
Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9

PERFORMANCE EVALUATION OF TCP CONGESTION

CONTROL ALGORITHMS THROUGHPUT FOR CVE BASED

ON CLOUD COMPUTING MODEL

1,4
ABDULSALAM YA’U GITAL,

 2
ABDUL SAMAD ISMAIL,

3,5
HARUNA CHIROMA

1Department of Computer Science, Universiti Teknologi Malaysia, Skudai Malaysia
2Prof., Department of Computer Science, Universiti Teknologi Malaysia, Skudai Malaysia.

3 Department of Artificial Intelligence, University of Malaya, Kuala Lumpur Malaysia
 4Department of Mathematical Sciences, Abubakar Tafawa balewa University, Bauchi Nigeria
5Department of Computer Science, Federal College of Education (Technical), Gombe, Nigeria

E-mail: 1asgital@yahoo.com , 2abdsamad@utm.my,
3hchiroma@acm.org.

ABSTRACT

Collaborative Virtual Environment (CVE) is becoming popular in the last few years; this is because CVE is
designed to allow geographically distributed users to work together over the network. Currently, in the
development of CVE Systems, Client server architectures with multiple servers are used with TCP as
update transmitting transport protocol because of its reliability. With the increasing number of
collaborators, the transport protocol is inadequate to meet the system requirements in terms of timely data
transmission. The transport protocol (TCP) throughput deteriorates in the network with large delay which
leads to unsatisfactory consistency requirement of the CVE systems.We proposed a cloud based
architectural model for improving scalability and consistency in CVE in an earlier study. The current paper
aims at evaluating and comparing the performance of different TCP variants (Tahoe, Reno, New Reno,
Vegas, SACK, Fack and Linux) with the cloud based CVE architecture to determine the suitability of each
TCP variant for CVE. A comparative analysis between the different TCP variants is presented in terms of
throughput verses elapse time, with increasing number of users in the system. TCP Vegas with the cloud
based model was found to be effective for CVE systems based on Cloud Computing .

Keywords: CVE Architecture, Cloud Computing, TCP Variants (Congestion Control Algorithm).

1. INTRODUCTION

 Collaborative Virtual Environment (CVE)
allows participant from distant geographic location
to share a common virtual environment, including
virtual entities and resources maintained by a group
of computers, in such a way that it can support
effective communication among the users to
achieve synergistic coordination of tasks [1-3].
Applications of CVEs include Education,
massively multiplayer online games (e.g., World of
Warcraft), virtual worlds (e.g., Second Life),
military training, industrial remote training, and
collaborative engineering [4-7]. As the number of
concurrent participants is becoming larger, data
transmission alone the network may no longer
provide the level of consistency required, typically
in terms of response time [1, 7, 8].
 In the TCP/IP network model, TCP is the
widely used transport protocol that provides

reliable packet delivery over an unreliable network.
This protocol is designed to be used with the
Internet Protocol (IP). Virtual collaborative
applications have been designed with protocols that
provide timing of data transmission due to the
consistency requirement in the system. Users in
CVE cooperate with each other and interact with
the virtual environment; the state of the virtual
environment is changing fast, how to transmit the
interpretation of the user level interaction in the
network is a challenging task. This is because CVE
is more about the performance of the virtual world,
consistency is more critical since a delay in data
transmission leads to unsatisfactory results. UDP
has been criticized for use as the transport layer
protocol for its lack of congestion control
mechanism [9-11]. With the increasing speed of
network and readily available internet, bandwidth
is no longer a limiting factor in the internet. The
CVE application today are built over TCP. The

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/42921748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

10

TCP provides sequence deliverance of data and
unfailing data transmission among communicating
nodes. One of the strengths of TCP is its high
responsiveness toward network congestion. TCP is
also a defensive protocol as it detects incident
congestion as its result to try and lessen the impacts
of the congestion. Thereby prevent collapse of
communication [12]. The TCP focuses on
reliability, stability, and correctness of data transfer
which fits well with requirements of loss sensitive
applications such as web browsing and file transfer
and left with the problem of delay in time-
dependent applications. The reliability and
stability comes at the cost of variable delays in data
transmission that can create problems for TCP
[13].
 As different implementations of TCP
protocols have been introduced, analysis and
evaluation studies have been conducted to measure
the performance of different TCP variants. For
example, [14] compare the performances of
different TCP variants with the routing protocols
DSDV and AODV, experimented in 20 different
ways and find out that TCP Tahoe has the least
number of packet drops against the simulation
time. Some of the other variants even though they
started with a lesser number of packet drops, the
TCP Tahoe variant has always the least amount of
packet drops in all cases when using AODV and
DSDV. [15] study the performance of TCP Vegas
versus different TCP variants in homogeneous and
heterogeneous wired networks are performed via
simulation experiment using network simulator 2
(ns-2). The performance of TCP Vegas
outperforms other TCP variants in the
homogeneous wired network. However, it achieves
unfair throughput in heterogeneous wired network.
[16] presents a comprehensive experimental
analysis of TCP variants under MPLS with
emphasis on Tahoe, Reno and Vegas under
different traffic load. It has been found that Reno
and Tahoe fail to take advantage of MPLS features
whereas Vegas has shown promising results with
almost stable, constant end-to-end delay after a
transient.[17] Compared TCP Tahoe, NewReno,
Vegas, and Sack overself-similar traffic. They
found that NewReno did better than other TCP
variants with respect to efficiency and throughput.
TCP Vegas showed better throughput than Reno.
However, we have not found studies that compare
the performance analysis of TCP variants in cloud
based CVE architecture. In this paper, we present a
performance analysis of different TCP variants
with cloud based CVE architectural model [18] to
determine the suitability of each variant for CVE
systems.

 The rest of the Organization of the paper
is as follows: The Section II briefly describes the
cloud based architectural model. The evaluated
TCP variants are described in section III. An
overview of CVE data types is described in section
IV. Section V described the simulation
methodology and the performance metric used.
Section VI presents the simulations, and Finally,
section VII presents the analysis on simulation
result and conclude the paper.

2. CLOUD BASED ARCHITECTURAL

MODEL

 The architecture of the cloud based CVE
is proposed by the modification of previous CVE.
The CVE moves into the cloud instead of the
conventional environment presently in used. The
cloud based CVE comprised of the cloud
infrastructure. This layer enables the provision of
networking components, servers, storage, routers,
and switches. The Cloud Computing infrastructure
heavily influences application performance and
throughput in a distributed computing environment
[19, 20]. It is responsible for hosting and given
supportive coordination to infrastructures including
the platform of cloud, repositories, computers,
servers, network communication devices, storage
units among other physical structures like building.
The resources of the information and
communication technology are distributed by the
cloud infrastructure. The cloud platform provides
both services and inters connections among the
systems on the platforms as well as to provide an
easy way for the system's hardware to operate just
like the internet. Furthermore, the cloud
infrastructure allowed the hardware to securely
access data in a sharable platform. Data
transmission between the different components of
the cloud architectural model uses UDP and TCP
as the transport layer protocol.

3. OVERVIEW OF SOME SELECTED TCP

VARIANTS

3.1 TCP Reno

TCP Reno [21-24], also known as
standard TCP is the most widely adopted Internet
TCP protocol. The method uses the four phases of
transmission: slow start, congestion avoidance, fast
retransmit, and fast recovery. Link congestion is
indicated by either receives of duplicate
acknowledgment or expiration of retransmission
time out (RTO). When the sender receives
duplicate acknowledgements (ACKs), the sender
activates TCP fast retransmit and recovery
algorithms and reduces its congestion window size

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

11

to half. It then linearly increases the congestion
window as in TCP Tahoe. This is the same in the
case of congestion avoidance. This increase in
transmission rate is slower than in the case of a
slow start and helps relieve congestion. TCP Reno
fast recovery algorithm improves TCP performance
in case of a single packet loss within a window of
data. However, the performance of TCP Reno
suffers in case of multiple packet losses within a
window of data [25-27].

3.2 TCP New Reno
TCP NewReno [28] is a modification of

TCP Reno. It improves the retransmission process
during the fast recovery phase of TCP Reno. TCP
NewReno can detect multiple packet losses. It does
not exit the fast recovery phase until all
unacknowledged segments at the time of fast
recovery are acknowledged [23, 29, 30]. TCP
Reno overcomes the problem of reducing the
congestion window size many times when there is
time there is multiple packet losses. TCP NewReno
maintains the slow start, congestion avoidance, and
fast retransmits of TCP Reno. It exits fast recovery
after receiving acknowledgement of all
unacknowledged segments and then sets the
congestion window size to slow start threshold and
continues the congestion avoidance phase [31].
TCP New Reno retransmits the next segment after
the received partial acknowledgment. (Partial
acknowledgments are the acknowledgments that do
not acknowledge all outstanding packets at the
onset of the fast recovery.)
 The critical issue in TCP New Reno is
that it is capable of handling multiple packet losses
in a single window. It is limited to detecting and
responding only one packet loss per RTT. This
insufficiency becomes more distinct as the delay-
bandwidth becomes greater. However, still there
are situations when stalls can occur if packets are
lost in successive windows, like all of the previous
versions of TCP New Reno which infer that all lost
packets are due to congestion and it may therefore
unnecessarily cut the congestion window size when
errors occur [29, 32].

3.3 TCP Tahoe

TCP Tahoe [21-23, 26] by Van Jacobson
is a method based on the principle of packet
conservation. Packets get into the network only
when there is bandwidth available. This principle is
implemented by using acknowledgement. By
sending acknowledgement, it means that a packet
has reached its destination, leaving available
bandwidth it occupies for sending another packet.

It also maintains a congestion window CWD to
reflect the network capacity. TCP Tahoe suggests
that whenever a TCP connection starts or re-starts
after a packet loss it should go through a procedure
called slow-start. This is because an initial burst
might overpower the network and the connection
might never get started. The congestion window
size becomes double (Multiplicative Increase) for
each transmission until there is congestion in the
network. Slow start suggests that the sender sets
the congestion window to 1 and then for each ACK
received it increase the CWD by 1. This implies
that in the first round trip time (RTT) only one
packet is sent, and keep doubling after each RTT.
When there is congestion, the sending rate and the
congestion window are set to 1 and start over
again. The important thing is that Tahoe detects
packet losses by timeouts. The sender is notified
that congestion has occurred based on the packet
loss.

3.4 TCP Vegas

TCP Vegas [33] is a modification of TCP
Reno [33]. It builds on the fact that proactive
measures to encounter congestion is much more
efficient than reactive measures. Vegas tried to get
around the problem of coarse grain timeouts by
suggesting an algorithm which checks for timeouts
at a very efficient schedule [33]. Also, it
overcomes the problem of requiring enough
duplicate acknowledgements to detect a packet
loss, and suggests a modified slow start algorithm
which prevents it from congesting the network [23,
27]. The three major changes induced by Vegas
are: New Re-Transmission Mechanism, Congestion
avoidance and Modified Slow-start. Vegas try
extending on the retransmission mechanism of the
standard TCP. It monitors when each segment was
sent and calculates an estimate of the RTT by
monitoring the time it takes for the
acknowledgment to get back [23, 33]. During
Congestion avoidance, TCP Vegas does not use the
loss of segment to signal that there is congestion,
instead, it determines congestion by a decrease in
sending rate as compared to the expected rate, as a
result of large queues building up in the routers. It
used Tri-S scheme [23, 33].

In the case of slow-start phase, TCP
Vegas differs from the other implementations. This
is because at the beginning of each connection,
Vegas have no idea of the available bandwidth. It
is possible that the bandwidth was overshoot
during the exponential increase by a big amount
and thus induces congestion. Vegas increases
exponentially after every RTT, and calculates the

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

12

actual sending throughput to the expected and
when the difference goes above a certain threshold,
it exits slow start and enters the congestion
avoidance phase [23, 33].

3.5 TCP SACK

SACK [34] algorithm is an extension of
the standard TCP. It allows a TCP receiver to
acknowledge out-of-order segments selectively
rather than cumulatively by acknowledging the last
correctly in order received segment. The sender
retransmits only missing segment after receiving
acknowledgement of out of order packets from the
receiver. It does not send the entire
unacknowledged segment. A TCP SACK
behavior is similar to that of TCP Tahoe and TCP
Reno, which are robust in case of out of order
packet arrivals [21, 22, 35]. However, it improves
the performance of the TCP Reno when there are
multiple packet losses. TCP SACK maintains a
variable called pipe that represents the estimated
number of outstanding packets during fast recovery
phase [34]. The sender only sends new or
retransmitted data when the estimated number of
packets in a router is smaller than the congestion
window. The pipe variable is incremented by 1
when the sender either sends a new segment or
retransmits old segment. It decreases by 1 when the
sender receives the duplicate ACK.

The disadvantage with SACK is that
currently selective acknowledgments are not
provided by the receiver. To implement SACK,
there is a need for full implementation of the
selective acknowledgment.

3.6 TCP FACK

FACK TCP (TCP with forward
acknowledgement) [36] was developed to decouple
the congestion control algorithms from the data
recovery algorithms. It uses the additional
information provided by the SACK option to
maintain an explicit measure of the total amount of
outstanding data in the network. However, standard
TCP Reno and TC SACK both attempt to estimate
this by assuming that each drawback received
represents one segment that has left the network.
The basic concept of Fack mechanism is by
considering the greatest sequence number of
forward selective acknowledgement as a mark that
completely previous segments which unselectively
acknowledged were lost. This method improved
the recovery process of packets losses significantly.
Fack algorithm takes an aggressive method, and
considers all unacknowledged holes as lost packets

and Sack blocks. FACK implementation improved
TCP performance than the traditional approach; it
is excessively aggressive if packets have been
rearranged in the pipeline, due to these holes
between the blocks of Sack, FACK does not
designate packet loss in this state.

4. OVERVIEW OF CVE DATA TYPE

Similar to another update message in

standard applications, message update in CVE have
strong delay requirements. According to [37], the
delay in update transmission in CVE should not
exceed 100msec. [38] argue that up to 200msec
delay is acceptable. This requirement is based on
the real time and highly reactive multiuser
processes where users' actions are based on action
of another user; therefore requiring a very low
transmission delay of updates. Also, collaborative
update messages are severely affected by jitter. It
has been shown that a CVE session with a low 10
msec delay that has jitter, results in a collaborative
environment which is almost as bad as one with
200 msec delay but no jitter [38]. Finally,
collaborative update messages have strict reliability
requirements. It is obviously pertinent that all users
receive update messages or they won't be able to
collaborate. In a typical CVE system, the last state
of a shared object is the most crucial data. For
example, if a user moves an object, generating 10
update messages each 50msec apart. If the update
messages 1, 7and 9 are lost; there is no need of
retransmission because the last state of the object is
received correctly.
 In CVE systems, a server executes the function
of: receiving the update messages from the clients;
updating the whole virtual environment and
transmitting updates of the virtual environment to
other clients and servers to keep consistency in the
virtual environment. A client also executes
functions to: receiving the user’s input as the
update message; transmitting the update message
to the server and receiving the update messages
from the server to keep consistency in the virtual
environment.The size of the message packets
transmitted for these functions in CVE are mostly
uniformly sized (80, bytes).

5. SIMULATION METHODOLOGY AND

PERFORMANCE METRIC

5.1 Simulation Methodology

NS2 simulator is used for the simulation
of our experimental setup on a machine with the
following configurations: Intel (R) Core (TM) i5-
2410m processor, 2.30GHz speed, 4.00GB RAM
with Obuntu operating system. NS2 is an object

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

13

oriented, event driven network simulator developed
at UC Berkley, it is written in C++ and OTcl
programming languages. NS2 simulator is a very
good simulator for simulating both local and wide
area networks. The network topology used in this
simulation is flex bell topology shown in Fig. 1.
The topology consists of TCP senders, TCP
receivers and a pair of routers. The link between
the sender’s nodes and routers is termed sender’s
link and it is connected to different router because

the users are formed from different subnet and each
subnet is connected to a router A, while the link
between the receivers and router B is called the
receiver link. The sender and receiver links
represent a local area network (LAN). The link
between router A and router B represent the
bottleneck link within the cloud in the form of a
wide area network (WAN).

Figure 1 Simulation topology

 The links between the sender’s nodes and the
Cloud link are full wired duplex link. The
bandwidth of the sender’s links is set to 10Mbps
with 10ms delay. The bandwidth of the receiver
links that represent the cloud is also set to
10Mbps with 10ms delay. The speed of the cloud
and that of local area network of the senders are
assumed to be equal. The bottleneck link is set to
2Mbps with 50ms delay to represent a
connection to cloud infrastructures. The number
of sender’s node which is equivalent to the
number of concurrent collaborators, is set in six
different simulations as follows: 200 with 2
receivers’ node, 400 with 4 receivers’ node, 600
with 6 receivers’ node, 800 with 8 receivers’
node, and 1000 with 10 receivers’ node
respectively. This setting represents a virtual
environment with ten partitions each hadling 100
users, 100 users is the expected threshold for

each server (Receiver node) in the system. The
simulation parameters of the network topology
are shown in Table I. In this simulation, the
throughput of Tahoe, Reno, NewReno, Vegas ,
Fack, SACK and Linux TCP in a cloud setting
is evaluated.

5.2 Performance Metric

The metric use in this simulation is
throughput. The throughput is defined as the size
of data transmitted from one node to another in a
given time. The data transfer rate for network is
measured in terms of kilo bits per second, mega
bit per second. This paper uses kilo bit per
second as for the measurement as shown in the
simulation output in figure 2. The expression of
the throughput is as follows.

Throughput = (Transfer rate)/ (Transfer time).

R

R

R

A B

10Mbps/10ms

•

•

•
•
•

•

•
•
•

•
•
•

•

•

•

10Mbps/ 10ms

2Mbps/50ms

10Mbps/10ms

10Mbps/10ms

10Mbps/10ms

10Mbps/10ms

10Mbps/10ms

10Mbps/ 10ms

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

14

TABLE I. SIMULATION PARAMETERS

Link Bandwidth Delay Queue

 Limit

Window

Size

Packet

 Size

Traffic

Types

Link to Cloud

(Bottleneck)

2Mbps 50ms 100 8000kb 552B/200B

-

Senders Link 10Mbps 10ms - - Telnet/ CRB

Link to Cloud

Infrastructures

 (Receivers)

within the Cloud

10Mbps 10ms - - Telnet/ CRB

6. RESULTS AND DISCUSSION

During this simulation, the throughput of
TCP Variants (Tahoe, Reno, NewReno, Vegas,
Fack, SACK, and Linux) was measured in six
different simulations as described in the previous
section. The simulation period is set to 40sec in
each case. The throughput analysis results of the
simulation are shown in Figure 2-6.

Fig.2 Throughput Analysis with 200 User, 2 Servers In 40

Seconds

Fog. 3 Throughput Analysis with 400 User, 4 Servers In 40

Seconds

Fig. 4 Throughput Analysis with 600 User, 6 Servers In 40

Seconds

Fig. 5Throughput Analysis with 800 User, 8 Servers In 40

Seconds

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

Fig. 6 Throughput Analysis with 1000 User, 10 servers In 40

Seconds

Fig. 7 Average Throughput Analysis with 200 User and 2

Servers

Fig. 8 Average Throughput Analysis with 400 User and 4

Servers

Fig. 9 Average Throughput Analysis with 600 User and 6

Servers

Fig. 10 Average Throughput Analysis with 800 User and 8

Servers

Fig. 11 Average Throughput Analysis with 1000 User and 10

Servers

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

TABLE II AVERAGE THROUGHPUT OF THE VARIANTS

FOR THE FIVE SIMULATIONS
TCP

Variant

200

Users

400

Users

600

Users

800

Users

1000

Users

Tahoe 1032 1199 1175 1218 1288

Reno 1030 1104 1165 1218 1275

NewReno 1031 1103 1166 1220 1275

Sack1 1026 1089 1160 1225 1297

Vegas 1045 1135 1238 1330 1425

Fack 989 1075 1229 1190 1249

Linux 1040 1040 1222 1162 1130

7. CONCLUSION

This paper evaluates and compares the
performance of different TCP variants (Tahoe,
Reno, New Reno, Vegas, SACK, Fack and Linux)
with the cloud based CVE architecture, to
determine the suitability of each TCP variant for
CVE. A comparative analysis between the different
TCP variants is presented in terms of average
throughput. With increasing number of users in the
system, TCP Vegas with the cloud based model
was found to be more effective. The results show
that the performance of the TCP Vegas with 200,
400, 600, 800, and 1000 users in cloud based
architecture is better than the other TCP variants.
This is followed by TCP Linux, Tahoe, NewReno,
Reno, Sack1, and Fack, in the first simulation with
200 user. In the second simulation, Vegas
performance is followed by that of Reno,
NewReno, Tahoe, Sack1, Linux, and latly Fack. In
the third simulation, Vegas shows good
performance followed by Fack, Linux, Tahoe,
NewReno, reno, and Sack1. Other simulation are
the forth and fifth. In the fourth simulation it is
observed that the performance of Vegas is still at a
high point followed by Sack1, NewReno, Reno and
Tahoe, Fack, and Linux. Lastly, the last simulation
which was performed with 1000 users and 10
severs gernerate throughtput shows that the
performance of Vegas is more effective, followed
by Sack1, Tahoe, Reno and NewReno, Fack, and
Linux.

The performance of other variants different
from Vegas keep fluctuating in all the simulations,
this indicates an instability in their performance.
The performance metrics used in this study are
throughput and time. The average throughputs used
for evaluating the performance are showm in table
II, and the comparison is illustrated in Figure 7-11.

REFERENCES:

[1] X. Hu, L. Liu, and T. Yu, "A hierarchical

architecture for improving scalability and
consistency in CVE systems,"
International Journal of Parallel,

Emergent and Distributed Systems, vol.
26, pp. 179-205, 2011.

[2] X. M. Hu, H. X. Cai, and T. Yu, "A Self-
Adaptive Filtering Algorithm Based on
Consistency QoS in CVE Systems,"
Advanced Materials Research, vol. 225,
pp. 301-306, 2011.

[3] W. Shao-Qing, C. Ling, and C. Gen-Cai,
"A framework for Java 3D based
collaborative virtual environment," in
Computer Supported Cooperative Work in

Design, 2004. Proceedings. The 8th

International Conference on, 2004, pp.
34-39.

[4] S. Benford, C. Greenhalgh, T. Rodden,
and J. Pycock, "Collaborative virtual
environments," Communications of the

ACM, vol. 44, pp. 79-85, 2001.
[5] C. Greenhalgh and S. Benford,

"MASSIVE: a collaborative virtual
environment for teleconferencing," ACM

Transactions on Computer-Human

Interaction (TOCHI), vol. 2, pp. 239-261,
1995.

[6] A. S. Haji-Ismail, M. Chen, and P. W.
Grant, "JACIE–an authoring language for
WWW-based collaborative applications,"
Annals of Software Engineering, vol. 12,
pp. 47-75, 1999.

[7] A. Y. Gital, A. S. bn Ismail, and S.
Subramaniam, "On consistency and
security issues in collaborative virtual
environment systems," International

Journal of Physical Sciences, vol. 8, pp.
1646-1654, 2013.

[8] Y. Deng and R. W. Lau, "On Delay
Adjustment for Dynamic Load Balancing
in Distributed Virtual Environments,"
Visualization and Computer Graphics,

IEEE Transactions on, vol. 18, pp. 529-
537, 2012.

[9] A. Petlund, P. Beskow, J. Pedersen, E. S.
Paaby, C. Griwodz, and P. Halvorsen,
"Improving SCTP retransmission delays
for time-dependent thin streams,"
Multimedia Tools and Applications, vol.
45, pp. 33-60, 2009.

[10] M. N. Khalid, "Simulation Based
Comparison of SCTP, DCCP and UDP
Using MPEG-4 Traffic Over Mobile

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

17

WiMAX/IEEE 802.16 e," Thesis no:
MSEE-2010-xx May, 2010.

[11] D. D. Clark and D. L. Tennenhouse,
"Architectural considerations for a new
generation of protocols," in ACM

SIGCOMM Computer Communication

Review, 1990, pp. 200-208.
[12] M. Kazmi, M. Y. Javed, and M. K. Afzal,

"An Overview of Performance
Comparison of Different TCP Variants in
IP and MPLS Networks," in Networked

Digital Technologies, ed: Springer, 2011,
pp. 120-127.

[13] A. Gurtov, "Effect of delays on TCP
performance," in In Proceedings of IFIP

Personal Wireless Communications, 2001.
[14] A. Pradeep, N. Dhinakaran, and P.

Angelin, "Comparison of Drop Rates in
Different TCP Variants against Various
Routing Protocols," International Journal

of Computer Applications, vol. 20, 2011.
[15] B. Yew, B. Ong, and R. Ahmad,

"Performance Evaluation of TCP Vegas
versus Different TCP Variants in
Homogeneous and Heterogeneous
Networks by Using Network Simulator
2," International Journal of Electrical &

Computer Sciences, vol. 11, 2011.
[16] M. S. Akbar, S. Z. Ahmed, and M. A.

Qadir, "Quantitative Analytical
Performance of TCP Variants in IP and
MPLS Networks," in Multitopic

Conference, 2006. INMIC'06. IEEE, 2006,
pp. 331-336.

[17] M. Salleh, A. Bakar, and A. Zaki,
"Comparison of TCP Variants Over Self-
Similar Traffic," 2005.

[18] A. Y. Gital and A. S. Ismail, "A
Framework for the Design of Cloud Based
Collaborative Virtual Environment
Architecture," in Proceedings of the

International MultiConference of

Engineers and Computer Scientists, 2014.
[19] Q. Zhang, L. Cheng, and R. Boutaba,

"Cloud computing: state-of-the-art and
research challenges," Journal of Internet

Services and Applications, vol. 1, pp. 7-
18, 2010.

[20] A. Y. Gital and A. S. Ismail, "An
Alternative Design Of Collaborative
Virtual Environment Architecture Based
On Cloud Computing," Journal of

Theoretical & Applied Information

Technology, vol. 61, 2014.
[21] Z. F, M. Z, A. O. M, and Z. Zhao,

"Throughput Analysis of TCP SACK in

comparison to TCP Tahoe, Reno, and
New Reno against Constant Rate
Assignment (CRA) of 2500 and 4500
bps," Journal of Computer Science and

Computational Mathematics, vol. 2, pp.
35-41, 2012.

[22] H. Paul, A. K. Saha, P. P. Deb, and P. S.
Bhattacharjee, "Comparative Analysis of
Different TCP Variants in Mobile Ad-Hoc
Network," International Journal of

Computer Applications, vol. 52, 2012.
[23] B. Yuvaraju and N. N. Chiplunkar,

"Scenario Based Performance Analysis of
Variants of TCP using NS2-Simulator,"
International Journal of Advancements in

Technology, vol. 1, pp. 223-233, 2010.
[24] H. Jamal and K. Sultan, "Performance

analysis of tcp congestion control
algorithms," International Journal of

Computers and Communications, vol. 2,
2008.

[25] K. Fall and S. Floyd, "Simulation-based
comparisons of Tahoe, Reno and SACK
TCP," ACM SIGCOMM Computer

Communication Review, vol. 26, pp. 5-21,
1996.

[26] L. Subedi, M. Najiminaini, and L.
Trajkovi, "Performance Evaluation of
TCP Tahoe, Reno, Reno with SACK, and
NewReno Using OPNET Modeler,"
Communication Networks Laboratory

http://www. ensc. sfu. ca/research/c nl

OPNET technologies, 2008.
[27] M. Podlesny and C. Williamson,

"Providing fairness between TCP
NewReno and TCP Vegas with RD
network services," in Quality of Service

(IWQoS), 2010 18th International

Workshop on, 2010, pp. 1-9.
[28] S. Floyd, T. Henderson, and A. Gurtov,

"The NewReno modification to TCP’s fast
recovery algorithm," RFC 2582,
April1999.

[29] D. Bisen and S. Sharma, "IMPROVE
PERFORMANCE OF TCP NEW RENO
OVER MOBILE AD-HOC NETWORK
USING ABRA," International Journal of

Wireless & Mobile Networks, vol. 3,
2011.

[30] B. Qureshi, M. Othman, and N. Hamid,
"Progress in various TCP variants
(February 2009)," in Computer, Control

and Communication, 2009. IC4 2009. 2nd

International Conference on, 2009, pp. 1-
6.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2014. Vol.70 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

18

[31] H. Lee, S.-h. Lee, and Y. Choi, "The
influence of the large bandwidth-delay
product on TCP Reno, NewReno, and
SACK," in Information Networking, 2001.

Proceedings. 15th International

Conference on, 2001, pp. 327-334.
[32] B. Qureshi, M. Othman, and N. Hamid,

"Progress in various TCP variants," in 2nd

International Conference on Computer,

Control and Communication, 2009, p. 1.
[33] L. S. Brakmo and L. L. Peterson, "TCP

Vegas: End to end congestion avoidance
on a global Internet," Selected Areas in

Communications, IEEE Journal on, vol.
13, pp. 1465-1480, 1995.

[34] M. Mathis, J. Mahdavi, S. Floyd, and A.
Romanow, "TCP selective
acknowledgment options," RFc 2018,
October1996.

[35] M. Zorzi and R. R. Rao, "Effect of
correlated errors on TCP," in Proc. 1997

CISS, 1997, pp. 666-671.
[36] M. Mathis and J. Mahdavi, "TCP rate-

halving with bounding parameters," ed,
1996.

[37] M. M. Wloka, "Lag in multiprocessor
virtual reality," Presence: Teleoperators

and Virtual Environments, vol. 4, pp. 50-
63, 1995.

[38] K. S. Park and R. V. Kenyon, "Effects of
network characteristics on human
performance in a collaborative virtual
environment," in Virtual Reality, 1999.

Proceedings., IEEE, 1999, pp. 104-111.

