to overwrite one another
 ImgCounter++;

//Print(Status,1,"Now doing face and body detection");
printf("\nNow doing face and body detection");

 // Set a flag in case the front camera detected the motion. This
will be useful to continue checking
 // using the front camera for a few seconds, so that if
something is found, the robot will do the
 // required action, and if nothing is found, then we will go
back to juggling the cameras
 if(CrCm==FrontCam)
 FrontCamStartTime=clock();

168

 // Extract the image where motion has occured in order to search
it
 WAFrame(Motion[LMR]).copyTo(SrchRgnImg);
 WAFrame.copyTo(tmpFrame);

 // Calcualte a suitable face-search window size (between 12 and
30 pixels)
 FaceWin=0.25 * (min(SrchRgnImg.cols,SrchRgnImg.rows));
 FaceWin=max(12,FaceWin); // The face search window should not
be smaller than 12 pixels
 //FaceWin=min(30,FaceWin); // and not bigger than 35 pixels as
the faces appear smaller in the WA cam

 // First we try to find the face of the subject using a maximum
of four haar cascade classifiers
 for (fd=0;fd<5;fd++)
 {
//printf("\nfd=%d",fd);

 LFRg=FindLrgstFace3(FaceDetector[fd],SrchRgnImg,FaceWin,50,30,0);
 if(LFRg.width>0)
 {
 putText(tmpFrame,format("FaceDetector[%d] found the
face. Skin>=50, Sharpness<=30",fd),Point(5,40),1,3,CV_RGB(255,0,0),3);
 imwrite(format("The Face Detector that found the
Face %d.png",ImgCounter),tmpFrame);
 break;
 }
 }

 // If no faces are found in the motion area, then check for a
body of a subject
 if(LFRg.area()==0)
 {
printf("\nFace Not found, checking for presence of a body");

 LBRg=FindLrgstBody(SrchRgnImg,Bdy[0],Bdy[1],Bdy[2],FaceWin);

 // If also no body is found, then go back to motion
detection
 if(LBRg.area()==0)
 {
printf("\nBody not found, returning to motion detection");
 continue;
 }
 }

 // Now, LSRg will either become LFRg or LBRg depending on which
one was found (detected)
 if(LFRg.width>0)
 {
 LSRg=LFRg;
 DtctdRgn="Face Region";
 }
 else
 {
 LSRg=LBRg;
 DtctdRgn="Body Region";
 //rectangle(tmpFrame,LSRg,CV_RGB(255,0,255),2);

169

 //putText(tmpFrame,"Body Found",Point(5,tmpFrame.rows-
10),1,1,CV_RGB(255,0,0),1);
 }

 // Drawing a Rectangle around the face
 LSRg.x+=Motion[LMR].x;
 LSRg.y+=Motion[LMR].y;

 putText(tmpFrame,"Motion
Region",Point(Motion[LMR].x,Motion[LMR].y-10),1,1.5,CV_RGB(255,0,0),2);
 putText(tmpFrame,DtctdRgn,Point(LSRg.x,LSRg.y-
10),1,2,CV_RGB(255,0,255),2);

 Show2(tmpFrame,format("Motion Detection - Camera
%d",CrCm),0,0,Motion[LMR],LSRg,10,0,640,360);
//imwrite(format("10.0 Detected Faces %d.png",ImgCounter),tmpFrame);

printf("\nFace Found\n");

//================= ROTATE THE ROBOT TO FACE THE PERSON ===================//

// In this section, if a person is detected and he/she is not infront of the
robot, then the robot
// is rotated to face the person.

 if(CrCm != FrontCam) // If a face is detected in either
camera 0 or 1, then ...
 {
 Beep(1000,750);
printf("\nNow rotating the robot");
 if(CrCm==RightCam)
 {
 Say("Rotating Right");
 RobotMotors(20,180); // If the camera number is 0
(right camera), then rotate right
 Sleep(2000);
 RobotMotors(100,100); // If the camera number
is 0 (right camera), then rotate right
 }
 //Sleep(1000);
 else
 {
 Say("Rotating Lefft");
 RobotMotors(180,20); // Otherwise, the camera
number is 1 (left camera), so rotate left
 Sleep(2000);
 RobotMotors(100,100); // If the camera number
is 0 (right camera), then rotate right
 }

 FndTrkFc=true; // Turn face tracking
ON, as the robot is currently (supposedly) facing the subject
 Cam[CrCm].release(); // Release the current camera (0 or
1)
 // de`stroyWindow(format("Camera %d motion detection",CrCm));

 CrCm=FrontCam; // Change
to camera 2 (the front wide angle camera)

170

 Cam[CrCm] = VideoCapture(CrCm); // Start capture the
feed from camera 2

 Cam[CrCm].set(CV_CAP_PROP_FRAME_WIDTH,1920);
 Cam[CrCm].set(CV_CAP_PROP_FRAME_HEIGHT,1080);

 Cam[CrCm] >> PrvFrame[CrCm]; // Capture a frame and
put it in 'PrevFrame' in order to start motion detection

 FrontCamStartTime=clock();
 continue;

 }

//==================== ACQUIRE THE SUBJECT'S FACE IMAGE ====================//

printf("\nAcquiring the person's face image with the Full HD camera");

 Say("STOP");

 CenterFHDcam(); // Reset the Full HD
Camera to center position

 // This line will delay for a few milliseconds while Camera 4
(the Full HD Camera) is being captured and aimed forward
 Cam[FrontCam].release();
 Cam[FHDcam] = VideoCapture(FHDcam);
 Cam[FHDcam].set(CV_CAP_PROP_FRAME_WIDTH,1920);
 Cam[FHDcam].set(CV_CAP_PROP_FRAME_HEIGHT,1080);

 FHDAngle[0]=90;
 FHDAngle[1]=90;

 // The face tracking process is as follows:
 // 1- Aim the FHD camera using the WA cam coordinates.
 // 2- Capture two or three frames
 // 3- Try to find the face in the captured frame(s)
 // 4- If a face is not found then go back to motion detection.
 // 5- If a face is found, then store its images and pass them to
the face recognition section

 // 0.0 Necessary reinitializations
 // 0.1 Reset the full HD face counter to zero
 FHDFcCntr=0;

 // 0.2 This variable counts how many times a face was not found
when looking for it.
 // In this version the maximum is three.
 FaceNotFound=0;

 // 0.3 Backup FHDAngle as it may change during 'AimFHDcam5_2'
function call
 CopyArray(FHDAngle,0,1,TmpAng);

//// These debug lines show the scenery of the Full HD before aiming.
//// This is done in order to compare this scenery with the scenery after
aiming

171

//Cam[FHDcam] >> FHDframe;
//Cam[FHDcam] >> FHDframe;
//Show2(FHDframe,"FHD Cam befor aiming",0,370,Zero,Zero,1,0,640,360);

 // 1.0 Aiming the FHD cam at the subject using the coordinates
from the WA cam
 AimFHDcam5_2(WAFrame,LSRg,120,FHDAngle,30);

 Say("Please wait while I verify your identity");

 // 1.1 Check whether an angle is beyond the limits
 //printf("\n\nAiming angle problem at cell number %d,
value=%d\n",jjj,FHDAngle[jjj]);
 if(FHDAngle[2]!=0)
 printf("\n\nUnrealistic horizontal angle adjustment;
value=%d\n",FHDAngle[2]);

 if(FHDAngle[3]!=0)
 printf("\n\nUnrealistic vertical angle adjustment;
value=%d\n",FHDAngle[3]);

 if(FHDAngle[4]!=0)
 printf("\n\nUnrealistic horizontal angle;
value=%d\n",FHDAngle[4]);

 if(FHDAngle[5]!=0)
 printf("\n\nUnrealistic vertical angle;
value=%d\n",FHDAngle[5]);

 for(int iii=2;iii<6;iii++)
 {
 if(FHDAngle[iii]!=0)
 AngleError=true;
 }

 // 1.2 If an angle is beyond the limits, then the camera was not
aimed, so no face detection is required
 // and therefore we should restore FHDAngle values and return to
motion detection.
 if(AngleError)
 {
 CopyArray(TmpAng,0,1,FHDAngle); // restore FHDAngle
 AngleError=false; // Reset
AngleError
 printf("\nGoing back to motion detection");
 Say("Please continue");
 Say("Have a good day");
 continue; // Go
back to motion detection
 }

 // This line will delay for a few milliseconds while the camera
completes its aiming and stabilizes
 Sleep(25*abs(FHDAngle[0])+10);

 // 2.0 Capture a frame or two using the Full HD camera
 Cam[FHDcam] >> FHDframe;
 Cam[FHDcam] >> FHDframe;

172

 Cam[FHDcam] >> FHDframe;

 // 2.1 If the frame is corrupted after five tries, then restart
by going back to motion detection
 if(CheckFrame(Cam[FHDcam],FHDframe,5)==false)
 {
 printf("\nCouldn't capture a frame from the FHD cam. Going
back to Motion Detection\n");
 Say("Please continue");
 Say("Have a good day");
 continue;
 }

 // 3.0 Search for faces inside the frame
 // The following will try to capture five face images

 // 3.1 Designate a face-search window that is large, but focused
towards the person (see the 'Notes' document)
 //FHDFSRgn.x=max(0,LSRg.x-LSRg.width*5); // WA Face Location x -
Face Width * 5
 //FHDFSRgn.y=max(0,LSRg.y-LSRg.height*3); // WA Face Location y -
Face Width * 3
 //FHDFSRgn.width=min(WAFrame.cols-FHDFSRgn.x-1,11*LSRg.width);
 //FHDFSRgn.height=min(WAFrame.rows-FHDFSRgn.y-1,7*LSRg.height);

 // The above is based on face location, the below is based on
screen center
 FHDFSRgn.x=max(0,960-LSRg.width*3); // Middle of
screen - Face Width * 3
 FHDFSRgn.y=max(0,540-LSRg.height*2); // Middle of screen -
Face Height * 2
 FHDFSRgn.width=min(WAFrame.cols-FHDFSRgn.x-1,7*LSRg.width);
 FHDFSRgn.height=min(WAFrame.rows-FHDFSRgn.y-1,5*LSRg.height);

// This debug line serves to show the area inside which this section is going
to look for a face (in red)
// as well as a rectangle (in purple) showing the face search window that will
be used
Show2(FHDframe,"FHD Cam - Face Capturing",650,0,FHDFSRgn,LSRg,10,0,640,360);

 // 3.2 Try to find the face of the subject using two haar
cascade classifiers (for speed, otherwise I would use 5)
 do
 {
 // 3.3 Extract the section that's expected to contain the
face
 FHDframe(FHDFSRgn).copyTo(FHDFSimg);

//-------------------------- Face Detection Loop ----------------------------
 for (fd=0;fd<2;fd++)
 {

 FHDLFRg=FindLrgstFace3(FaceDetector[fd],FHDFSimg,LSRg.width,30,35,0);
 if(FHDLFRg.width>0)
 {
 printf("\nFaceDetector[%d] found the
face",fd);
 break; // This breaks from the inner 'for'
loop

173

 }
 }
//---------------------- End of Face Detection Loop -------------------------

 // If a face is found, then add it to the array of faces
to be used later by the face rec. section
 if(FHDLFRg.width>0)
 {
 FHDLFRg.x=FHDLFRg.x+FHDFSRgn.x;
 FHDLFRg.y=FHDLFRg.y+FHDFSRgn.y;

 // If a face is found, then store it's image.
 FHDframe(FHDLFRg).copyTo(FHDFace[FHDFcCntr]);

 // If 5 images are captured so far then exit the
'do-while' loop.
 FHDFcCntr++;
 FaceNotFound=0;
 }
 else
 FaceNotFound++;

 if(FaceNotFound>=3)
 break;
 else
 Sleep(20);

 }while(FHDFcCntr<=7);

//------------------ End of 'do' loop which searches for faces --------------

 // 4- If a face is not found (counter is still zero) then go
back to motion detection.
 if(FHDFcCntr==0)
 {
 printf("\nNo face was found by the FHD cam. Going back to
motion detection\n");

// This debug line serves to show the area inside which this section looked
for a face (in red)
// as well as a rectangle (in purple) showing the face search window that was
used
//Show2(FHDframe,"FHD Cam - Face Capturing",650,0,FHDFSRgn,LSRg,0,1,640,360);

 Say("Please continue");
 Say("Have a good day");

 destroyWindow("FHD Cam - Face Capturing");

 continue; // go back to
motion detection
 }
 else // otherwise
 {
 // Show the captured face images during face tracking (up
to 5 images)
 for(int iii=0;iii<FHDFcCntr;iii++)
 {

174

 resize(FHDFace[iii],tmpFrame,Size(250,250));
 imshow(format("Face %d",iii),tmpFrame);

 moveWindow(format("Face %d",iii),iii*250,400);
 }

 // This line shows the face images and waits for two
seconds before erasing them from the screen
 if(!SnW(100)) return 0;

 for(int iii=0;iii<FHDFcCntr;iii++)
 destroyWindow(format("Face %d",iii));

 }

 // Remove the FHD window before moving on to Face Recognition
 destroyWindow("FHD Cam - Face Capturing");

//============================ FACE RECOGNITION ============================//

 // Reset the confidence values for each subject for the current
image
 for(int df=1; df<=NmbOfSbj; df++)
 {
 SbjCnf[df][0]=0;
 SbjCnf[df][1]=0;
 }

//-- The Recognition and Prediction Process --------------------------------

 // Check all the captured faces by the FHD camera
 for (int fr=0;fr<FHDFcCntr;fr++)
 {
 // We start with an "Unknown" identity
 Person=FaceNameF=FaceNameE=FaceNameL="Unknown";

 HighestCnf=0; // The highest confidence value for the
captured face image

 // Preparations for face recognition operations
 cvtColor(FHDFace[fr],GrayFace,CV_RGB2GRAY);
 resize(GrayFace,GrayFace,Size(100,120));
 equalizeHist(GrayFace,GrayFace); // I found that this
negetively affects recognition

 ////////// FACE RECOGNITION OPERATIONS //////////
 // FISHER ////
 Fprd=-1;
 Fcnf=0.0;
 Fisher->predict(GrayFace,Fprd,Fcnf);

 // Convert the confidence to be between 0 & 100 %.
 Fcnf=Ffactor/Fcnf;
 Fcnf=min(Fcnf,100.0);
 Fcnf=max(Fcnf,0.0);

175

 if(Fprd>-1) // Add the confidence value to the person's
score (the cell in the 'SbjCnf' array)
 {
 FaceNameF=Names[Fprd];
 SbjCnf[Fprd][0]=SbjCnf[Fprd][0]+Fcnf;
 SbjCnf[Fprd][1]++;
 }

 //// EIGEN ////
 Eprd=-1;
 Ecnf=0.0;
 Eigen->predict(GrayFace,Eprd,Ecnf);

 // Convert the confidence to be between 0 & 100 %.
 Ecnf=Efactor/Ecnf;
 Ecnf=min(Ecnf,100.0);
 Ecnf=max(Ecnf,0.0);

 if(Eprd>-1) // Add the confidence value to the person's
score (the cell in the 'SbjCnf' array)
 {
 FaceNameE=Names[Eprd];
 SbjCnf[Eprd][0]=SbjCnf[Eprd][0]+Ecnf;
 SbjCnf[Eprd][1]++;
 }

 //// LBPH ////
 Lprd=-1;
 Lcnf=0.0;
 LBPH->predict(GrayFace,Lprd,Lcnf);

 // Convert the confidence to be between 0 & 100 %.
 Lcnf=Lfactor/Lcnf;
 Lcnf=min(Lcnf,100.0);
 Lcnf=max(Lcnf,0.0);

 if(Lprd>-1) // Add the confidence value to the person's
score (the cell in the 'SbjCnf' array)
 {
 FaceNameL=Names[Lprd];
 SbjCnf[Lprd][0]=SbjCnf[Lprd][0]+Lcnf;
 SbjCnf[Lprd][1]++;
 }

 // Determine the name by which the current face image
should be stored
 if(Fcnf>=Ecnf && Fcnf>=Lcnf)
 {
 Person=FaceNameF;
 HighestCnf=Fcnf;
 }

 if(Ecnf>=Fcnf && Ecnf>=Lcnf)
 {
 Person=FaceNameE;
 HighestCnf=Ecnf;

176

 }

 if(Lcnf>=Fcnf && Lcnf>=Ecnf)
 {
 Person=FaceNameL;
 HighestCnf=Lcnf;
 }

 // Save the image with the name of the highest confidence
 if(HighestCnf<50)
 Person=format("Unknown %d %d
",SvdFcCntr,fr)+Person+format(" %2.2f.png",HighestCnf);
 else
 Person=format("%d %d
",SvdFcCntr,fr)+Person+format(" %2.2f.png",HighestCnf);

 imwrite(Person,FHDFace[fr]);

 }

 // Reset the variables used in the recognition and prediction
process
 HighestCnf=0; // The highest confidence value for the captured
face image
 index=-1; // Points to the name of the subject if
known, otherwise -1 means "unknown"
 SvdFcCntr++; // Increment the counter for saved face images

 //////// Calculate (by accumulation) the highest confidence for this
face
 for(int df=1; df<=NmbOfSbj; df++)
 {
 // find the person with the highest confidence
 if(SbjCnf[df][0]>HighestCnf)
 {
 HighestCnf=SbjCnf[df][0];
 index=df;
 Person=Names[df];
 }
 }

 HstAvgCnf=SbjCnf[index][0]/SbjCnf[index][1];

//=============== Deciding whether to Approach the Subject ================//

 if(HstAvgCnf<50)
 {
 Beep(750,1500); //Alarm(1); // Raises the
first alarm
 printf("\nThe person in the image is unknown");
 printf("\n\nAn unrecognized person has been detected");
 Sleep(500); // This delay is important in order
to separate the beep from the next speech output
 }
 else
 {
 printf("\nThe person in the image could be : %s with a
confidence of %2.2f",Person.c_str(),HstAvgCnf);

177

 if(FcImgsVct.empty() || FcLblsVct.empty())
 printf("\nEither the image or the label vector is
empty");

 // If the total average confidence of this subject is
above or equal 50% and LBPH confidence is lower
 // than 90%, then update the LBPH face recognizer since
the face is somewhat unfamiliar to LBPH
 if(Lcnf<90 && (FaceNameL==Person))
 {
 // Check all the captured faces by the FHD camera
 for (int fr=0;fr<FHDFcCntr;fr++)
 {
 // Preparations for face recognition
operations
 cvtColor(FHDFace[fr],GrayFace,CV_RGB2GRAY);
 resize(GrayFace,GrayFace,Size(100,120));
 equalizeHist(GrayFace,GrayFace);

 ////////// FACE RECOGNITION OPERATIONS
//////////
 //// LBPH ////
 Lprd=-1;
 Lcnf=0.0;
 LBPH->predict(GrayFace,Lprd,Lcnf);

 // Convert the confidence to be between 0 &
100 %.
 Lcnf=Lfactor/Lcnf;
 Lcnf=min(Lcnf,100.0);
 Lcnf=max(Lcnf,0.0);

 // Only update LBPH if the confidence in
this image is 50 - 75 %
 if(Lprd>-1 && (Lcnf<75 && Lcnf>50)) //
Add the confidence value to the person's score (the cell in the 'SbjCnf'
array)
 {
 // This line pushes the image into
the images vector in order to be used by the LBPH to update its database
 FcImgsVct.push_back(GrayFace);

 // This line saves the subject labe
to be used by LBPH to update its database if required
 FcLblsVct.push_back(index);

 }
 }

 LBPH->update(FcImgsVct,FcLblsVct);
 }

 Say("Please continue");
 Say("Have a good day");
 continue; // go back to
motion detection
 }

//========================= APPROACH THE PERSON ===========================//

//Print(Status,1,"Now approaching the person");

178

printf("\nNow approaching the person");

 Say("DON'T MOVE");

 // Release the full HD camera and Re-captur the front wide angle
camera
 Cam[FHDcam].release();
 Cam[FrontCam] = VideoCapture(FrontCam);
 Cam[FrontCam].set(CV_CAP_PROP_FRAME_WIDTH,1920);
 Cam[FrontCam].set(CV_CAP_PROP_FRAME_HEIGHT,1080);

//-- Mapping & Reinitialization --
//==== Firstly, we map the location of the face/subject from the Full HD to
the VGA resolution

 // 1- Calculate the ratio of the 'face tracking frame' to the
'motion detection frame'
 cols=WAFrame.cols;
 rows=WAFrame.rows;
 x_ratio=(float)WAFrame.cols/640;
 y_ratio=(float)WAFrame.rows/360;
 resize(WAFrame,WAFrame,Size(640,360));

 // 2- Adjust the face region's coordinates and size according to
the 'face tracking frame'
 WALFRg.x=LSRg.x/x_ratio;
 WALFRg.y=LSRg.y/y_ratio;
 WALFRg.width=LSRg.width/x_ratio;
 WALFRg.height=LSRg.height/y_ratio;

 // 3- Adjust the face region's coordinates and size according
based on the new FoV (=100)
 if(WALFRg.x>320+WALFRg.width) // if the face is on the right
side of the frame image
 WALFRg.x=WALFRg.x*1.12;

 if(WALFRg.x<320-WALFRg.width) // if the face is on the left side
of the frame image
 WALFRg.x=WALFRg.x/1.12;

 if(WALFRg.y>240+WALFRg.height) // if the face is on the lower
side of the frame image
 //WALFRg.y=WALFRg.y/1.12;
 WALFRg.y=WALFRg.y/(1.12*480/360); // accomodate the
change in FoV as well as the change from 360p to 480p

 if(WALFRg.y<240-WALFRg.height) // if the face is on the higher
side of the frame image
 //WALFRg.y=WALFRg.y*1.12;
 WALFRg.y=WALFRg.y*(1.12*480/360);

//// These debug lines show the face/body region based on the WAFrame as well
as the face and tracking regions
//Show2(WAFrame,"The WAFTRg (red) & WALFRg (purple)",650,0, WAFTRg, WALFRg,
0,0,640,360);

//==== Secondly, we reinitialize some variables that will be used in the
tracking activity

 // Set the 'Found Tracked Face' flag to false. This flag will be
set back to true if a face is found

179

 int FaceNotFoundCounter=0;
 Fresh=true;

 // The Last Found Face Width
 LFFW=WALFRg.width;

 // Reset the Robot Motor Power Level to 10%. This counter is
useful in making the robot speed up gradually
 RMPL=10;

 // Set the tracking camera resolution to 640x480 (VGA)
 Cam[FrontCam].set(CV_CAP_PROP_FRAME_HEIGHT,480);
 Cam[FrontCam].set(CV_CAP_PROP_FRAME_WIDTH,640);
 // And capture two frames to empty the camera's buffer so that
we get new frames when we enter the tracking loop
 Cam[FrontCam] >> WAFrame;
 Cam[FrontCam] >> WAFrame;

 // Aim the WA cam and acquire its angle
 PrvWAAngle=WAAngle;
 WAAngle=AimWAcam3(WAFrame,WALFRg,130,PrvWAAngle);
 Sleep(25*abs(WAAngle-PrvWAAngle)+10);

//-- The Tracking Loop ---
//==== Thirdly, we now TRACK THE FACE
 while(WALFRg.width>0)
 {
Print(Status,1,"I'm now inside Approach's while loop");
Print(Status,2,format("Power Level = %d %%",RMPL));

//>>>>>>>>> 1.0 Capture an image using the wide angle camera
 // Three frames are captured because the camera may buffer
a frame which is the same as the previous one.
 Cam[FrontCam] >> WAFrame;
 Cam[FrontCam] >> WAFrame;
 Cam[FrontCam] >> WAFrame;

 // 1.1 Go back to motion detection if frames cannot be
captured
 if(CheckFrame(Cam[FrontCam],WAFrame,3)==false)
 {
 printf("\nCouldn't capture an image from the Wide
Angle camera. Going back to motion detection.");
 RobotMotors(100,100);
 //Say("Please continue");
 //Say("Have a good day");
 break;
 }
 //else // this is used when using the hd or full hd video
rather than the camera
 // resize(WAFrame,WAFrame,Size(640,480));

 // 2.0 Save images of the environment during approach in
case the administrator needs to see it
 // 2.1 Increment the saved frame image counter
 FrmCnt++;

 // 2.2 And save a picture of the environment (frame image)

180

 //imwrite(format("WAFrame %d.png",FrmCnt),WAFrame);

 // 3.0 Find the face in the Wide Angle frame image
 // 3.1 Prepare the portion of the frame image that is
expected to contain the face

 // 3.1.1 Calculate a face search region which is nine
times (3x3) the size of the currently found face.
 if(FaceNotFoundCounter==0) // This 'if' statement ensures
that WAFTRg will only be calculated if a face has
 { // been
previously found, otherwise, the dimensions (100,100,440,240) will be used

 // These lines locate the tracking region at the
center of the WA frame image. WAFTRg Size=6*Face.w,4*Face.h
 WAFTRg.x=max(0,320-WALFRg.width*4); // 320 -
Face Width * 3
 WAFTRg.y=max(0,240-WALFRg.height*2); // 240 -
Face Height * 2
 WAFTRg.width=min(WAFrame.cols-
WAFTRg.x,9*WALFRg.width);
 WAFTRg.height=min(WAFrame.rows-
WAFTRg.y,5*WALFRg.height);

 }

 // 3.1.2 Extract the portion of WAFrame that is enclosed
by WAFTRg which is thought to contain the face
 WAFrame(WAFTRg).copyTo(WAFTimg);

//// These debug lines show the face-tracking portion of the frame image.
//if(WAFTimg.cols && WAFTimg.rows)
// imshow("WAFTimg",WAFTimg);

 // 3.2 Set the size of the face search window to 0.65 the
size of the previously found face (to make sure we detect it)
 FaceWin=0.65*WALFRg.width;

Rect FcWn(WAFTRg.x,WAFTRg.y,FaceWin,FaceWin);
Show2(WAFrame,"Approaching - Wide Angle Camera",650,0, WAFTRg, FcWn, 10,0);

//-- Face Search--
 // 3.3 Search for faces inside the search area of the
frame (WideAngleFrameTracking image (WAFTimg))
 // The following small loop will try to capture a new
frame and search it in case the current one doesn't contain a face
 for(int iii=1;iii<3;iii++)
 {
 // We try to find the face of the subject using a
maximum of four haar cascade classifiers
 for (fd=0;fd<5;fd++)
 {

 WALFRg=FindLrgstFace3(FaceDetector[fd],WAFTimg,FaceWin,30,35,0);
 if(WALFRg.width>0)
 {
 Fresh=false; // Since a face is
found, the loop is no longer fresh

181

 printf("\nFaceDetector[%d] found the
face",fd);
 break;
 }
 }

 // If a face is found, exit the face-search loop
 if(WALFRg.width>0)
 break;

 // Otherwise capture two frames (to skip camera
buffering) and search again
 Cam[FrontCam] >> WAFrame;
 Cam[FrontCam] >> WAFrame;

 if(!WAFrame.cols || !WAFrame.rows)
 {
 printf("\nCouldn't capture a correct frame
from the WA Cam. Exiting Face-Search");
 break;
 }

 }

Show2(WAFrame,"Approaching - Wide Angle Camera",650,0, WAFTRg, WALFRg, 10,0);
//Print(Status,3,format("detected face size= %d",WALFRg.width));

//-- No Face Found ---
 // 4.0 If no faces are found, then try to expand the
tracking area and decrease the face size
 // If that's no use, then exit the while loop and go back
to motion detection
 if(WALFRg.width==0)
 {
 // Reduce power to the robot motors by 50% to stop
gradually if a face is not found again, and
 RMPL=RMPL/2; // pick up quickly when a face
is re-found.

 if(FaceNotFoundCounter==0)
 {
 //RobotMotors(100,100); // Stop the
robot
 destroyWindow("Wide Angle Camera Tracking
Frame"); // Remove the tracking window

 // Set the new and expanded tracking region
 WAFTRg.x=max(0,320-LFFW*5);
 WAFTRg.width=min(LFFW*10,640-WAFTRg.x);

 WAFTRg.y=max(0,240-LFFW*3);
 WAFTRg.height=min(LFFW*6,480-WAFTRg.y);

 }
 else
 { // Gradually expand the height of the
searching area to cover more space

 // This line results in an increase of one
face in width each time the face is not found
 TmpVal=5+FaceNotFoundCounter*0.5;

182

 WAFTRg.x=max(0,320-LFFW*TmpVal);
 WAFTRg.width=min(LFFW*(2*TmpVal),640-
WAFTRg.x);

 // This line results in an increase of half
a face in height each time the face is not found
 TmpVal=3+FaceNotFoundCounter*0.25;
 WAFTRg.y=max(0,240-LFFW*TmpVal);
 WAFTRg.height=min(LFFW*(2*TmpVal),480-
WAFTRg.y);
 }

 FaceNotFoundCounter++;

 if(FaceNotFoundCounter>10)
 break;

 WALFRg.width=max(12.0,0.9*LFFW);

 continue;
 }
 else
 FaceNotFoundCounter=0;

//-- Face Found --

 // Hold the value of the found face as we will need it in
searching for the face in case the face is lost
 LFFW=WALFRg.width;

 // 5.0 Display the frame image while highlighting the face
and search (tracking) regions on it
 // 5.1 Make a temporary copy of the frame image so we
don't ruin the frame image by drawing the rectangles
 WAFrame.copyTo(tmpFrame);

 // 5.2 Calculate the face region's global coordinate in
order to draw a rectangle around the face
 WALFRg.x=WALFRg.x+WAFTRg.x;
 WALFRg.y=WALFRg.y+WAFTRg.y;

 // 5.3 Draw a rectangle around the search (tracking) on
the temporary frame image
 putText(tmpFrame,"Tracking
Region",Point(WAFTRg.x,WAFTRg.y-10),1,1.5,CV_RGB(255,0,255),2);
 rectangle(tmpFrame,WAFTRg,CV_RGB(255,0,255),2);

 // 5.4 Draw a rectangle around the found face on the
temporary frame image
 putText(tmpFrame,"Face",Point(WALFRg.x,WALFRg.y-
10),1,1.5,CV_RGB(255,0,0),2);
 rectangle(tmpFrame,WALFRg,CV_RGB(255,0,0),2);

 // 5.5 Display the frame image
 imshow("Wide Angle Camera Tracking Frame",tmpFrame);
 moveWindow("Wide Angle Camera Tracking Frame",650,0);
 if(!SnW(10)) return 0;

 // 6.0 Re-Aim the camera at the subject region (face or
body) for two reasons:
 // 1) To prepare for the next round of the loop

183

 // 2) To drive the robot towards the subject by following
the angle
 PrvWAAngle=WAAngle;
 WAAngle=AimWAcam3(WAFrame,WALFRg,90,PrvWAAngle);

 // 7.0 Drive the robot towards the subject by following
the angle
 Approach7wi(WAAngle,RMPL,tmpFrame,FrmCnt);

 // 7.1 Increase RMPL (Robot Motor Power Level) in order to
gradually speed up the robot
 if(RMPL<100)
 RMPL=RMPL+10;

 // 8.0 If the face size is large than 70 pixels, then that
means the robot has arrived at the subject, so exit this 'while' loop
 if(WALFRg.width>65)
 {
 Arrived=true;
 break;
 }

 // The robot has not reached the subject yet, so let's go
for another round of this 'while' loop
 } // End of the 'face tracking' loop:
'while(WALFRg.width>0)'

 //// This delay is necessary to allow for a smooth camera
movement (due to low power supply by the
 //// system, only one camera operation can happen at a time. The
last operation was aiming the WA cam)
 //Sleep(500);

 // It's important to re-center the Wide Angle Camera before
going back to motion detection
 CenterWAcam();

 if(Arrived)
 {
 printf("\n\nI have arrived at the subject\n");

 // Stop the robot
 RobotMotors(100,100);

 // Ask the person to enter a password
 Say("Please enter the password");
 printf("\n\nPlease enter the password : ");
 SetForegroundWindow(CMDhandle);
 cin >> PSW;

 DIPsw=ReadDIP();

 if(PSW!=DIPsw)
 {
 printf("\n\nWrong password has been entered");

 //Alarm(2); // Raises the second alarm
 Beep(600,250);

184

 Beep(500,750);

 //printf("\n\nI don't have instructions to block
your way.");
 //Sleep(2000);
 printf("\n\nPlease report to the administrator.");
 Sleep(2000);
 printf("\n\nHave a good day.");
 Sleep(2000);

 Cam[FrontCam] >> tmpFrame;
 Cam[FrontCam] >> tmpFrame;
 imwrite(format("Unidentified person Front Cam
%d.png",ImgCounter),tmpFrame);

 Cam[FHDcam] >> tmpFrame;
 Cam[FHDcam] >> tmpFrame;
 imwrite(format("Unidentified person FHD Cam
%d.png",ImgCounter),tmpFrame);
 }
 else
 {
 Say("Please continue");
 Say("Have a good day");
 }

 // Remove the face-tracking camera-windows
 destroyWindow("Wide Angle Camera Tracking Frame");
 destroyWindow("Approaching - Wide Angle Camera");

 continue;
 }
 else
 {
 printf("\n\nLost track of the person");

 // Stop the robot
 RobotMotors(100,100);

 // Raises the third alarm
 for(int iii=0;iii<10;iii++)
 {
 Beep(1000,500);
 Beep(1500,500);
 }

 // Remove the face-tracking camera-windows
 destroyWindow("Wide Angle Camera Tracking Frame");
 destroyWindow("Approaching - Wide Angle Camera");

 printf("\n\nNothing to do, but to go back to motion
detection ...");
 continue;
 }

 } // end of the major program loop; the (while(1)) which runs the
motion detetion, face detection and recognition operations

185

 } // end of main()

//------------------------------------- END OF MAIN --------------------
//==

//
// This function is just an introduction to the program
//
HWND IntializeWelcome(void)
{
 HWND CMDhandle = GetConsoleWindow();
 if (CMDhandle == 0)
 {
 printf("\n\nCouldn't get a console window handle\n");
 system("pause");
 return 0;
 }

 MoveWindow(CMDhandle, 0,260,700,300,TRUE);

 printf("\n\nWelcome to the Indoor Surveillance Robot program");
 printf("\nThis program was written by Mohammad Tahir Ahmad for the
Master project");
 printf("\n'Authentication Based Security Robot Incorporating
Omnidirectional Vision'.\n");
 //Sleep (2000);

 return CMDhandle;
}

//
// This function reads the images and labes that will be used to recognize the
// subjects
//
int ReadTrainingImages(vector<Mat> &FcImgsVct,vector<int> &FcLblsVct)
{
 char ImgName[300];
 HANDLE hFind;
 int SubjectNumber=0;
 int TotalNmbSbj=0;
 LPCWSTR ImagesFolder;
 Mat FaceImage;
 string FaceName; // PersonLabel is the text version of
the PersonNumber with added zeros infront
 string A_Line,CurrentLine,ImagePath,ImgLabel,LineContent,FullPath;
 WIN32_FIND_DATA FindFileData;
 wstring wFullPath;

 ifstream ReadFoldersFile(PixFolder+"Folders.txt");

 while (getline(ReadFoldersFile,A_Line))
 {

 if(A_Line=="")
 continue;

 CurrentLine=A_Line; // CurrentLine would be something like:
0001:Alaa

186

 stringstream LineContent(CurrentLine); // Copy the contents of
'CurrentLine' to 'LineContent'
 getline(LineContent,ImgLabel,':'); // ImgLabel would now be 0001
(or some other label)
 getline(LineContent,FaceName); // CurrentLine will
contain the string "Alaa"
 //FaceName=CurrentLine;

 FullPath=PixFolder+FaceName+"*.png"; // CurrentLine would be
something like: 'Alaa'
 wFullPath=wstring(FullPath.begin(),FullPath.end());
 ImagesFolder=(LPCWSTR)wFullPath.c_str(); // Copy the contents of
'CurrentLine' to 'folder'

 if((hFind = FindFirstFile(ImagesFolder, &FindFileData)) !=
INVALID_HANDLE_VALUE)
 {
 do
 {
 for (int iii=0;iii<300;iii++)
 {
 ImgName[iii]=FindFileData.cFileName[iii];
 if(ImgName[iii]==0)
 break;
 }

 ImagePath=PixFolder+FaceName+"\\"+ImgName;

 FaceImage = imread(ImagePath,0);

 // This will check whether the face image is square
or rectangular
 if(FaceImage.cols==FaceImage.rows) // if it's
square, then it will crop it

 FaceImage=FixedFaceCrop(FaceImage,FaceImage.cols*10/12);

 // If the face image size is larger than 100x120
pixels, then it will be resized
 resize(FaceImage,FaceImage,Size(100,120));
 //equalizeHist(FaceImage,FaceImage); // I
found that this negetively affects recognition
 FcImgsVct.push_back(FaceImage);

 SubjectNumber = atoi(ImgLabel.c_str());
 FcLblsVct.push_back(SubjectNumber);

 if(Names[SubjectNumber]=="")
 Names[SubjectNumber]=FaceName;

 }while(FindNextFile(hFind, &FindFileData));

 FindClose(hFind);
 }

 TotalNmbSbj++;
 }

 ReadFoldersFile.close();

187

 return TotalNmbSbj;
}

//
// This function shows a graphic window and waits (waitKey) for some time
//
int SnW(int w)
{
 int k=waitKey(w);

 if(k==27)
 {
 // 'Esc' key is pressed, so I'm stopping the robot motors and
exiting
 RobotMotors(100,100);
 return 0;
 }

 if(k==32)
 {
 // 'Space Bar' is pressed, so I'm stopping the robot motors and
waiting for another keypress
 RobotMotors(100,100);
 waitKey(0);
 }

 return 1;
}

//
// This function outputs the message as speech as well as display it on the
console window
//
bool Say(string saying)
{
 //cout << saying;

 wstring tmp = wstring(saying.begin(), saying.end());
 LPCWSTR sw = tmp.c_str();

 ISpVoice * pVoice = NULL;

 if (FAILED(::CoInitialize(NULL)))
 return FALSE;

 HRESULT hr = CoCreateInstance(CLSID_SpVoice, NULL, CLSCTX_ALL,
IID_ISpVoice, (void **)&pVoice);
 if(SUCCEEDED(hr))
 {
 hr=pVoice->SetRate(-2); // from -
10 to 10; 0 is natural, -10 is the slowest
 hr=pVoice->SetVolume(750.0);
 //hr=pVoice->SetVoice();
 hr = pVoice->Speak(sw, 0, NULL);
 pVoice->Release();
 pVoice = NULL;
 }

188

 ::CoUninitialize();
 return TRUE;

}

//
// This function copies a part of an array to another array (both intger)
//
void CopyArray(int Src[], int From, int To, int Dst[])
{
 for(int iii=From;iii<=To;iii++)
 Dst[iii]=Src[iii];
}

/***

INTRODUCTION TO MAIN
This program does the following:
1- Conducts indoor monitoring using three cameras to cover 360 degrees (all
around it).
2- When a motion is detected, it will look for a face in the motion area.
3- When a face is found, a tracking camera is used to track the person and
capture a good image of the face.
4- When an image is acquired, the face familiarity is checked:
 3a- If the face is familiar, then no action is taken. Back to step 1.
 3b- If the face is not familiar, then two more images are taken.
 3b1- If two of the three images say the person is familiar, then
back to step 1.
 3b2- Otherwise raise alarm 1 and go to step 5.
5- Approach the person.
6- When the robot arrives at the person, it will ask him/her for a password.
7- Failure to approach the person in 30 seconds or entering a wrong password
results in raising the second alarm.

The robot may raise the following alarms:
ALARM 1: Raised when the robot cannot recognize the face (could be a stranger)
ALARM 2: Raised when the stranger has entered the wrong password
ALARM 3: Raised when the robot loses track of the stranger while trying to
approach him/her

Operation Notes:
The face recognition part of this program requires a text file by the name of
'Folders.txt' in a subfolder called 'images' (which is where the images are).
This folder should contain the labels of the subjects and their folder names.
An example is as follows:

 0001:Abdulla
 0002:Alaa
 0003:Mohammad

***/

189

// Function LMX3 **
/**
This function detects motion by subtracting img2 from img1 and checking the
resulting difference.

If the two images have different sizes, then the larger one will be resized to
the smaller dimensions.

The two images can also have different number of channels (one gray and one
color). This is because both of them will be converted to gray (single
channel) before finding the difference between them.

The function returns an integer that represents the number of detected regions
where motion may have occurred.

An array containing the rectangles that represent the detected motion regions
is updated to contain the properties of all the detected motion regions.

This function also prints an error and returns a zero if the rows or columns
count of any of the two images is zero.

This function allows the user to choose the threshold value of his choice.

PARAMETERS:
Rect: An array containing the rectangles that represent the motion regions
Mat : First image of the two images that will be compared to detect motion.
Mat : Second image of the two images that will be compared to detect
motion.
int : The threshold value to be used
int : If not zero, the function will return a larger motion area by 'Extra'
pixels on each side
int : The separation (in Pixels) between adjacent motion detection regions.

RETURNS
This function returns a rectangle which contains the detected motion.
If no motion is detected, a 'Zero' (empty) rectangle is returned

**/

#include "Stdafx.h" // required by Visual Studio
#include <iostream>
#include "highgui\highgui.hpp" // for VideoCapture & waitKey
#include <imgproc\imgproc.hpp> // for blur and other image related stuff

using namespace cv;
using namespace std;

int LMX3(Rect MotionRegion[], Mat img1,Mat img2,int Threshold,int Extra,int
Separation)
{
//===================== DECLARATIONS =====================
//bool ImgShown=false;
 bool MwD=false; // Motion was detected
 float x_mag=img1.cols / 160; // resizing ratio in the x-direction
 float y_mag=img1.rows / 120; // resizing ratio in the y-direction
 int SepCounter=0; // Counts the number of pixels that
separates two motion areas
 int Region=0; // An index that points to the number
of the detected-motion area

190

 int P[160][2]={0,0}; // The Points matrix that holds the
coordinates of detected motion areas [x][y1,y2]
 Mat Diff; // The difference image
 Rect Zero(0,0,0,0); // A zero sized rectangle
 Scalar i; // Pixel intensity

Mat Frame;

//==================== INITIALIZATIONS ====================

 // Reset all motion regions
 for(int iii=0;iii<50;iii++)
 MotionRegion[iii]=Zero;

 // Reset all the points matrix
 for(int iii=0;iii<160;iii++)
 {
 // These two lines fill the array with -1. This is used later to
distinguish filled from empty cells.
 P[iii][0]=-1;
 P[iii][1]=-1;
 }

//====================== PRECAUTIONS ======================

 // If the image has zero rows or zero columns, then there's no motion
to calculate
 if(img1.cols==0 || img1.rows==0 || img2.cols==0 || img2.rows==0)
 {
 cout << "\nImage 1 or Image 2 has zero rows or zero columns.";
 return 0;
 }

 // If the sizes of the two image do not match, then resize the larger
image to match the smaller one
 if(img1.cols != img2.cols || img1.rows != img2.rows)
 {
 cout << "\nThe dimensions of image 1 and image 2 is not equal.";
 if(img1.size > img2.size)
 resize(img1,img1,Size(img2.cols,img2.rows));
 else
 resize(img2,img2,Size(img1.cols,img1.rows));
 }

//==================== MAIN OPERATIONS ===================

 // Convert the images to grayscale and resize them to 160x120
 cvtColor(img1, img1, CV_BGR2GRAY);
 cvtColor(img2, img2, CV_BGR2GRAY);
 resize(img1,img1,Size(160,120));
 resize(img2,img2,Size(160,120));
 Diff.create(img1.size(),img1.type());

 // Subtract the images from each other to reveal the difference
 Diff=img2-img1;

 blur(Diff,Diff,Size(3,3));

191

 // Main body of the function: Finding the pixels of difference
 for (int xxx=0;xxx<Diff.cols-1;xxx++)
 {
 for (int yyy=0;yyy<Diff.rows-1;yyy++)
 {
 // Read the pixel
 i = Diff.at<uchar>(Point(xxx, yyy));
 if(i[0]>Threshold)
 {
 // Set a flag that Motion was Detected
 MwD=true;

 // Set Y[0] to the first detected motion pixel
 if(P[xxx][0]==-1)
 P[xxx][0]=yyy;

 // Set Y[1] to the furthest detected motion point
down this same column.
 P[xxx][1]=max(P[xxx][1],yyy);
 }
 }

 }

 // Checking to see if motion areas exist.
 if(MwD) // if Motion was Detected
 {
 for(int xxx=0;xxx<Diff.cols-1;xxx++)
 {
 if(P[xxx][0]>-1)
 {
 // If the separation is larger than the set 'Sep
distance'
 // or if it's motion area 0 and the motion area's x
= 0 (still un-initialized)
 if(SepCounter>Separation || (Region==0 &&
MotionRegion[Region].x==0))
 {
 // Increment the Region counter if the
previous motion area's area was larger than zero
 if(MotionRegion[Region].area() > 0)
 Region++;

 // Set the x and y of the detected motion
region
 MotionRegion[Region].x=xxx;
 MotionRegion[Region].y=P[xxx][0];
 }

 MotionRegion[Region].x=min(MotionRegion[Region].x,xxx); //
minimum x of this motion region

 MotionRegion[Region].y=min(MotionRegion[Region].y,P[xxx][0]); //
minimum y of this motion region
 MotionRegion[Region].width=xxx-
MotionRegion[Region].x; // current x - previous x

 // The tallest height. This will be zero if only
one motion pixel was detected.

192

 MotionRegion[Region].height=max(MotionRegion[Region].height,P[xxx][1]-
MotionRegion[Region].y);

 // Reset the seperation counter
 SepCounter=0;
 }

 // If no pixel is found (no motion is detected in this
column), then increment the separation area counter.
 if(P[xxx][0]==-1)
 SepCounter++;

 }
 }

 Region++;

 for(int iii=0;iii<Region;iii++)
 {

 MotionRegion[iii].x=MotionRegion[iii].x*x_mag;
 MotionRegion[iii].y=MotionRegion[iii].y*y_mag;
 MotionRegion[iii].width=MotionRegion[iii].width*x_mag;
 MotionRegion[iii].height=MotionRegion[iii].height*y_mag;

 return Region;

}

193

// Function AimFHDcam5_2 **
/**

IMPORTANT
For the security robot, I have decided to use this function with the Arduino
Uno as the Arduino Mega will be located at the base of the robot (near the
laptop) to be used for controlling the motors.

INTRODUCTION
This function aims the Full HD camera at a region specified by the calling
program (the location of the person closest to the camera) to capture his/her
face.

PARAMETERS:
Mat Frame : The image of the frame containing the region to be aimed at.
Rect Face : The region to be aimed at
int Fov : The camera's field of view (in degrees, e.g. 30, 45, 90,
..etc.)
int FHDAngle : An array containing the current horizontal and vertical servo
angle of the FHD camera.
 FHDAngle[0] is the horizontal angle
 FHDAngle[1] is the vertical angle
 FHDAngle[2] is the horizontal angle adjustment value if it exceeds a
certain value
 FHDAngle[3] is the vertical angle adjustment value if it exceeds a
certain value
 FHDAngle[4] is the horizontal angle value if it overshoots the limit
 FHDAngle[5] is the vertical angle value if it overshoots the limit

RETURNS
This function returns one of the following values in the array:
FHDAngle[0] The final horizontal angle that the servo is supposedly at (if the
servo fails to move for any reason, the program wouldn't know).
FHDAngle[1] The final vertical angle that the servo is supposedly at (if the
servo fails to move for any reason, the program wouldn't know).
FHDAngle[2] Either zero or the horizontal angle adjustment value if it
exceeded a certain value
FHDAngle[3] Either zero or the vertical angle adjustment value if it exceeded
a certain value
FHDAngle[4] Either zero or the horizontal angle value if it overshot the limit
FHDAngle[5] Either zero or the vertical angle value if it overshot the limit

NOTE
For the wide angle camera (Genius F100), the FoV=90 at resolution of 640x480
and FoV=120 at HD & Full HD resolutions.
For the Full HD camera, use FoV=60 for all modes.

***/

#include "stdafx.h" // required by Visual Studio

#include <Windows.h> // for organizing the different windows on the screen
#include "imgproc\imgproc.hpp" // for cvtColor & equalizeHist
#include "highgui\highgui.hpp"

194

using namespace cv;

HANDLE SerialPort3(string Name,int Speed); // This function opens
the requested serial port (int: Serial Port Number) and returns -1 if
unsuccessful.

void AimFHDcam5_2(Mat Frame, Rect Face, int FoV, int FHDAngle[6], float Inc)
{
//############################## DECLARATIONS ##############################
 bool Error=false; // This flag is used to indicate an error
with the aiming angle of one of the servo's
 int W,H; // Half the width and height of the
frame image (half the number of pixels horizontally and vertically)
 int Cx,Cy; // Face's center point
 float HPosAdj,VPosAdj; // Position adjustment in degrees
 float HDPP; // Horizontal Degree Per Pixel
(Camera's field of view / Screen width)
 float VDPP; // Vertical Degree Per Pixel
(Camera's field of view / Screen height)
 float CamFoV=FoV; // This converts the FoV value to a floating
point

// Motor Control Related
 HANDLE FHDArduino;
 DWORD btsIO;
 char Header[2] = "!"; // The initial character that will be sent
to the serial port to initiate reception of the angle
 char Hrz[2] = "f"; // The first character that will be sent to
the serial port. The "f" means nothing
 char Vrt[2] = "s"; // The second character that will be sent to
the serial port. The "s" means nothing

//############################### PRECAUTION ################################

 if(Face.width==0)
 {
 printf("\nThis is the AimCamFHD 3.0 function.");
 printf("\nI have received a face size of zero, so nothing will
be done");
 //return *FHDAngle;
 }

//############################# INITIALIZATIONS #############################

 // Initialize the Arduino port to control the aiming servos
 FHDArduino=SerialPort3("30",9600); // define the port for the Arduino
board that controls the robot

 // Reset the last four cells of the FHDAngle array as they may be used
to hold irregular angle values
 for(int iii=2;iii<6;iii++)
 FHDAngle[iii]=0;

//########################### MAIN OPERATIONS #############################//

 // 1- Calculate the face's center coordinates
 Cx=Face.x+Face.width/2;
 Cy=Face.y+Face.height/2;

195

 //printf("\n\nMiddle point of the face is at location (%d,%d)",Cx,Cy);

//--

 // 2.0 Calculate whether the camera needs to turn left or right, up or
down. This is done by
 // finding the screen's midpoint, then comparing this with the location
of the face's center point.

 // 2.1 Find the screen's mid point
 W=Frame.cols/2;
 H=Frame.rows/2;

 // 2b- Find out how many degrees is equal to one pixel.
 HDPP=CamFoV/Frame.cols; // This is done by deviding the
screen width by the camera's field of view
 VDPP=CamFoV/Frame.rows; // and also the screen's height by
the camera's field of view
 HPosAdj=(W-Cx)*HDPP; // (W-Center point) x Horizontal Degrees Per
Pixel
 VPosAdj=(Cy-H)*VDPP; // (H-Center point) x Vertical Degrees Per
Pixel

//--

 // 3.0 Adjust the aiming angle if the camera is not at the default
(90,90) position
 if(FHDAngle[0]!=90)
 HPosAdj=HPosAdj-FHDAngle[0]; // Add the previous horizontal
angle to accurately aim the camera

 if(FHDAngle[1]!=90)
 VPosAdj=VPosAdj-FHDAngle[1]; // Add the previous vertical
angle to accurately aim the camera

//--

 // 4.0 Check for special angle and angle adjustment values
 // 4.1 Ignor minor adjustments that are less than 3 degrees
horizontally or 2 degrees vertically.
 if(HPosAdj<3 && HPosAdj>-3 && VPosAdj<2 && VPosAdj>-2)
 Error=true;

 // 4.2 If the angle adjustment is more than 60 degrees horizontally or
30 degrees vertically,
 // then return and inform the calling program that this is not
realistic.
 if(HPosAdj>60 || HPosAdj<-60)
 {
 Error=true;
 FHDAngle[2]=HPosAdj;
 }

 if(VPosAdj>30 || VPosAdj<-30)
 {
 Error=true;
 FHDAngle[3]=VPosAdj;
 }

//--

196

 // 5.0 If an error flag is raised, then return without moving the
servos
 if(Error)
 {
 CloseHandle(FHDArduino);
 return;
 }

//--

 // Increase (or decrease) the horizontal angle to accomodate the
subject's movement
 HPosAdj=HPosAdj+HPosAdj*(Inc/100);

 FHDAngle[0]=HPosAdj;
 FHDAngle[1]=VPosAdj;

//--

 // 5- Send the position adjustments to the servo motors
 // 5.1- Send the Header to denote the start of the motor control batch
 WriteFile(FHDArduino, Header, strlen(Header), &btsIO, NULL);

 // 5.2- Prepare and send the horizontal angle adjustment value
 Hrz[0]=100+HPosAdj; // Since we can't send negetive numbers, we add 100
here and deduct 100 at the Arduino side
 WriteFile(FHDArduino, Hrz, strlen(Hrz), &btsIO, NULL);

 // 5.4- Prepare and send the vertical angle adjustment value
 Vrt[0]=100+VPosAdj; // Also for the second value, we add 100 here and
deduct 100 at the Arduino side
 WriteFile(FHDArduino, Vrt, strlen(Vrt), &btsIO, NULL);

//printf("\nAdjusted the camera by %d degrees horizontally and %d degrees
vertically",HAngle,VAngle);

//--

 // 6.0 Close port and return to the calling program
 CloseHandle(FHDArduino);
 return;

//--
}

//WW
//MM

// This function resets the Camera to the default (middle) position (90
degrees)
void CenterFHDcam(void)
{
//############################# DECLARATIONS ################################

 char Header[2] = "%"; // The initial character that will be sent
to the serial port to initiate reception of the angles
 char Hrz[2] = "f"; // The first character that will be sent to
the serial port. The "f" means nothing

197

 char Vrt[2] = "s"; // The second character that will be sent to
the serial port. The "s" means nothing
 DWORD btsIO;

// Motor Control Related
 HANDLE FHDArduino;

//############################ INITIALIZATIONS ##############################

 FHDArduino=SerialPort3("30",9600); // define the port for the Arduino
board that controls the robot

//########################### MAIN OPERATIONS #############################//

 // 1- Send the header
 WriteFile(FHDArduino, Header, strlen(Header), &btsIO, NULL);

 // 2- Send the default angles.
 Hrz[0]=90; // Send horizontal angle 90 to return the
horizontal servo
 Vrt[0]=90; // Send vertical angle 90 to return the vertical
servo
 WriteFile(FHDArduino, Hrz, strlen(Hrz), &btsIO, NULL);
 WriteFile(FHDArduino, Vrt, strlen(Vrt), &btsIO, NULL);

 CloseHandle(FHDArduino);
 return;
}

198

// Function Approach7wi ***
/**

INTRODUCTION
This function controls the robot motors based on angle of the subject with
respect to the robot (face location in the frame image).

This version of the function provides a percentage of power to the motors
rather than the full power. This is useful when requiring to increase the
robot speed gradually.

PARAMETERS:
int CamAngle: The angle to which the robot must turn
int Percentage: The percentage of power to be used (100 = full power)

RETURNS
This function returns nothing.

***/

#include "stdafx.h" // required by Visual Studio

#include <Windows.h> // for organizing the different windows on the screen
#include <string> // for handling strings ((names and the like))
#include <highgui\highgui.hpp>

using namespace std;
using namespace cv;

HANDLE SerialPort3(string Name,int Speed);

//===
//------------------------- START OF FUNCTION BODY ---------------------------

void Approach7wi(int CamAngle, int Percentage, Mat FrmImg,int FrmCounter)
{
//############################## DECLARATIONS ##############################
 bool Extreme=false; // Extreme right or left flag
 char Header[2] = "&"; // The starting sequence character that will
be sent to the Arduino instructing it to receive two bytes
 int LMotor[2]; // The first character that will be sent to
the Arduino (serial port). The "c" is just an arbitrary character
 int RMotor[2]; // The second character that will be
received from the serial port. The "d" is just an arbitrary character
 float Diff; // The difference between the current camera
angle and the center (90 degrees)
 float RMPL; // Right Motor Power Level
 float LMPL; // Left Motor Power Level
 DWORD btsIO;

// Motor Control Related
 HANDLE MotorArduino;

//############################# INITIALIZATIONS #############################

199

 printf("\nInside Approach-7 function");
 LMotor[1]=Header[1];
 RMotor[1]=Header[1];

 MotorArduino=SerialPort3("49",9600); // define the port for the
Arduino board that controls the robot

//############################### PRECAUTIONS ###############################

 if (CamAngle<10)
 CamAngle=10;

 if (CamAngle>170)
 CamAngle=170;

 if (Percentage>100)
 Percentage=100;

 if (Percentage<0)
 Percentage=0;

//########################### MAIN OPERATIONS ##############################//

 // 2- Calculate the face's location in the frame image, and prepare an
appropriate
 // drive command based on that in order to drive the robot's motors.

 // 2a- If the face is to the far right of the robot
 if(CamAngle<=40)
 { // Then rotate clockwise
 LMPL=50;
 RMPL=-50;
 Extreme=true;

 RMotor[0]=RMPL;
 LMotor[0]=LMPL;
 printf("\nRotating clockwise");
 }

 // 2b- If the face is to the right of the robot, then turn right
 if(CamAngle<85 && CamAngle>40)
 {
 LMPL=100;
 Diff=(90-CamAngle)*3;
 RMPL=100-Diff;

 RMotor[0]=RMPL;
 LMotor[0]=LMPL;
 printf("\nTurning right");
 }

 // 2c- If the face is to the far left of the robot
 if(CamAngle>=130)
 { // Then rotate counter-clockwise
 LMPL=-50;
 RMPL=50;

200

 Extreme=true;

 RMotor[0]=RMPL;
 LMotor[0]=LMPL;
 printf("\nRotating counter-clockwise");
 }

 // 2d- If the face is to the left of the robot, then turn left
 if(CamAngle>95 && CamAngle<130)
 {
 RMPL=100;
 Diff=(CamAngle-90)*3;
 LMPL=100-Diff;

 RMotor[0]=RMPL;
 LMotor[0]=LMPL;
 printf("\nTurning left");
 }

 // 2c- If the face is somewhat in the center of the frame, then drive
forward
 if(CamAngle>=85 && CamAngle<=95)
 {
 RMPL=100;
 LMPL=100;

 RMotor[0]=RMPL;
 LMotor[0]=LMPL;
 printf("\nGoing Forward.");
 }

////// 3- Send the command to the Arduino board to drive the robot
 // A- Send the character '&' to denote the start of the motor control
batch
 WriteFile(MotorArduino, Header, 1, &btsIO, NULL);

 // For extreme right or left, do not use power factor adjustments. i.e.
Do not use gradual increase in power
 if(Extreme)
 {

 // C- Send the left motor power level
 LMotor[0]=100+LMotor[0]; // Full Power=200 (100 will be
deducted at the Arduino side)
 WriteFile(MotorArduino, LMotor, 1, &btsIO, NULL);

 // B- Send the right motor power level
 RMotor[0]=100+RMotor[0]; // Full Power=200 (100 will be
deducted at the Arduino side)
 WriteFile(MotorArduino, RMotor, 1, &btsIO, NULL);

 }
 else // Othersize (in not-extreme cases), use gradual power increment
(soft starts)
 {

 // C- Send the left motor power level

201

 if(LMotor[0]==0)
 LMotor[0]=100; // Zero Power=100 (100 will be
deducted at the Arduino side)
 else
 LMotor[0]=100+((LMotor[0]*Percentage)/100); //
Full Power=200 (100 will be deducted at the Arduino side)

 WriteFile(MotorArduino, LMotor, 1, &btsIO, NULL);

 // B- Send the right motor power level
 if(RMotor[0]==0)
 RMotor[0]=100; // Zero Power=100 (100 will be
deducted at the Arduino side)
 else
 RMotor[0]=100+((RMotor[0]*Percentage)/100); //
Full Power=200 (100 will be deducted at the Arduino side)

 WriteFile(MotorArduino, RMotor, 1, &btsIO, NULL);

 }

 putText(FrmImg,format("Angle=%d, RMotor=%d,
LMotor=%d",CamAngle,RMotor[0],LMotor[0]),Point(5,470),1,1.25,CV_RGB(255,0,0),1
);
 imwrite(format("Env %d.png",FrmCounter),FrmImg);

// printf("\nRMotor[0]=%i",RMotor[0]);
// printf("\nLMotor[0]=%i",LMotor[0]);
// printf("\n");
 CloseHandle(MotorArduino);

}

/***

NOTES
Three bytes are sent to the Arduino:

 1- '&' : Sending an ambersand '&' will tell the Arduino that the next
two bytes are a the motor power levels.

 2- Left motor power level (100-200):

 3- Right motor power level (100-200):

200 means 100% power, while 100 means 0% power. This is because the Arduino
will deduct 100 from the received value.

This method (adding 100 here and deducting 100 at the Arduino side) is used in
order to be able to send zero as well as negative values of motor power.
Negative values represent power level in the reverse direction.

***/

202

// Function RobotMotors **
/***

INTRODUCTION
This function moves the robot in a particular direction for a specific period
of time, or stops it.

PARAMETERS:
string XtrnCmnd : The External Command can be anyone of the following
commands:
 "Left" : Rotate the robot to the left.
 "Right" : Rotate the robot to the right.
 "Forward" : Moves the robot to forward.
 "Stop" : Stops the robot.
 "Reverse" : Moves the robot in the reverse direction.

int Period : The period in milliseconds that the command should be conducted.
The "Stop" and "Approach" commands will ignore the 'Period'.

RETURNS
This function returns nothing.

**/

#include "stdafx.h" // required by Visual Studio

#include <Windows.h> // for organizing the different windows on the
screen
#include "imgproc\imgproc.hpp" // for cvtColor & equalizeHist
#include <string> // for handling strings ((names and the like))
#include <iostream>

using namespace cv;
using namespace std;

HANDLE SerialPort3(string Name,int Speed);// This function opens the requested
serial port (int: Serial Port Number) and returns -1 if unsuccessful.

void RobotMotors(int LeftMotor,int RightMotor)
{
//############################# DECLARATIONS ################################
 char Header[2] = "&"; // The starting sequence character that will
be sent to the Arduino instructing it to receive two bytes
 int LMotor[2]; // The first character that will be sent to the
Arduino (serial port). The "c" is just an arbitrary character
 int RMotor[2]; // The second character that will be received from
the serial port. The "d" is just an arbitrary character
 DWORD btsIO;

// Motor Control Related
 HANDLE MotorArduino;

//############################ INITIALIZATIONS ##############################

203

// printf("\nInside RobotMotors function");

 MotorArduino=SerialPort3("49",9600); // define the port for the
Arduino board that controls the robot
// printf("\n"); // Start a new line for
printing the text of this function

 LMotor[1]=Header[1];
 RMotor[1]=Header[1];

//########################### MAIN OPERATIONS ##############################//

 if(RightMotor>0 && RightMotor<201)
 RMotor[0]=RightMotor;
 else
 RMotor[0]=100;

 if(LeftMotor>0 && LeftMotor<201)
 LMotor[0]=LeftMotor;
 else
 LMotor[0]=100;

 // A- Send the character '&' to denote the start of the motor control
batch
 WriteFile(MotorArduino, Header, strlen(Header), &btsIO, NULL);

// printf("\nRMotor[0]=%i",RMotor[0]);
 WriteFile(MotorArduino, RMotor, 1, &btsIO, NULL);

// printf("\nLMotor[0]=%i",LMotor[0]);
 WriteFile(MotorArduino, LMotor, 1, &btsIO, NULL);

 CloseHandle(MotorArduino);

}

/**

This program works as follows:
 1- It calculates the center of the face.
 2- It finds the face's location in the frame image, and prepares an
appropriate drive command based on that.
 The face location is determined based on the following frame
portions (45%,10%,45%) -> (left, center or right)
 The center part is so narrow, because the camera used is a
fisheye camera and the center part is quite narrow in it.
 3- It sends a signal to the Arduino board to drive one or both motors
based on the face's location:
 3a- If the face is to the right by more than 10% of the frame's
width, then only the left motor will be driven.
 3b- If the face is to the left by more than 10% of the frame's
width, then only the right motor will be driven.
 3c- Otherwise both motors will be driven.

 4- The program in the Arduino ultimately decides whether to move the
right, left or both motors depending on the obstacles it faces.

204

ADDITION
This version may or may not prints whatever messages the Arduino sends it
using the 'ArdPrint' function

DIFFERENCES
This version is different to 'Approach' version 5 by sending two bytes to the
Arduino (after the ambersand) rather than one.

NOTES
Three bytes are sent to the Arduino (& n1 n2):

 1- Sending an ambersand '&' will tell the Arduino that the next two
bytes are the command and period.

 2- N1: The movement command:
 100 = Drive = Go forward
 103 = turn right (clockwise) for a specific period of time
 106 = turn left (couterclockwise) for a specific period of time
 109 = Stop
 112 = Go reverse (no obstacle avoidance here)

 3- N2: Is the time length (in milliseconds) that the command should be
carried out for:
 Example: 500 : this means half a second.

 4- I tried using the following code to read and print text from the
Arduino, but it didn't work well.
 Sometimes it works, when there's something already at the
receive buffer, but if there isn't then it will add the same character to the
string many times (because it is reading the same character over and over
again). Here is the code:

 do
 {
 ReadFile(Arduino, Text, strlen(Text), &btsIO, NULL); // Read
the data
 Received+=Text;
 if(Text[0]==13)
 break;
 }while(Text[0]>31 && Text[0]<127);

 // 2- Check whether the byte is a '{'
 if(Received.length()>0) // if the byte recieved was not '{' then
return
 cout << endl << Received << endl;

 return;

 5- I tried the code currently mentioned (using the '{' & '}' , but
still it didn't work. It seems that the PC is reading the serial port too fast
for the Arduino's sending.

***/

205

// Function SerialPort3 **
/***
INTRODUCTION
This function opens the requested serial port (int: Serial Port Number).

PARAMETERS:
string Port : The port 'handle' of the Arduino (or any other) board that
controls the servos.

RETURNS
If successful, this function returns a 'HANDLE' which can be used to send data
to the device attached to the serial port.
If unsuccessful, this function returns 'INVALID_HANDLE_VALUE' or -1 ((error)).

***/

#include <stdafx.h>

#include <string> // for handling strings ((names and the like))
#include <Windows.h> // for organizing the different windows on the Firstreen
as well as for serial port communication with the Arduino board

using namespace std;

HANDLE SerialPort3(string Port, int bps)
{
 string sPort="\\\\.\\COM"+Port; // convert Port to a string
 wstring wPort=wstring(sPort.begin(),sPort.end()); // convert sPort
to a wide string
 LPCWSTR lPort= (LPCWSTR)wPort.c_str(); // convert wPort to an LPCWSTR
type string to use it in getting the handle (complicated isn't it :))

 // Setup serial port connection and needed variables. Port 29 is the
current Arduino port. Double check the port number
 HANDLE hSerial = CreateFile(lPort, GENERIC_READ | GENERIC_WRITE, 0, 0,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);

if (hSerial !=INVALID_HANDLE_VALUE)
 {
 // printf("\n\nPort opened! \n");

 DCB dcbSerialParams;
 GetCommState(hSerial,&dcbSerialParams);

 dcbSerialParams.BaudRate = bps;

 dcbSerialParams.ByteSize = 8;
 dcbSerialParams.Parity = NOPARITY;
 dcbSerialParams.StopBits = ONESTOPBIT;

 SetCommState(hSerial, &dcbSerialParams);
}

 else
 {
 if (GetLastError() == ERROR_FILE_NOT_FOUND)
 printf("\n\nSerial port doesn't exist! \n");

 printf("\n\nError while setting up serial port %s
\n",Port.c_str());
 }

return hSerial; }

206

// Function AimWAcam3 **
/***

IMPORTANT
For the security robot, I have decided to use this function with the Arduino
Uno as the Arduino Mega will be located at the base of the robot (near the
laptop) to be used for controlling the motors.

INTRODUCTION
This function aims the Full HD camera at a region specified by the calling
program (the location of the person closest to the camera) to capture his/her
face.

PARAMETERS:
Mat Frame : The image of the frame containing the region to be aimed at.
Rect Face : The region to be aimed at
int Fov : The camera's field of view (in degrees, e.g. 30, 45, 90,
..etc.)
int FHDAngle : An array containing the current horizontal and vertical servo
angle of the FHD camera.
 FHDAngle[0] is the horizontal angle
 FHDAngle[1] is the vertical angle
 FHDAngle[2] is the horizontal angle adjustment value if it exceeds a
certain value
 FHDAngle[3] is the vertical angle adjustment value if it exceeds a
certain value
 FHDAngle[4] is the horizontal angle value if it overshoots the limit
 FHDAngle[5] is the vertical angle value if it overshoots the limit

RETURNS
This function returns one of the following values in the array:
 FHDAngle[0] The final horizontal angle that the servo is supposedly at
(if the servo fails to move for any reason, the program wouldn't know).
 FHDAngle[1] The final vertical angle that the servo is supposedly at
(if the servo fails to move for any reason, the program wouldn't know).
 FHDAngle[2] Either zero or the horizontal angle adjustment value if it
exceeded a certain value
 FHDAngle[3] Either zero or the vertical angle adjustment value if it
exceeded a certain value
 FHDAngle[4] Either zero or the horizontal angle value if it overshot
the limit
 FHDAngle[5] Either zero or the vertical angle value if it overshot the
limit

NOTE
For the wide angle camera (Genius F100), the FoV=90 at resolution of 640x480
and FoV=120 at HD & Full HD resolutions. For the Full HD camera, use FoV=60
for all modes.

**/

#include "stdafx.h" // required by Visual Studio

#include <Windows.h> // for organizing the different windows on the screen
#include "imgproc\imgproc.hpp" // for cvtColor & equalizeHist
#include "highgui\highgui.hpp"

207

using namespace cv;

HANDLE SerialPort3(string Name,int Speed); // This function opens
the requested serial port (int: Serial Port Number) and returns -1 if
unsuccessful.

int AimWAcam3(Mat Frame, Rect Face, int FoV, int PrvAng)
{
//############################## DECLARATIONS #############################
 bool Error=false; // This flag is used to indicate an error
with the aiming angle of one of the servo's
 int W,H; // Half the width and height of the
frame image (half the number of pixels horizontally and vertically)
 int Cx,Cy; // Face's center point
 int HPosAdj,VPosAdj; // Position adjustment in degrees
 float HDPP; // Horizontal Degree Per Pixel
(Camera's field of view / Screen width)
 float VDPP; // Vertical Degree Per Pixel
(Camera's field of view / Screen height)
 float CamFoV=FoV; // This converts the FoV value to a floating
point

// Motor Control Related
 HANDLE FHDArduino;
 DWORD btsIO;
 char Header[2] = "#"; // The initial character that will be sent
to the serial port to initiate reception of the angle
 char Hrz[2] = "f"; // The first character that will be sent to
the serial port. The "f" means nothing
 char Vrt[2] = "s"; // The second character that will be sent to
the serial port. The "s" means nothing

//################################ PRECAUTION ###############################

 if(Face.width==0)
 {
 printf("\nThis is the AimWACam 3.0 function.");
 printf("\nI have received a face size of zero, so nothing will
be done");
 return PrvAng;
 }

//############################# INITIALIZATIONS #############################

 // Initialize the Arduino port to control the aiming servos
 FHDArduino=SerialPort3("30",9600); // define the port for the Arduino
board that controls the robot

// VDPP=CamFoV/Frame.rows; // and also the screen's height by
the camera's field of view

//############################ MAIN OPERATIONS ############################//

 // 1- Calculate the face's center coordinates
 Cx=Face.x+Face.width/2;
 Cy=Face.y+Face.height/2;
 //printf("\n\nMiddle point of the face is at location (%d,%d)",Cx,Cy);

208

//---

 // 2.0 Calculate whether the camera needs to turn left or right, up or
down. This is done by
 // finding the screen's midpoint, then comparing this with the location
of the face's center point.

 // 2.1 Find the screen's mid point
 W=Frame.cols/2;
 H=Frame.rows/2;

 // 2.2 Find out how many degrees is equal to one pixel.
 HDPP=CamFoV/Frame.cols; // This is done by deviding the
screen width by the camera's field of view
 VDPP=CamFoV/Frame.rows; // and also the screen's height by
the camera's field of view
 HPosAdj=(W-Cx)*HDPP; // (W-Center point) x Horizontal Degrees Per
Pixel
 VPosAdj=(Cy-H)*VDPP; // (H-Center point) x Vertical Degrees Per
Pixel

//---

 // 2.3 Ignor minor adjustments that are less than 3 degrees
horizontally or 2 degrees vertically.
 if(HPosAdj<3 && HPosAdj>-3 && VPosAdj<2 && VPosAdj>-2)
 {
 CloseHandle(FHDArduino);
 return PrvAng;
 }

 // If the angle adjustment is more than 60 degrees horizontally or 30
degrees vertically,
 // then return, because this is not realistic.
 if(HPosAdj>60 || HPosAdj<-60)
 {
 CloseHandle(FHDArduino);
 return -1;
 }

 if(VPosAdj>30 || VPosAdj<-30)
 {
 CloseHandle(FHDArduino);
 return -1;
 }

 // 3.0- Send the position adjustments to the servo motors
 // 3.1- Prepare the angle values
 Hrz[0]=100+HPosAdj; // Since we can't send negetive numbers, we add 100
here and deduct 100 at the Arduino side
 Vrt[0]=100+VPosAdj; // Also for the second value, add 100 here and
deduct 100 at the Arduino side

//---

209

 // 4.0- Send the position adjustments to the servo motors
 // 4.1- Send the Header to denote the start of the motor control batch
 WriteFile(FHDArduino, Header, strlen(Header), &btsIO, NULL);

 // 4.2- Prepare and send the horizontal angle adjustment value
 Hrz[0]=100+HPosAdj; // Since we can't send negetive numbers, we add 100
here and deduct 100 at the Arduino side
 WriteFile(FHDArduino, Hrz, strlen(Hrz), &btsIO, NULL);

 // 4.3- Prepare and send the vertical angle adjustment value
 Vrt[0]=100+VPosAdj; // Also for the second value, we add 100 here and
deduct 100 at the Arduino side
 WriteFile(FHDArduino, Vrt, strlen(Vrt), &btsIO, NULL);

//printf("\nAdjusted the camera by %d degrees horizontally and %d degrees
vertically",HAngle,VAngle);

//---

 // 5.0 Close port and return to the calling program
 CloseHandle(FHDArduino);
 return HPosAdj+PrvAng;

//---
}

//WWW
//MMM

// This function resets the Camera to the default (middle) position (90
degrees)
int CenterWAcam(void)
{
//############################### DECLARATIONS ##############################

 char Header[2] = "$"; // The initial character that will be sent
to the serial port to initiate reception of the angles
 char Hrz[2] = "f"; // The first character that will be sent to
the serial port. The "f" means nothing
 char Vrt[2] = "s"; // The second character that will be sent to
the serial port. The "s" means nothing
 DWORD btsIO;

// Motor Control Related
 HANDLE FHDArduino;

//############################# INITIALIZATIONS #############################

 FHDArduino=SerialPort3("30",9600); // define the port for the Arduino
board that controls the robot

//############################ MAIN OPERATIONS ############################//

 // 1- Send the header
 WriteFile(FHDArduino, Header, strlen(Header), &btsIO, NULL);

210

 // 2- Send the default angles.
 Hrz[0]=90; // Send horizontal angle 90 to return the
horizontal servo
 WriteFile(FHDArduino, Hrz, strlen(Hrz), &btsIO, NULL);

 Vrt[0]=90; // Also for the second value, add 100 here and deduct 100
at the Arduino side
 WriteFile(FHDArduino, Vrt, strlen(Vrt), &btsIO, NULL);

 CloseHandle(FHDArduino);

 return 90;
}

211

// Function FindLrgstFace3 ***
/***
This function finds the largest face in the image passed to it by the calling
program using the haar cascades (Viola Jones) method.

PARAMETERS:
 CascadeClassifier: The Detector to be used (face detector, body
detector ... etc.)
 Mat Image : The image to be searched for faces.
 int FaceSize: The face size to look for (searches for faces of this
size or larger)
 float SkinCheck : The percentage of Skin-Color-Content (0 will
nullify this filter as all image have a skin color content of 0 or more).
 float SharpnessCheck: The percentage of sharpness to check for (100
will nullify this filter as all images have a sharpness of less than 100%)

RETURNS
This function returns a Rectangle containing the largest face.
If no face is detected, a 'Zero' rectangle is returned.

**/

#include "Stdafx.h" // required by Visual Studio
#include <iostream>
#include <ctime>
#include "highgui\highgui.hpp" // for VideoCapture & waitKey
#include <imgproc\imgproc.hpp> // for blur and other image related stuff
#include "objdetect\objdetect.hpp" // for cascade classifiers

using namespace cv;
using namespace std;

float SkinColorPcnt(Mat FaceImage); //
Returns the percentage of skin color in the image
float HowSharp(Mat FaceImage); //
Returns the sharpness of an image
Mat FixedFaceCrop(Mat FaceImg,int WidthToCropTo); // Crops the face from
one or two sides

Rect FindLrgstFace3(CascadeClassifier Detector, Mat Image, int FaceSize, float
ReqSkinClrCnt, float ReqSharpness, bool Save)
{

////// DECLARATIONS //////
 int LFSz=0; // The Largest Face Size is the size
of the larges face found in the frame
 int time=clock();
 time=time/1000;
 float Sharpness=0; // A Temporary measure of face image
sharpness (<5 is very blurry)
 float Skin=0; // Skin color percentage of the face image
 Mat UncroppedFace; // The image of the captured face
 Mat CroppedFace;
 Mat OriginalFace; // The face with the original size
 Mat tmpImg;
 Rect FaceRegion;

212

 Rect RoLF(0,0,0,0); // Region of the largest face.
 Rect Zero(0,0,0,0);
 vector <Rect> DetectedFaces; // Detected Faces

//############################# INITIALIZATIONS #############################

 Image.copyTo(tmpImg);

//############################# MAIN OPERATIONS ###########################//

 // Search for faces inside the image
 Detector.detectMultiScale(Image,DetectedFaces,1.2,2,0|CV_HAAR_SCALE_IMA
GE,Size(FaceSize,FaceSize));

 //////// VERIFYING DETECTED FACES & LOOK FOR THE LARGEST FACE
 for (int jjj=0;jjj<DetectedFaces.size();jjj++)
 {
 FaceRegion = DetectedFaces[jjj];

 // Extract the face image from the frame image
 Image(FaceRegion).copyTo(OriginalFace);

 // Firstly, we will enlarge and crop the face to 100x120 to
calculate its sharpness
 resize(OriginalFace,UncroppedFace,Size(120,120)); // First
resize the original face to 120x120
 CroppedFace=FixedFaceCrop(UncroppedFace,100); // then
crop it to 100x120 and put it in 'CroppedFace'

 // Secondly, we calculate the Skin Color Content and Sharpness
if required to do so
 if(ReqSkinClrCnt>0)
 Skin=SkinColorPcnt(CroppedFace);

 if(ReqSharpness>0)
 Sharpness=HowSharp(CroppedFace);

 // Thirdly, let's write the values found above the face region
 rectangle(tmpImg,FaceRegion,CV_RGB(255,0,0),1);
 putText(tmpImg,format("Skin=%2.2f,
Sharpness=%2.2f",Skin,Sharpness),Point(FaceRegion.x,FaceRegion.y-
5),1,1,CV_RGB(255,0,0),1);

 // If Skin Color Content is required and the SCC of the image
was found to be less than the Required SCC
 if(Skin<ReqSkinClrCnt)
 continue; // then ignore this face

 // If Sharpness is required and the Sharpness of the image was
found to be zero
 // or larger than the Required Sharpness
 //if(ReqSharpness!=0 && (Sharpness==0 ||
Sharpness > ReqSharpness)) // this one didn't work quite well
 if(ReqSharpness!=0 && Sharpness > ReqSharpness)
 continue; // then ignore this face

 //if(EyesCheck)
 //{

213

 //
 SmallEyeCascade.detectMultiScale(CroppedFace,DetectedEyes,1.1,1,0|CV_HA
AR_SCALE_IMAGE,Size(CroppedFace.cols/10,CroppedFace.rows/10));
 //
 // if(!DetectedEyes.size())
 //
 BigEyeCascade.detectMultiScale(CroppedFace,DetectedEyes,1.1,1,0|CV_HAAR
_SCALE_IMAGE,Size(CroppedFace.cols/10,CroppedFace.rows/10));

 // if(!DetectedEyes.size())
 //
 OtherEyeCascade.detectMultiScale(CroppedFace,DetectedEyes,1.1,1,0|CV_HA
AR_SCALE_IMAGE,Size(CroppedFace.cols/10,CroppedFace.rows/10));
 //}

 // Now, if the face is larger than the previous (all others)
then hold its information for later use
 if(LFSz<OriginalFace.cols)
 {
 LFSz=OriginalFace.cols;
 RoLF=FaceRegion;
 }

 }

 if(LFSz==0)
 return Zero;
 else
 {
 if(Save)
 {
 imwrite(format("FindLrgstFace-The Received Image
%d.png",time),Image);
 imwrite(format("FindLrgstFace-The Faces
%d.png",time),tmpImg);
 }
 return RoLF;
 }

}

214

// Function FindLrgstBody ***
/**
This function finds the largest body in the image passed to it by the calling
program using the haar cascades (Viola Jones) method.

PARAMETERS:
 Mat Image : The image to be searched for bodies.
 CascadeClassifier : The Detector to be used (A number of different
body detectors)

RETURNS
This function returns a Rectangle containing the largest face.
If no face is detected, a 'Zero' rectangle is returned.

**/

#include "Stdafx.h" // required by Visual Studio
//#include <iostream>
#include "highgui\highgui.hpp" // for VideoCapture & waitKey
#include <imgproc\imgproc.hpp> // for blur and other image related stuff
#include "objdetect\objdetect.hpp" // for cascade classifiers

using namespace cv;
using namespace std;

Rect FindLrgstBody(Mat Image, CascadeClassifier BodyCascade1,CascadeClassifier
BodyCascade2,CascadeClassifier BodyCascade3, int BdySz)
{

////// DECLARATIONS //////
 int LBSz; // The Largest Body Size is the size
of the larges face found in the frame
 Mat OriginalFace; // The face with the original size
 Rect FaceRegion;
 Rect RoLB(0,0,0,0); // Region of the largest body.
 Rect Zero(0,0,0,0);
 vector <Rect> DetectedFaces; // Detected Faces

//############################# MAIN OPERATIONS ###########################//

 // Search for faces inside the image
 BodyCascade1.detectMultiScale(Image,DetectedFaces,1.2,2,0|CV_HAAR_SCALE
_IMAGE,Size(BdySz,BdySz));

 //////// VERIFYING DETECTED BODIES & LOOK FOR THE LARGEST BODY
 LBSz=0;
 for (int jjj=0;jjj<DetectedFaces.size();jjj++)
 {
 FaceRegion = DetectedFaces[jjj];

 // Extract the face image from the frame image
 Image(FaceRegion).copyTo(OriginalFace);

215

 // Now, if the face is larger than the previous (all others)
then hold its information for later use
 if(LBSz<OriginalFace.cols)
 {
 RoLB=FaceRegion;
 LBSz=OriginalFace.cols;
 }

 }

 if(LBSz==0)
 return Zero;
 else
 return RoLB;

}

216

// Function CheckFrame **
/**
This function checks the frame image to see whether it has width and height or
not. This is because the frame captured from a camera may sometimes be
corrupted and contain only the width or the height.

PARAMETERS:
 VideoCapture Cam: The camera to obtain frames from if the current one
is corrupted.
 Mat Frame : The currently captured frame image to be checked.
 int Iterations : The number of times the camera should be queried
for a non-corrupt frame image.

RETURNS
This function returns a Rectangle containing the largest face.
If no face is detected, a 'Zero' rectangle is returned.

**/

#include "Stdafx.h" // required by Visual Studio
//#include <iostream>
//#include <ctime>
#include "highgui\highgui.hpp" // for VideoCapture & waitKey
//#include <imgproc\imgproc.hpp> // for blur and other image related stuff
//#include "objdetect\objdetect.hpp" // for cascade classifiers

using namespace cv;
//using namespace std;

bool CheckFrame(VideoCapture Camera, Mat Frame, int times)
{

 if(!Frame.cols || !Frame.rows)
 {
 int counter=0;

 do
 {
 Camera >> Frame; // Maybe the FHD cam number is
'4', verify it.
 printf("\nNo rows or no columns from
CurrentFHDFrame=%i",counter);
 counter++;
 if (counter>5)
 break;
 }while(!Frame.cols || !Frame.rows);

 if (Frame.cols && Frame.rows)
 {
 printf("\n\nThe Camera is now OK ...");
 return true;
 }
 else
 {
 printf("\n\nUnable to get a proper feed from the camera,
skipping ...");
 return false;

217

 }
 }

 return true;
}

// Function Print ***
#include "stdafx.h" // required by Visual Studio
#include "highgui\highgui.hpp"

using namespace cv;

void Print(Mat Image,int Line,String Text)
{
 if(Line==1)
 Image=Scalar::all(0);

 putText(Image,Text,Point(5,Line*20),1,1.5,Scalar(255),2);
 imshow("Status",Image);
 waitKey(1);
}

218

// Function Show2 ***
/**

This function displays a graphic window containing one or two rectangles

 PARAMETERS:
 Mat Image : The frame image to be displayed.
 Rect Rect1 : The first rectangle to be drawn on the frame image.
 Rect Rect2 : The second rectangle to be drawn on the frame image.
 int w : The waiting period in milliseconds

RETURNS
This function returns nothing.

***/

#include "Stdafx.h" // required by Visual Studio
#include "highgui\highgui.hpp" // for VideoCapture & waitKey
#include <imgproc\imgproc.hpp> // for blur and other image related stuff

using namespace cv;

int SnW(int Wait_Tim_Millisec); // Show (graphic window) and wait (waitKey)
for some time

//============================== VERSION 1 ================================//

// Version 1: Without title and without resizing
void Show2(Mat Image,string Title, Rect Rect1, Rect Rect2, int w, bool
Destroy)
{
 Mat Frame;

 // Make a temporary copy of the frame image so we don't ruin it by
drawing the rectangles
 Image.copyTo(Frame);

 //putText(tmpFrame,"Face",Point(WALFRg.x,WALFRg.y-
10),1,2,CV_RGB(255,0,0),2);
 rectangle(Frame,Rect1,CV_RGB(255,0,0),3);

 //putText(tmpFrame,"Tracking Region",Point(WAFTRg.x,WAFTRg.y-
10),1,2,CV_RGB(255,0,255),2);
 rectangle(Frame,Rect2,CV_RGB(255,0,255),3);

 imshow(Title,Frame);

 if(!SnW(w)) return;

 if(Destroy)
 destroyWindow(Title);

}

219

//============================= VERSION 2 ================================//

// Version 2: with title and without resizing
void Show2(Mat Image,string Title,int x, int y, Rect Rect1, Rect Rect2, int w,
bool Destroy)
{

 Mat Frame;

 // Make a temporary copy of the frame image so we don't ruin it by
drawing the rectangles
 Image.copyTo(Frame);

 //putText(tmpFrame,"Face",Point(WALFRg.x,WALFRg.y-
10),1,2,CV_RGB(255,0,0),2);
 rectangle(Frame,Rect1,CV_RGB(255,0,0),3);

 //putText(tmpFrame,"Tracking Region",Point(WAFTRg.x,WAFTRg.y-
10),1,2,CV_RGB(255,0,255),2);
 rectangle(Frame,Rect2,CV_RGB(255,0,255),3);

 imshow(Title,Frame);
 moveWindow(Title,x,y);

 if(!SnW(w)) return;

 if(Destroy)
 destroyWindow(Title);

}

//=============================== VERSION 3 ===============================//

// Version 3: With title and resizing
void Show2(Mat Image,string Title,int x, int y, Rect Rect1, Rect Rect2, int w,
bool Destroy,int Rsz_W, int Rsz_H)
{
 Mat Frame;

 // Make a temporary copy of the frame image so we don't ruin it by
drawing the rectangles
 Image.copyTo(Frame);

 //putText(tmpFrame,"Face",Point(WALFRg.x,WALFRg.y-
10),1,2,CV_RGB(255,0,0),2);
 rectangle(Frame,Rect1,CV_RGB(255,0,0),3);

 //putText(tmpFrame,"Tracking Region",Point(WAFTRg.x,WAFTRg.y-
10),1,2,CV_RGB(255,0,255),2);
 rectangle(Frame,Rect2,CV_RGB(255,0,255),3);

 // Resize the window before displaying it
 resize(Frame,Frame,Size(Rsz_W,Rsz_H));

 imshow(Title,Frame);
 moveWindow(Title,x,y);

 if(!SnW(w)) return;

 if(Destroy) destroyWindow(Title);
}

220

// Function ReadDIP ***
/**

IMPORTANT
For the correct operation of this program, a DIP switch must be present and
connected to the Arduino board that will be reading it.

INTRODUCTION
This function reads the DIP switch that is connected to the Arduino board.

PARAMETERS:
None.

RETURNS
This function returns an integer representing the decimal equivalent of the
binary value which is represented by the DIP switch keys.

**/

#include "stdafx.h" // required by Visual Studio
#include <Windows.h> // for organizing the different windows on the screen
#include <string>

using namespace std;

HANDLE SerialPort3(string Name,int Speed);// This function opens the requested
serial port (int: Serial Port Number) and returns -1 if unsuccessful.

int ReadDIP(void)
{
//############################### DECLARATIONS #############################

// Arduino Related
 HANDLE DIPArduino;
 DWORD btsIO;
 char Dec[2] = "d"; // The decimal value that is sent by the
Arduino. The 'd' means nothing

//############################## INITIALIZATIONS ############################

 // Initialize the Arduino port to control the aiming servos
 DIPArduino=SerialPort3("29",9600); // define the port for the Arduino
board that controls the robot

//############################ MAIN OPERATIONS ############################//

 ReadFile(DIPArduino, Dec, strlen(Dec), &btsIO, NULL);
 ReadFile(DIPArduino, Dec, strlen(Dec), &btsIO, NULL);
 ReadFile(DIPArduino, Dec, strlen(Dec), &btsIO, NULL);
 ReadFile(DIPArduino, Dec, strlen(Dec), &btsIO, NULL);

 // Close port and return to the calling program
 CloseHandle(DIPArduino);

 return Dec[0];
}

