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ABSTRACT 

Collaborative Virtual Environment (CVE) is becoming popular in the last few years; this is because CVE is 
designed to allow geographically distributed users to work together over the network.  Currently, in the 
development of CVE Systems, Client server architectures with multiple servers are used with TCP as 
update transmitting transport protocol because of its reliability. With the increasing number of 
collaborators, the transport protocol is inadequate to meet the system requirements in terms of timely data 
transmission. The transport protocol (TCP) throughput deteriorates in the network with large delay which 
leads to unsatisfactory consistency requirement of the CVE systems.We  proposed a cloud based 
architectural model for improving scalability and consistency in CVE in an earlier study. The current paper 
aims at evaluating and comparing the performance of different TCP variants (Tahoe, Reno, New Reno, 
Vegas, SACK, Fack and Linux) with the cloud based CVE architecture to determine the suitability of each 
TCP variant for CVE. A comparative analysis between the different TCP variants is presented in terms of 
throughput verses elapse time, with increasing number of users in the system. TCP Vegas with the cloud 
based model was found to be effective for CVE systems based on Cloud Computing . 

 

Keywords:  CVE Architecture, Cloud Computing, TCP Variants (Congestion Control Algorithm). 

1. INTRODUCTION 

          Collaborative Virtual Environment (CVE) 
allows participant from distant geographic location 
to share a common virtual environment, including 
virtual entities and resources maintained by a group 
of computers, in such a way that it can support 
effective communication among the users to 
achieve synergistic coordination of tasks [1-3]. 
Applications of CVEs include Education, 
massively multiplayer online games (e.g., World of 
Warcraft), virtual worlds (e.g., Second Life), 
military training, industrial remote training, and 
collaborative engineering [4-7]. As the number of 
concurrent participants is becoming larger, data 
transmission alone the network may no longer 
provide the level of consistency required, typically 
in terms of response time [1, 7, 8].  
      In the TCP/IP network model, TCP is the 
widely used transport protocol that provides 

reliable packet delivery over an unreliable network. 
This protocol is designed to be used with the 
Internet Protocol (IP). Virtual collaborative 
applications have been designed with protocols that 
provide timing of data transmission due to the 
consistency requirement in the system. Users in 
CVE cooperate with each other and interact with 
the virtual environment; the state of the virtual 
environment is changing fast, how to transmit the 
interpretation of the user level interaction in the 
network is a challenging task. This is because CVE 
is more about the performance of the virtual world, 
consistency is more critical since a delay in data 
transmission leads to unsatisfactory results. UDP 
has been criticized for use as the transport layer 
protocol for its lack of congestion control 
mechanism [9-11]. With the increasing speed of 
network and readily available internet,  bandwidth 
is no longer a limiting factor in the internet. The 
CVE application today are built over TCP.  The 
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TCP provides sequence deliverance of data and 
unfailing data transmission among communicating 
nodes. One of the strengths of TCP is its high 
responsiveness toward network congestion. TCP is 
also a defensive protocol as it detects incident 
congestion as its result to try and lessen the impacts 
of the congestion. Thereby prevent collapse of 
communication [12]. The TCP focuses on 
reliability, stability, and correctness of data transfer 
which fits well with requirements of loss sensitive 
applications such as web browsing and file transfer 
and left with the problem of delay in time-
dependent applications. The reliability  and 
stability comes at the cost of variable delays in data 
transmission that can create problems for TCP 
[13]. 
          As different implementations of TCP 
protocols have been introduced, analysis and 
evaluation studies have been conducted to measure 
the performance of different TCP variants. For 
example, [14] compare the performances of 
different TCP variants with the routing protocols 
DSDV and AODV, experimented in 20 different 
ways and find out that TCP Tahoe has the least 
number of packet drops against the simulation 
time. Some of the other variants even though they 
started with a lesser number of packet drops, the 
TCP Tahoe variant has always the least amount of 
packet drops in all cases when using AODV and 
DSDV. [15] study the performance of TCP Vegas 
versus different TCP variants in homogeneous and 
heterogeneous wired networks are performed via 
simulation experiment using network simulator 2 
(ns-2). The performance of TCP Vegas 
outperforms other TCP variants in the 
homogeneous wired network. However, it achieves 
unfair throughput in heterogeneous wired network. 
[16] presents a comprehensive experimental 
analysis of TCP variants under MPLS with 
emphasis on Tahoe, Reno and Vegas under 
different traffic load. It has been found that Reno 
and Tahoe fail to take advantage of MPLS features 
whereas Vegas has shown promising results with 
almost stable, constant end-to-end delay after a 
transient.[17] Compared TCP Tahoe, NewReno, 
Vegas, and Sack overself-similar traffic. They 
found that NewReno did better than other TCP 
variants with respect to efficiency and throughput. 
TCP Vegas showed better throughput than Reno. 
However, we have not found studies that compare 
the performance analysis of TCP variants in cloud 
based CVE architecture. In this paper, we present a 
performance analysis of different TCP variants 
with cloud based CVE architectural model [18] to 
determine the suitability of each variant for CVE 
systems. 

      The rest of the Organization of the paper 
is as follows: The Section II briefly describes the 
cloud based architectural model. The evaluated 
TCP variants are described in section III. An 
overview of CVE data types is described in section 
IV. Section V described the simulation 
methodology and the performance metric used. 
Section VI presents the simulations, and Finally, 
section VII presents the analysis on simulation 
result and conclude the paper. 

2. CLOUD BASED ARCHITECTURAL 

MODEL 

   The architecture of the cloud based CVE 
is proposed by the modification of previous CVE. 
The CVE moves into the cloud instead of the 
conventional environment presently in used. The 
cloud based CVE comprised of the cloud 
infrastructure. This layer enables the provision of 
networking components, servers, storage, routers, 
and switches. The Cloud Computing infrastructure 
heavily influences application performance and 
throughput in a distributed computing environment 
[19, 20]. It is responsible for hosting and given 
supportive coordination to infrastructures including 
the platform of cloud, repositories, computers, 
servers, network communication devices, storage 
units among other physical structures like building. 
The resources of the information and 
communication technology are distributed by the 
cloud infrastructure. The cloud platform provides 
both services and inters connections among the 
systems on the platforms as well as to provide an 
easy way for the system's hardware to operate just 
like the internet. Furthermore, the cloud 
infrastructure allowed the hardware to securely 
access data in a sharable platform. Data 
transmission between the different components of 
the cloud architectural model uses UDP and TCP 
as the transport layer protocol. 

3. OVERVIEW OF SOME SELECTED TCP 

VARIANTS  

3.1 TCP Reno 

TCP Reno [21-24], also known as 
standard TCP is the most widely adopted Internet 
TCP protocol. The method uses the four phases of 
transmission: slow start, congestion avoidance, fast 
retransmit, and fast recovery. Link congestion is 
indicated by either receives of duplicate 
acknowledgment or expiration of retransmission 
time out (RTO). When the sender receives 
duplicate acknowledgements (ACKs), the sender 
activates TCP fast retransmit and recovery 
algorithms and reduces its congestion window size 
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to half. It then linearly increases the congestion 
window as in TCP Tahoe. This is the same in the 
case of congestion avoidance. This increase in 
transmission rate is slower than in the case of a 
slow start and helps relieve congestion. TCP Reno 
fast recovery algorithm improves TCP performance 
in case of a single packet loss within a window of 
data. However, the performance of TCP Reno 
suffers in case of multiple packet losses within a 
window of data [25-27]. 
 

3.2 TCP New Reno 
TCP NewReno [28] is a modification of 

TCP Reno. It improves the retransmission process 
during the fast recovery phase of TCP Reno. TCP 
NewReno can detect multiple packet losses. It does 
not exit the fast recovery phase until all 
unacknowledged segments at the time of fast 
recovery are acknowledged [23, 29, 30].  TCP 
Reno overcomes the problem of reducing the 
congestion window size many times when there is 
time there is multiple packet losses. TCP NewReno 
maintains the slow start, congestion avoidance, and 
fast retransmits of TCP Reno. It exits fast recovery 
after receiving acknowledgement of all 
unacknowledged segments and then sets the 
congestion window size to slow start threshold and 
continues the congestion avoidance phase [31]. 
TCP New Reno retransmits the next segment after 
the received partial acknowledgment. (Partial 
acknowledgments are the acknowledgments that do 
not acknowledge all outstanding packets at the 
onset of the fast recovery.) 
       The critical issue in TCP New Reno is 
that it is capable of handling multiple packet losses 
in a single window. It is limited to detecting and 
responding only one packet loss per RTT. This 
insufficiency becomes more distinct as the delay-
bandwidth becomes greater. However, still there 
are situations when stalls can occur if packets are 
lost in successive windows, like all of the previous 
versions of TCP New Reno which infer that all lost 
packets are due to congestion and it may therefore 
unnecessarily cut the congestion window size when 
errors occur [29, 32]. 
 

3.3 TCP Tahoe 

TCP Tahoe [21-23, 26] by Van Jacobson 
is a method based on the principle of packet 
conservation. Packets get into the network only 
when there is bandwidth available. This principle is 
implemented by using acknowledgement. By 
sending acknowledgement, it means that a packet 
has reached its destination, leaving available 
bandwidth it occupies for sending another packet. 

It also maintains a congestion window CWD to 
reflect the network capacity. TCP Tahoe suggests 
that whenever a TCP connection starts or re-starts 
after a packet loss it should go through a procedure 
called slow-start. This is because an initial burst 
might overpower the network and the connection 
might never get started. The congestion window 
size becomes double (Multiplicative Increase) for 
each transmission until there is congestion in the 
network. Slow start suggests that the sender sets 
the congestion window to 1 and then for each ACK 
received it increase the CWD by 1. This implies 
that in the first round trip time (RTT) only one 
packet is sent, and keep doubling after each RTT. 
When there is congestion, the sending rate and the 
congestion window are set to 1 and start over 
again. The important thing is that Tahoe detects 
packet losses by timeouts. The sender is notified 
that congestion has occurred based on the packet 
loss. 

 

3.4 TCP Vegas 

TCP Vegas [33] is a modification of TCP 
Reno [33]. It builds on the fact that proactive 
measures to encounter congestion is much more 
efficient than reactive measures. Vegas tried to get 
around the problem of coarse grain timeouts by 
suggesting an algorithm which checks for timeouts 
at a very efficient schedule [33]. Also, it 
overcomes the problem of requiring enough 
duplicate acknowledgements to detect a packet 
loss, and suggests a modified slow start algorithm 
which prevents it from congesting the network [23, 
27]. The three major changes induced by Vegas 
are: New Re-Transmission Mechanism, Congestion 
avoidance and Modified Slow-start. Vegas try 
extending on the retransmission mechanism of the 
standard TCP. It monitors when each segment was 
sent and calculates an estimate of the RTT by 
monitoring the time it takes for the 
acknowledgment to get back [23, 33]. During 
Congestion avoidance, TCP Vegas does not use the 
loss of segment to signal that there is congestion, 
instead, it determines congestion by a decrease in 
sending rate as compared to the expected rate, as a 
result of large queues building up in the routers. It 
used Tri-S scheme [23, 33].  

In the case of slow-start phase, TCP 
Vegas differs from the other implementations. This 
is because at the beginning of each connection, 
Vegas have no idea of the available bandwidth. It 
is possible that the bandwidth was overshoot 
during the exponential increase by a big amount 
and thus induces congestion. Vegas increases 
exponentially after every  RTT, and calculates the 
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actual sending throughput to the expected and 
when the difference goes above a certain threshold, 
it exits slow start and enters the congestion 
avoidance phase [23, 33]. 

 

3.5 TCP SACK 

SACK [34] algorithm is an extension of 
the standard TCP. It allows a TCP receiver to 
acknowledge out-of-order segments selectively 
rather than cumulatively by acknowledging the last 
correctly in order received segment. The sender 
retransmits only missing segment after receiving 
acknowledgement of out of order packets from the 
receiver. It does not send the entire 
unacknowledged segment.   A TCP SACK 
behavior is similar to that of TCP Tahoe and TCP 
Reno, which are robust in case of out of order 
packet arrivals [21, 22, 35]. However, it improves 
the performance of the TCP Reno when there are 
multiple packet losses. TCP SACK maintains a 
variable called pipe that represents the estimated 
number of outstanding packets during fast recovery 
phase [34]. The sender only sends new or 
retransmitted data when the estimated number of 
packets in a router is smaller than the congestion 
window. The pipe variable is incremented by 1 
when the sender either sends a new segment or 
retransmits old segment. It decreases by 1 when the 
sender receives the duplicate ACK. 

The disadvantage with SACK is that 
currently selective acknowledgments are not 
provided by the receiver. To implement SACK, 
there is a need for full implementation of the 
selective acknowledgment. 

 

3.6 TCP FACK 

FACK TCP (TCP with forward 
acknowledgement) [36] was developed to decouple 
the congestion control algorithms from the data 
recovery algorithms. It uses the additional 
information provided by the SACK option to 
maintain an explicit measure of the total amount of 
outstanding data in the network. However, standard 
TCP Reno and TC SACK both attempt to estimate 
this by assuming that each drawback received 
represents one segment that has left the network. 
The basic concept of Fack mechanism is by 
considering the greatest sequence number of 
forward selective acknowledgement as a mark that 
completely previous segments which unselectively 
acknowledged were lost. This method improved 
the recovery process of packets losses significantly. 
Fack algorithm takes an aggressive method, and 
considers all unacknowledged holes as lost packets 

and Sack blocks. FACK implementation improved 
TCP performance than the traditional approach; it 
is excessively aggressive if packets have been 
rearranged in the pipeline, due to these holes 
between the blocks of Sack, FACK does not 
designate packet loss in this state.  
 

4. OVERVIEW OF CVE DATA TYPE 

 
Similar to another update message in 

standard applications, message update in CVE have 
strong delay requirements. According to [37], the 
delay in update transmission in CVE should not 
exceed 100msec. [38]  argue that up to 200msec 
delay is acceptable. This requirement is based on 
the real time and highly reactive multiuser 
processes where users' actions are based on action 
of another user; therefore requiring a very low 
transmission delay of updates. Also, collaborative 
update messages are severely affected by jitter. It 
has been shown that a CVE session with a low 10 
msec delay that has jitter, results in a collaborative 
environment which is almost as bad as one with 
200 msec delay but no jitter [38]. Finally, 
collaborative update messages have strict reliability 
requirements. It is obviously pertinent that all users 
receive update messages or they won't be able to 
collaborate. In a typical CVE system, the last state 
of a shared object is the most crucial data. For 
example, if a user moves an object, generating 10 
update messages each 50msec apart. If the update 
messages 1, 7and 9 are lost; there is no need of 
retransmission because the last state of the object is 
received correctly. 
       In CVE systems, a server executes the function 
of: receiving the update messages from the clients; 
updating the whole virtual environment and 
transmitting updates of the virtual environment to 
other clients and servers to keep consistency in the 
virtual environment. A client also executes 
functions to: receiving the user’s input as the 
update message; transmitting the update message 
to the server and receiving the update messages 
from the server to keep consistency in the virtual 
environment.The size of the message packets 
transmitted for these functions in CVE are mostly 
uniformly sized (80, bytes).  

5. SIMULATION METHODOLOGY AND 

PERFORMANCE METRIC 

5.1 Simulation Methodology 

NS2 simulator is used for the simulation 
of our experimental setup on a machine with the 
following configurations: Intel (R) Core (TM) i5-
2410m processor, 2.30GHz speed, 4.00GB RAM 
with Obuntu operating system. NS2 is an object 
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oriented, event driven network simulator developed 
at UC Berkley, it is written in C++ and OTcl 
programming languages. NS2 simulator is a very 
good simulator for simulating both local and wide 
area networks. The network topology used in this 
simulation is flex bell topology shown in Fig. 1. 
The topology consists of TCP senders, TCP 
receivers and a pair of routers. The link between 
the sender’s nodes and routers is termed sender’s 
link and it is connected to different router because 

the users are formed from different subnet and each 
subnet is connected to a router A, while the link 
between the receivers and router B is called the 
receiver link. The sender and receiver links 
represent a local area network (LAN). The link 
between router A and router B represent the 
bottleneck link within the cloud in the form of a 
wide area network (WAN).  

 
 

 
Figure 1 Simulation topology 

 
 

        
 The links between the sender’s nodes and the 
Cloud link are full wired duplex link. The 
bandwidth of the sender’s links is set to 10Mbps 
with 10ms delay. The bandwidth of the receiver 
links that represent the cloud is also set to 
10Mbps with 10ms delay. The speed of the cloud 
and that of local area network of the senders are 
assumed to be equal. The bottleneck link is set to 
2Mbps with 50ms delay to represent a 
connection to cloud infrastructures. The number 
of sender’s node which is equivalent to the 
number of concurrent collaborators, is set in six 
different simulations as follows: 200 with 2 
receivers’ node, 400 with 4 receivers’ node, 600 
with 6 receivers’ node, 800 with 8 receivers’ 
node, and 1000 with 10 receivers’ node 
respectively. This setting represents a virtual 
environment with ten partitions each hadling 100 
users, 100 users is the expected threshold for 

each server (Receiver node) in the system.  The 
simulation parameters of the network topology 
are shown in Table I. In this simulation, the 
throughput of Tahoe, Reno, NewReno, Vegas , 
Fack, SACK and Linux TCP  in a cloud setting 
is evaluated. 

 

5.2 Performance Metric 

The metric use in this simulation is 
throughput. The throughput is defined as the size 
of data transmitted from one node to another in a 
given time. The data transfer rate for network is 
measured in terms of kilo bits per second, mega 
bit per second. This paper uses kilo bit per 
second as for the measurement as shown in the 
simulation output in figure 2. The expression of 
the throughput is as follows. 
 

Throughput = (Transfer rate)/ (Transfer time). 
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TABLE I. SIMULATION PARAMETERS 

 

Link Bandwidth Delay Queue 

 Limit 

Window  

Size 

Packet 

 Size 

Traffic  

Types 

Link to Cloud  

(Bottleneck) 

2Mbps 50ms 100 8000kb 552B/200B 

 

- 

Senders Link 10Mbps 10ms - -  Telnet/ CRB 

Link to Cloud  

Infrastructures 

 (Receivers)  

within the Cloud 

10Mbps 10ms - -  Telnet/ CRB 

6. RESULTS AND DISCUSSION 

During this simulation, the throughput of  
TCP Variants (Tahoe, Reno, NewReno, Vegas,  
Fack, SACK, and Linux) was measured in six 
different simulations as described in the previous 
section. The simulation period is set to 40sec in 
each case. The throughput analysis results of the 
simulation are shown in Figure 2-6. 

                              

 
Fig.2 Throughput Analysis with 200 User, 2 Servers In 40 

Seconds 

 
Fog. 3 Throughput Analysis with 400 User, 4 Servers In 40 

Seconds 

 

 
Fig. 4 Throughput Analysis with 600 User, 6 Servers In 40 

Seconds 

 
Fig. 5Throughput Analysis with 800 User, 8 Servers In 40 

Seconds 
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Fig. 6 Throughput Analysis with 1000 User, 10 servers In 40 

Seconds 

 

 
Fig. 7 Average Throughput Analysis with 200 User and 2 

Servers 

 
Fig. 8 Average Throughput Analysis with 400 User and 4 

Servers 

 
Fig. 9 Average Throughput Analysis with 600 User and 6 

Servers 

 
Fig. 10 Average Throughput Analysis with 800 User and 8 

Servers 

 

 
Fig. 11 Average Throughput Analysis with 1000 User and 10 

Servers 
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TABLE II AVERAGE THROUGHPUT OF THE VARIANTS 

FOR THE FIVE SIMULATIONS 
TCP 

Variant 

200 

Users 

400 

Users 

600 

Users 

800 

Users 

1000 

Users 

Tahoe 1032 1199 1175 1218 1288 

Reno 1030 1104 1165 1218 1275 

NewReno 1031 1103 1166 1220 1275 

Sack1 1026 1089 1160 1225 1297 

Vegas 1045 1135 1238 1330 1425 

Fack 989 1075 1229 1190 1249 

Linux 1040 1040 1222 1162 1130 

 

7. CONCLUSION  

This paper evaluates and compares the 
performance of different TCP variants (Tahoe, 
Reno, New Reno, Vegas, SACK, Fack and Linux) 
with the cloud based CVE architecture, to 
determine the suitability of each TCP variant for 
CVE. A comparative analysis between the different 
TCP variants is presented in terms of  average 
throughput. With increasing number of users in the 
system, TCP Vegas with the cloud based model 
was found to be more effective. The results show 
that the performance of the TCP Vegas with 200, 
400, 600, 800, and 1000 users in cloud based 
architecture is better than the other TCP variants. 
This is followed by TCP Linux, Tahoe, NewReno, 
Reno, Sack1, and Fack,  in the first simulation with 
200 user. In the second simulation, Vegas 
performance is followed by that of Reno, 
NewReno, Tahoe, Sack1, Linux, and latly Fack. In 
the third simulation, Vegas shows good 
performance followed by Fack, Linux, Tahoe, 
NewReno, reno, and Sack1.  Other simulation are 
the forth and fifth. In the fourth simulation it is 
observed that the performance of Vegas is still at a 
high point followed by Sack1, NewReno, Reno and 
Tahoe, Fack, and Linux. Lastly, the last simulation 
which was performed with 1000 users and 10 
severs gernerate throughtput shows that the 
performance of Vegas is more effective, followed 
by Sack1,  Tahoe, Reno and NewReno, Fack, and 
Linux.  
 

The performance of other variants different 
from Vegas keep fluctuating in all the simulations, 
this indicates an instability in their performance. 
The performance metrics used in this study are 
throughput and time. The average throughputs used 
for  evaluating the performance are showm in table 
II, and the comparison is illustrated in Figure 7-11. 
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