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Abstract

It is increasingly important for professional sports teams to monitor

player fitness in order to optimize performance. Models have been put

forward linking fitness in training to performance in competition but rely

on regular measurements of player fitness. As formal tests for measuring

player fitness are typically time-consuming and inconvenient, measure-

ments are taken infrequently. As such, it may be challenging to accu-

rately predict performance in competition as player fitness is unknown.

Alternatively, other data, such as how the players are feeling, may be

measured more regularly. This data, however, may be biased as players

may answer the questions differently and these differences may dominate

the data. Linear Mixed Methods and Support Vector Machines were used

to estimate player fitness from available covariates at times when explicit

measures of fitness are unavailable. Using data provided by Glasgow War-

riors Rugby Club, a case study was used to illustrate the application and

value of these models. Both models performed well with R
2 values rang-

ing from 60% to 85%, demonstrating that the models largely captured the

biases introduced by individual players.

Keywords: Machine Learning; Predictive Modelling; Probability; Sports;
Statistics

1 Introduction

The differences in performance between athletes in top level sports are often
very small (Maughan 2002) and as such minor improvements to training and
preparation can be the difference between victory and defeat. In recent years
there have been examples of sports teams and organizations who have used
scientific approaches to training and preparation and who have then dominated
at the highest level such as Great Britain cycling and rowing teams and Team
Sky cycling team (James 2012). Ensuring that athletes are at peak performance
levels for the most important competitions appears to be a critical factor for
success.

In order to achieve this it is necessary to be able to link performance or fitness
measures from training to performance in competition. Calvert et al. (1976)
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considered a system model to relate data, in the form of a profile, from train-
ing to a profile for competition. The model took four parts: endurance, skill,
strength and psychological factors, and was based on the model by Banister
et al. (1975). The authors simplified these factors down to two functions cor-
responding to fitness and fatigue. They implemented their model to data from
swimmers and showed a good fit. Morton et al. (1990) further simplified this
model to represent both fitness and fatigue in a single linear difference equation.
They considered the case of individual runners and showed significant observed
correlations between model predictions and actual athlete performance. Hellard
et al. (2006) investigated the Banister model for 9 elite swimmers to assess its
predictive powers. They found that the confidence intervals for model parame-
ters were very wide and parameters were correlated. They suggested penalized
models, ridge regression and Bayesian methods as possible solutions to these
issues. The measures of training and performance are crucial to the Banister
model. A power output, heart rate relationship and application of the Morton
simplification of the model for two individual high level cyclists was considered
by Scarf et al. (2013).

In sports in which athletes compete individually or as part of a small team,
it will often be feasible to take measurements of fitness as inputs to such models
fairly frequently. However, in large team sports such as association football,
rugby, hockey, etc. in which squads will typically comprise 30-40 players this
will usually not be the case and measurements for individual players may only be
taken sporadically and unevenly across players. However, teams in such sports
will typically collect information much more regularly which may be related to
player fitness, both in the form of data and more subjective information.

This paper investigates two methods for estimating individual player fitness
using data with reduced entropy but which is collected more regularly. We aim
to demonstrate that this data, previously being viewed by both players and
coaches as having limited information, can help coaches predict the outcome
of tests that they are unable to regularly complete. These estimates can then
be used as inputs into performance models and used to aid decision making
for training schedules, etc. As each player in a team will only take the for-
mal fitness tests a small number of times over a season, models will be fit to
the data for all players. However, there will typically be differences between
players, both through differences in the potential fitness levels for individuals
and, if subjectively assessed information is used, in the different ways that indi-
viduals respond. We propose and evaluate two different approaches which are
sufficiently flexible to be able to model these differences; Bayesian linear mixed
effects models and Support Vector Machines.

The paper is motivated by work with Glasgow Warriors Rugby Club and
the main contributions of the paper is the application of different quantitative
methodologies to the problem faced by Glasgow Warriors. We will identify the
data available to Glasgow Warriors and fit both models to the data to estimate
player fitness for the entire squad of players. We will then compare the fits and
usefulness of each of the models for this case.

The rest of the paper is structured as follows. In Section 2 we outline the
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problem faced by Glasgow Warriors and in Section 3 we discuss the application
of linear mixed effects models and support vector machines to the estimation of
player fitness in team sports generally. In Section 4 we apply the two approaches
to the specific problem faced by Glasgow Warriors and in Section 5 we assess
the fits of the models in this case. We conclude the paper and suggest areas for
further work in Section 6.

2 Motivating Problem

The following data were collected by Glasgow Warriors. Between 30th January
2012 and 17th April 2012, 38 players completed a questionnaire on each day
that they trained. Each player answered eight questions, marking each question
on a ten point ordinal scale. The players were asked to rate, on a scale of
1-10, each of the following: Upper Body soreness (UB), Lower Body soreness
(LB), Sleep Quality (SQ), Appetite (APP), Energy (EN), Mood (MD), Stress
(STR) and Motivation (MOT). Completing the questionnaires were part of the
daily routine of the players. The organization believed that the players’ general
physical and mental wellbeing could be assessed through the questionnaire.

Over the same period, players infrequently carried out counter movement
jump (CMJ) tests. The CMJ was performed with arms fixed by holding a
wooden broomstick across the shoulder behind the head. In all, 430 CMJ tests
were carried out. The CMJ test is used to measure performance, including
muscular strength and anaerobic power Castro-Piero et al. (2010), as well
as maximal leg power Marek et al. (2005). To do this, measurements are
made on many parameters, including peak power and jump height. Measuring
these from the CMJ is a simple way to establish the physical potential of the
player to perform explosive based movements utilized on the rugby field and is
used by the organization to inform training intensity and team selection. Many
measurements were taken using force plates; all of which give information about
different aspects of the condition of the player in question. Larry (1998) Larry
(1998) questioned the reliability of these devices; however, for the purposes of
this paper, we ignored sampling error resulting from measurement inaccuracies.
Two measurements were of primary interest to the organization: Peak Distance
(height) and Peak Power.

Summary statistics for the 430 observations of Peak Distance and Peak
Power are given in Table 1.

We see fairly symmetric distributions in each case, with the mean and median
close together and no obvious outliers either at the top or bottom end of the
data.

Despite the usefulness of the data provided by the CMJ, it was carried
out infrequently due to time constraints. In contrast, the wellness test scores
were collected from the players every day. The organization wished to predict
the results of the CMJ based on the answers the players give to the wellness
questionnaire. This would highlight each player’s fitness and fatigue on days
when the CMJ is not performed.
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Summary Peak Distance Peak Power
Minimum 0.330 3313

Lower Quartile 0.435 5934
Median 0.477 6826
Mean 0.477 6776

Upper Quartile 0.522 7450
Maximum 0.633 9694

Table 1: Summary statistics for Peak Distance and Peak Power.

The organization previously used the mean of the eight questions to assess
the wellness of each player. This was normalized as a percentage and then
categorized as good, normal or bad. From this, in the absence of jump test
data, different training schedules were developed for each player. However,
upon examining the effect the mean of the eight questions had on the output
of the CMJ, the strength of the relationship was found to be insignificant, i.e.
R2 < 5%. In addition, a simple linear regression model was applied to the data.
As with the mean, the strength of the relationship was found to be insignificant,
i.e. R2 < 5%.

There were three possible reasons that the basic regression model may per-
form poorly. First, there may be no information contained in the players’ an-
swers to the wellness test which was useful for predicting Peak Power or Peak
Distance in the CMJ. Second, each player may have a different potential for
Peak Power or Peak Distance, and the simple regressive models used may not
be able to capture this. Finally, the players may be answering the questions dif-
ferently and these differences may be dominating the data. It seemed intuitive
that, given that the questionnaire was subjective, while players were internally
consistent, there may exist inconsistencies between players in how the questions
were answered. Coaches intuitively believed that the signal in the data being
captured may be small, but should still be able to inform the output of the
CMJ. As such, an alternative method of modeling the questionnaire test that is
capable of capturing the effect of the individual players to infer the CMJ score
was required.

3 Methods

In this section we discuss the suitability of two standard modeling approaches,
linear mixed effects models and support vector machines, to the estimation of
player fitness in teams.

3.1 A linear mixed effects model

Mixed effects regression models are widely used tools to predict the values of
unknowns of interest Y using fixed variables X1, . . . ,Xn and random effects,
Z1, . . . ,Zm, for which the values are known, or, in the case of prediction, will
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be known at some point in the future. In our case this form is useful as we define
Y to be the, possibly multivariate, measure of player fitness for the team and
X1, . . . ,Xm to be the information collected by the organization regularly which
is related to player fitness. This then allows us to use the Z1, . . . ,Zm to take into
account the differences between the players in terms of their underlying ability
in the fitness measure and, in the case of subjectively assessed information from
the players, the random differences between how players answer questions.

The linear mixed effects model for the player fitness Y ∼N(µ,Σ), can then
be expressed in terms of a linear function of the information collected from the
players and a further linear function taking into account the differences between
the players. That is,

µ = βTX + γTZ + ǫ,

where ǫ are the residuals representing the error between the predictions and mea-
surements of the fitness measures of interest and β1, . . . ,βn and γ ∼N(0,Σγ)
represent the influence of the information collected and individual players re-
spectively.

We could then fit such a model using, for example, restricted maximum
likelihood. However, coaches in sports teams will often have knowledge of the
relationships between player fitness and other information collected and also of
the underlying player potentials in terms of the performance or fitness measure.
Thus, we propose a Bayesian approach to inference. For an explanation of
Bayesian methods see Lee (2012).

In the Bayesian analysis we represent the beliefs of the coaches on the rela-
tionships which exist between the fitness measure and the other information and
players using a probability distribution named the prior distribution. We then
use the data to update those beliefs and the result is the posterior distribution
which represents the beliefs of the coaches considering all of the information at
their disposal.

In a Bayesian linear mixed effects model the Gibbs sampler can be used
to compute the posterior distribution if conditional distributions for the pa-
rameters can be found up to proportionality. We sample from the conditional
distributions, discarding samples until the Markov chain has converged. This
can be achieved by iterating the following steps

L(β|y,γ,Σ,Σγ) ∝ φ(y −Zγ;Xβ,Σ)π(β)

L(γ|y,β,Σ,Σγ) ∝ φ(y −Xβ;Zγ,Σ)φ(γ; 0,Σγ)

L(Σ|y,β,γ,Σγ) ∝ φ(y −Xβ −Zγ; 0,Σ)π(Σ)

L(Σγ |y,β,γ,Σ) ∝ φ(γ; 0,Σγ)π(Σγ),

where φ(a; b, c) represents the probability density function of the Normal
distribution at a with mean b and variance matrix c and π(·) represents a prior
density.

Having found the posterior distributions, we are able to make predictions of
how players will perform on the fitness test given the information collected by
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the organization.

3.2 A Support Vector Machine

Recently, Support Vector Machines (SVM) (Cristianini & Shawe-Taylor 2000,
Vapnik 1999) have been the subject of intensive research (Scholkopf et al. 1996,
Vapnik 1999) and have been applied successfully to many classification and re-
gression studies in many disciplines, e.g. energy (Moulin et al. 2004), particle
identification (Barabino et al. 1999), face identification (Guo et al. 2000, Os-
una et al. 1997), text categorization (Drucker et al. 1999) and bioinformatics
(Brown et al. 2000). SVM, based on the work of Vladimir Vapnik in statistical
learning theory (Vapnik 1999) have become one of the most popular data min-
ing algorithms within the computing science domain (Wu et al. 2008). Training
involves optimization of a convex cost function, and in comparison with other
machine learning models, there are no false local minima to complicate the
learning process.

A simplistic view of SVM is that the data x are mapped onto a higher di-
mensional space F via a non-linear mapping and subsequently, linear regression
is carried out in F . The linear regression model in a high dimensional space
can be viewed as equivalent to nonlinear regression in a low dimensional space.
To do this, margin maximization and kernels are considered. The margin is
defined as the smallest distance between the hyperplane and any of the data.
The purpose of an SVM is to choose a hyperplane such that it separates the
closest members of different groups by as much as possible, i.e. it maximizes the
margin. A kernel function is used to map the data to a higher dimension. One
challenge of kernel mapping is choosing the most appropriate kernel. While a
potentially infinite number of kernel functions exist, a relatively small number of
functions have been demonstrated to work well across many problem domains.
The most widely used kernel function is the Gaussian Radial Basis Function
(RBF), k(xi, xj) = exp(−γ||xi − xj ||

2) for γ > 0. In order to use the RBF
kernel, we must specify γ.

For those wishing to implement SVM, there are two key elements that need
to be controlled: overfitting and underfitting. By transforming the data into a
new dimension space, we can avoid underfitting. This is particularly true when
we believe that the data do not follow a linear relationship. Overfitting is more
challenging to address. Overfitting is common when the data are limited (as
patterns may actually be noise), the data have a lot of noise, or when there are
many variables and the underlying relationship is not well understood. Clearly
in our case there is a risk of overfitting due to the sparse nature of observations
of the fitness of individual players in teams. We can control for overfitting and
underfitting primarily through the modification of two parameters; C, and γ;
where C determines the trade off between allowing errors and enforcing strict
margins, while γ is the Gaussian parameter in our RBF kernel. The above
only considers SVM to classification problems. To apply SVM to regression
problems, a penalty function is adapted such that a penalty is not applied if the
predicted value is within a given distance of the actual value, denoted by ξ.
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4 Results: Case Study with Glasgow Warriors

4.1 The Linear Mixed Effects Model

This section provides an overview of applying the linear mixed effects model to
the problem of predicting jump test scores using questionnaire data. All of the
modeling for both approaches is implemented using R, (R Development Core
Team 2005).

For the jump test we have observations of a number, i = 1, . . . , n, of players,
and for each player we have a number of observations from individual tests
j = 1, . . . ,mi. That is we have, for each response of interest, observations
Yij . These responses are Peak Power and Peak Distance respectively. For
each of these observed responses we also have recorded values for each of the
questionnaire variables, X1ij , . . . , X8ij . These are Upper Body, Lower Body,
etc.

There is substantial between player variability in both the responses to the
questions from the questionnaire and in the two jump test response variables.
In addition, as new players come into the squad, we may wish to predict their
jump test scores based on no previous data. As a result of these two factors,
the following linear mixed model is deemed suitable to represent the relation-
ship between the two jump test responses and the questionnaire answers. The
response is Yij ∼N(µij , 1/τij), where

µij = β0 + β1X1ij + . . . , β8X8ij + γiUij + ǫij ,

and µij is the mean of either Peak Distance or Peak Power for player i on jump
j, X1ij , . . . , X8ij are the values of the questionnaire answers for that player

on the day of that jump and Uij = 1 so that γi ∼N(0, 1/τ
(i)
γ ) is the random

effect associated with player i. We find Bayesian estimates of the model pa-
rameters as they allow us flexibility in the relationships we define between the
model parameters. In order to do so, we first require prior distributions for

β1, . . . , β8, τij , τ
(i)
γ . Those chosen must be suitable for the range of values the

relevant parameter can take. In particular, we take

βk ∼ N(mβ , v
(k)
β ),

τ (i)γ ∼ gamma(r(i)γ , θ(i)γ ),

τij ∼ gamma(r, θ).

It seems reasonable that many of the fixed regression parameters for the re-
sponses to the questionnaires, such as Upper Body and Lower Body, will not
be independent of one another. That is, knowing one of the covariate values
will provide information about the likely values of the other covariates. We can
incorporate this dependence in the model by adding a third level of hierarchy
to the model. This is

mβ ∼ N(µβ , 1/τβ).
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The prior, and therefore the model, is fully specified once values have been

chosen for (v
(k)
β , r

(i)
γ , θ

(i)
γ , r, θ, µβ , τβ). In practice, these values have been chosen

to define approximate non-informative prior distributions. This was primarily
to allow comparison with the SVM approach. An important area of future work
will be to elicit informative prior distributions from the coaches at Glasgow
Warriors, though this will not be a simple task as the model parameters are not
directly observable.

We have two linear mixed effects models as detailed above; one for Peak
Distance and one for Peak Power. Both models were run for 10,000 iterations of
the Gibbs sampler as burn in, after which the Markov chains demonstrated good
convergence based on trace plots. The posterior distributions were then calcu-
lated using a further 100,000 iterations. There were no indications of problems
with autocorrelation in either model and multiple chains mixed well.

The posterior distributions for the model considering Peak Distance are given
in Figure 1. The posterior means and variances are given in Table 1 in the
Appendix.
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Figure 1: The posterior densities of each of the fixed effect parameters for Peak
Distance

We can see from the plots that the posterior distributions for all of the fixed
effect parameters for Peak Distance follow approximately symmetric distribu-
tions. All of the densities contain zero so we cannot say that the coefficients
are non-zero. However, for each of β1, β2, β5, zero is in the tails of the density
indicating that UB, LB and EN are the covariates which are most clearly having
an effect on a player’s Peak Distance.
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We give a similar posterior density plot for all of the fixed effect parameters
in the regression model for Peak Power in Figure 2. Again the table of the
posterior means and variances, Table 2, is given in the Appendix.
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Figure 2: The posterior densities of each of the fixed effect parameters for Peak
Power

Many of the densities contain zero in the tails of the distribution. In particu-
lar, the covariates which are the most significant in terms of predicting the Peak
Power of a player’s jump are those associated with β1, β3, β4 and β5. These cor-
respond to the covariates UB, SQ, APP and EN. Once again, all of the posterior
densities are approximately symmetric around their modes.

4.2 Support Vector Machines

The following steps are carried out to develop the SVM model. First, the ex-
planatory variables are scaled between [0,1]. Next, in order to assess overfitting
noise in small datasets, for each C and γ, cross-validation is carried out on
the data. The data is divided into k equal sized groups. From this, k dif-
ferent experiments are run, ensuring that each data point is included in the
test data exactly once. The accuracy of the model is then evaluated across
the k experiments rather than a single experiment. Alternative procedures to
cross-validation have been proposed by Joachims (2000), Campbell et al. (1999),
Chapelle et al. (2002) and more recently by Bishop (2006), Wu & Wang (2009).
When developing the training set, in order to capture the effect of each player
within each experiment, at least one data point is included for each player.
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Once the k experiments are carried out, the mean residual standard deviation
and R2 for the test data is calculated. This is then repeated for different C and γ
ranging from C ∈ {1, 1×102, . . . , 1×106} and γ ∈ {1×10−5, 1×10−4, . . . , 1, 1×
102}. The mean R2 for each combination of C and γ for both the overall dataset
and the test set for Peak Power are captured in Table 3 in the Appendix.

For certain values, e.g. γ = 1 or γ = 10, the model overfits the training
data set and performs poorly for the test data. Using the information in Table
3, values of C = 1000 and γ = 0.01 are initially chosen to develop the model.
The regions of C and γ close to these values are further explored. From this
analysis, C = 800 and γ = 0.01 are chosen to further develop the model. The
model developed for these values is evaluated in Section 5. This analysis is
repeated for Peak Distance. Details are omitted.

5 Comparison of Modeling

We evaluate the models using two different measures: the residual standard
deviation and the coefficient of determination, R2. Other measurements of
accuracy, such as the deviance, the Akaike Information Criteria and the Schwarz
Information Criteria (Congdon 2004), could have been used to assess model
fit. However, such more complex model selection criteria typically include a
calculation about the value of adding extra parameters to models and, as such,
the resulting model fit is dependent on the number of parameters in the model.
Since the approaches we are considering in this paper are very different and,
in particular, utilize parameters in very different ways, we prefer to assess the
models using the relatively simple and absolute measures we have defined above.

5.1 Quantitative Evaluation

Each model is used to predict the values of Peak Distance and Peak Power for
individual players on each of the days in which they took the jump test based on
their questionnaire answers for that day. The linear mixed effects model for Peak
Distance produces a residual standard deviation of sǫ = 0.027 and sǫ = 403.11
for Peak Power, while the SVM produces a residual standard deviation for Peak
Distance of sǫ = 0.035 and sǫ = 685.93 for Peak Power. For Peak Distance,
the mean observation is 0.477 and the standard deviation is 0.0601. For both
models, an average error between the observed modeled values of approximately
0.001-0.002 is fairly small. In the case of Peak Power, the average error of about
19 and 33 is compared with observations which have a mean of 6775.75 and
standard deviation of 1030.567; once again this represents a small average error
between the model and the observations. For the jump test results the R2 values
are 79.1% for Peak Distance and 84.7% for Peak Power using the linear mixed
effects model. The SVM produces an R2 value of 66.1% for Peak Distance and
55.7% for Peak Power. For both models, each represents a marked improvement
over the basic models as discussed in Section 1 in which the R2 values were of
the order of 5%.
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We plot the observed values for each test for each of the players against the
predicted values from the model for both Peak Distance and Peak Power to
illustrate the model fit. A plot of these quantities for both response variables is
given in Figure 3 for the linear mixed effects model and in Figure 4 for SVM.
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Figure 3: Observed versus predicted values for Peak Distance (on the left) and
Peak Power (on the right) for linear mixed effects model.

Figure 3 and Figure 4 illustrate that the observations are fairly evenly scat-
tered around the line y = x. This implies that both models are working fairly
well for the range of jump test scores of each variable. We can also plot the
densities of the model predictions for each of the 430 tests in comparison to the
densities of the observed values for Peak Distance and Peak Power. Plots of
these quantities are given in Figure 5 and Figure 6.

For both Peak Distance and Peak Power, the linear mixed effects model
is capturing the approximate shape of the density. However, for Peak Power,
the model overreacts to multi-modality in the density. The SVM produces a
smoother density and as such, is unable to sufficiently adapt to changes in
the shape of the density function. Both models slightly under-represent the
spread of the response variable for both variables. As a result the mode of the
predicted values in each plot has a higher density than that of the observed
values. However, in both cases the modes of observed and predicted values are
in good agreement.

It is surprising that the SVM performs noticeably more poorly than the
linear mixed effects model. There are a number of potential reasons why this
may be the case. First, the models utilise the data in subtly different ways. The
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Figure 4: Observed versus predicted values for Peak Distance (on the left) and
Peak Power (on the right) for SVM.

linear mixed effects model uses the entire data set to develop the model while
the SVM uses a subset of the data to develop the model parameters and then
tests that model on the actual dataset1. Second, while the linear mixed effects
model explicitly captures the intra-subject correlations, this was captured by
the SVM using binary variables to identify each player. Due to the way SVM
learn the model parameters, it is possible that these variables are not included
in the final model. More importantly, however, is that an ‘off-the-shelf’ SVM
was used, e.g. RBF kernel and default regression algorithm. These were chosen
to explore how current Glasgow Warriors analysts could quickly apply SVMs.
With further training and experience, more complex models could be developed.
For example, when using the ν-SVM regression algorithm (Schlkopf et al. 2000),
the SVM produces similar results to the linear mixed effects model.

5.2 Providing Managerial Insight

We evaluate the output of the model from the perspective of Glasgow Warriors
to consider it’s impact. The CMJ is an important source of information as
coaches believed that the results provide information regarding power and ex-
plosive strength potential of the players. Studies, such as those by (Gathercole,
Sporer & Stellingwerff 2015) and (Gathercole, Stellingwerff & Sporer 2015)

1Note that the linear mixed effects model was separately implemented using a training and

test dataset with similar results.
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Figure 5: Densities of the predicted (dashed) and observed (solid) values for
Peak Distance and Peak Power using the linear mixed effects model.

have evaluated the links between the outcome of CMJ and other performance
parameters such as fatigue. As discussed above, based on resources, time and
equipment, and other training priorities, it is not feasible to do the CMJ test
more frequently. As a result there is limited knowledge of the power potential of
the players pre-game, how they may have ‘peaked’ leading into a game, or how
they may have recovered after a game. It is important therefore to establish
whether the physical wellbeing of the player, which can be gathered quickly and
non-intrusively, relates to the power they can express through the jump.

To illustrate the output from the model, we consider two separate days on
which the jump test and questionnaire were administered to a specific player,
a back. The measurements were made in consecutive weeks. The player in
question has a random effect (posterior mean) of -0.0678, which will reduce
the prediction of peak distance as compared to other players. In the first
week, the recorded scores for (UB,LB,SQ,APP,ENERGY,MOOD,STR,MOT)
were (6, 4, 8, 7, 6, 8, 7, 8) and in the second week they were (7, 5, 9, 9, 8, 8, 8, 9).
We see that, in the second week, this player’s condition had improved according
to the questionnaire. This is reflected in the (posterior) predictions of peak
distance from the model, which were 0.378 and 0.404 respectively, and also the
observed peak distances on the jump test, which were 0.382 and 0.408 respec-
tively.

The models developed in this paper support the coaches in multiple ways.
First, the models allow coaches to identify players that would perform poorly
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Figure 6: Densities of the predicted (dashed) and observed (solid) values for
Peak Distance and Peak Power using SVM.

on the CMJ on any given day. This supports the coaches in tailoring individual
training sessions for players prior to game, and with pre-game decision making.
Second, the model identifies those measurements taken during the wellbeing test
that are well correlated with the CMJ. By identifiying the covariates that are
strongest, coaches can better monitor players development and recovery. Finally,
the model identifies those players who are ‘optimistic’ and ‘pessimistic’ about
their condition, i.e. players. This provides coaches with additional information
and ensures players cannot ‘cheat’ the wellbeing test.

In conclusion, this paper demonstrates that simple subjective wellbeing ques-
tions, previously viewed as having no predicitve power, can indicate the physical
potential of the players and from this, the training process leading into a game
can be adjusted accordingly to maximize the rugby performance goals.

6 Discussion and Conclusions

The paper illustrates how different models can be used to gain insight from
data currently collected by sports organizations and to solve novel problems.
As organizations gather more data, it is imperative that they empower their
employees to take advantage of the insight buried within these data. This is
particularly important for organizations where resources are limited and where
a small competitive advantage may have a large impact on results. As more and
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more organizations move into the realm of “big data”, modelers require different
skills to extract insight from these complex, non-linear, noisy data sets. In this
paper, we give an overview of two different approaches for analysts working with
data containing non-linear relationships and illustrate how each method could
be used.

For Glasgow Warriors, there are a few key aspects of the model that they
deem important. First, the model is being built by analysts to better under-
stand the system and not just for the predictive power. As such, the mixed linear
effects model is attractive as they are typically building models as communica-
tion tools as well as predictive tools. The impact of the different variables can
be extracted from the SVM, however, the kernel chosen here transforms these
variables into different dimensions that are difficult to attach an operational
interpretation to. While there is a desire for the model to be as accurate as
possible, there is a need to understand the mechanics of the model in order
to tailor feedback. At this time, the SVM is limited in terms of its decision
support to Glasgow Warriors for this problem. However, Glasgow Warriors are
aware of the wide range of problems that they could apply advanced analytical
methods to, and they are keen to gain expertise on modeling approaches that
could be applied to large number of datasets. As such, it is likely that SVM can
be applied to a wider range of problems than the mixed effects model.

Future work could focus in a number of different areas. First, the data was
gathered over a 10-week period in the middle of the season. While investigation
did not indicate any time impact, a fuller longitudinal analysis of the data may
indicate seasonal effects. Second, using the same problem described above, the
modeling could be expanded. For example, the SVM could be further developed
to consider different kernels or other machine learning methods such as Neural
Networks (Bishop 2006) or Ensemble learners (Valentini & Masulli 2002).
For the linear mixed effects model, an important step would be to capture
informative-priors, or to try to separate the effect of subjective difference in
questionnaire answers from the players’ potential for peak distance and peak
power.

Within the problem domain, the above models assume that previous mea-
surements have been made for each player. Future work could focus on assessing
the jump test score for players who have completed the questionnaire, but have
yet to carry out a jump test. In this paper we have assumed sampling error
in the jump test equipment to be negligible. There is evidence from the sport
science literature that this may not be the case (Larry 1998). In particular, if
equipment measurement bias is present in short time frames, and if the bias is
correlated, then it would be necessary to include this in any model of jump test
scores. Future work could investigate this.
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Appendix

Table 2: The posterior means and variances of each of the fixed effect parameters
for Peak Distance

Covariate E[βi | y] Var(βi | y)
UB -0.0025800 1.901641e-06
LB 0.0022640 1.638400e-06
SQ -0.0008536 1.550025e-06
APP 0.0003494 3.129361e-06

ENERGY 0.0029600 5.475600e-06
MOOD -0.0007191 4.318084e-06
STR -0.0018240 2.975625e-06
MOT 0.0025050 3.783025e-06

Table 3: The posterior means and variances of each of the fixed effect parameters
for Peak Power

Covariate E[βi | y] Var(βi | y)
UB 20.0700 257.9236
LB -10.6500 224.4004
SQ 16.7600 238.3939
APP 25.4700 389.6676

ENERGY 25.8900 443.1025
MOOD 1.5880 436.3921
STR 3.7590 369.4084
MOT 0.7422 423.1249
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Table 4: R2 for different combinations of C and γ with test set R2 in brackets
❍

❍
❍
❍
❍

C
γ

1× 10−4 1× 10−3 1× 10−2 1× 10−1 1 1× 102

1 0.0002 (0.0045) 0.0022 (0.0288) 0.1478 (0.1381) 0.6836 (0.5842) 0.5705 (0.1138) 0.4088 (0.004758)
1× 102 0.0026(0.0110) 0.1555 (0.1440) 0.5610 (0.5620) 0.7863 (0.5227) 0.6840 (0.1456) 0.6240 (0.0048)
1× 103 0.1615 (0.1630) 0.5231 (0.5402) 0.6179 (0.6537) 0.7884 (0.5286) 0.6969 (0.1169) 0.6023 (0.01638)
1× 104 0.5484 (0.5321) 0.6064 (0.6061) 0.6491 (0.5688) 0.7521 (0.6067) 0.6963 (0.1327) 0.6158 (0.0095)
1× 105 0.6368 (0.5570) 0.5974 (0.6886) 0.6721 (0.5689) 0.7760 (0.6097) 0.6752 (0.1464) 0.6187 (0.0152)
1× 106 0.6260 (0.5779) 0.6170 (0.6452) 0.6989 (0.5917) 0.7234 (0.5504) 0.7067 (0.1424) 0.6016 (0.0036)
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