

Newcastle University ePrints | eprint.ncl.ac.uk

Alajrami S, Romanovsky A, Gallina B. Software Development in the Post-PC Era:

Towards Software Development as a Service. In: 17th International Conference

on Product-Focused Software Process Improvement (PROFES 2016). 22-24

November 2016, Trondheim, Norway: Springer.

DOI link

https://doi.org/10.1007/978-3-319-49094-6_53

ePrints link

http://eprint.ncl.ac.uk/pub_details2.aspx?pub_id=226637

Date deposited

14/02/2018

Copyright

The final publication is available at Springer via

https://doi.org/10.1007/978-3-319-49094-6_53

http://eprint.ncl.ac.uk/
http://eprint.ncl.ac.uk/pub_details2.aspx?pub_id=226637
http://eprint.ncl.ac.uk/pub_details2.aspx?pub_id=226637
https://doi.org/10.1007/978-3-319-49094-6_53
http://eprint.ncl.ac.uk/pub_details2.aspx?pub_id=226637
https://doi.org/10.1007/978-3-319-49094-6_53

Software Development in the Post-PC Era:
Towards Software Development as a Service

Sami Alajrami1, Alexander Romanovsky1, and Barbara Gallina2

1 Newcastle University, Newcastle upon Tyne, UK
{s.h.alajrami,alexendar.romanovsky}@newcastle.ac.uk

2 Mälardalen University, Väster̊as, Sweden barbara.gallina@mdh.se

Abstract. Over the years, software development has evolved to meet
the needs of new types of applications and to embrace new technological
disruptions. Today, we witness the rise of mobility where the role of the
conventional high-end PC is declining. Some refer to this era as the Post-
PC era. This technological shift, powered by a key enabling technology,
cloud computing, has opened new opportunities for human advancement.
Consequently, the evolving landscape of software systems drives the need
for new methods for conceiving them. Such methods need to: a) address
the challenges and requirements of this era and b) embrace the benefits
of new technological breakthroughs. In this paper we list the character-
istics of the Post-PC era from the software development perspective and
describe two motivating trends of software development processes. Then,
we derive a list of requirements for the future software development from
the characteristics of the Post-PC era and from the motivating trends.
Finally, we propose a reference architecture for cloud-based software pro-
cess enactment as an enabler for Software Development as a Service. The
architecture is the first step addressing the needs that we have identified.

Keywords: Software Development, Post-PC Era, Process Enactment, Clouds

1 Introduction

Software systems are playing a critical role in modern society. Many aspects of
our lives (e.g transport and health care) are dependent on software. In a way,
software is smartifying our lives through the smart X trend (phones, watches,
glasses, cars, grids and cities). The list goes on leading to a smart society where
every aspect of the society is connected to, influenced by, and dependent on
software. Although, this helps addressing several societal challenges, it comes
with the cost of increased software complexity. This complexity is then reflected
on the way software is conceived where the expectations of quality, reliability,
security and fast delivery are higher than ever.

Driven by challenges and opportunities, software development will continue
to evolve to address the smart society needs and beyond. For example, the
Internet has made Global Software Engineering (GSE) possible while economical
factors and market needs have motivated the rise of new development paradigms.

As Maximilien and Campos point out [11], we are entering the Post-PC era.
This era is characterized by the increasing mobility and connectivity of people
and devices, and the use of the Internet as a computing delivery medium. The
role of the traditional personal computers (high-specification desktops) is grad-
ually declining. Personal computers are becoming mobile and low-specification
devices. Users can use any Internet-connected low-specification device to per-
form their tasks on powerful computing resources delivered over the Internet
(using tools which are delivered as services). With this mobility, the relevance of
OSs/platforms becomes less [8] as many software applications are offered in an
OS/platform neutral fashion (e.g. services or HTML5). Cloud computing pro-
vides the enabling computing infrastructure on demand for such applications.

Accordingly, the way software is conceived needs to adapt to the rising Post-
PC era. Software development is a complex socio-technical process which in-
volves multiple stakeholders. Development teams use a wide range of tools/platfo-
rms for development, testing, deployment and operation of software. Some of
these tools are already offered through the Internet(e.g. Eclipse Orion3). This
paradigm is often referred to as Tools as a Service (TaaS). TaaS, however, over-
looks the organizational aspects of the process. Therefore, there is a need for
Software Development as a Service (SDaaS) which uses the cloud to support
modelling, managing and enacting software processes in a model-driven fashion.
SDaaS can utilize cloud as an execution and distribution medium where tools
are offered as services and orchestrated in workflows. Development environments
will be created on the fly and scaled as needed. Engineers will be able to do their
work on-the-go from anywhere. Furthermore, modelling and monitoring the pro-
cess itself will integrate the organizational and management aspects into the
development environment.

In this paper, we propose a reference architecture for cloud-based software
process enactment as an enabler for Software Development as a Service (SDaaS).
This architecture brings the benefits of clouds and modelling to support develop-
ment processes. We describe two industry-inspired development trends from the
two themes: Continuous Delivery and Global Software Engineering. We high-
light the impact of the Post-PC era on software development and identify the
requirements of software development in that era. Based on these requirements,
we design the proposed SDaaS architecture.

2 Motivating Trends

In this section, we list and discuss two industry-inspired motivating trends which
describe different development/business needs a modern software vendor is fac-
ing. For each trend, we discuss its impact on software development.

2.1 Continuous Delivery

Continuous Delivery [10] has become a trendy software development paradigm
along with DevOps. Together, they aim at bridging the gaps between devel-

3 https://orionhub.org/

Feature: Devops

16 www.computer.org/internet/ IEEE INTERNET COMPUTING

•	 Engineers have first-hand experience in the
domain, but must also test innovations on
real users to see what works.

•	 Personal responsibility from the engineers
who wrote the code can replace quality
assurances obtained by a separate testing
organization.

•	 Testing on real users at scale is possible, and
provides the most precise and immediate
feedback.

•	 Learning from experience is more important
and beneficial than chastising those respon-
sible for a failure.

Importantly, all these practices aren’t just a
disjoint set, but rather gel into a coherent engi-
neering culture that combines with a process
to provide considerable oversight on new code

(see Figure 8, and the “Further Reading” side-
bar for more details). Together, these practices
balance the need for quick turnaround with
that for oversight, robustness, and correct-
ness. Although some practices are unique to
Web-based companies such as Facebook, others
are applicable in general. Indeed, the practices
Facebook follows have much in common with
agile software development.

Perhaps the biggest surprise is how far indi-
vidual responsibility can substitute for spe-
cialization, methodologies, and formalized
procedures. Practices chosen to make up for
blame and self-protection have no place in a
team of engineers willing to take responsibility
for the entire system. The time and energy liber-
ated by taking a positive, responsible approach
to software development has touched the lives of
more than a seventh of the planet.

Acknowledgments
We thank Chuck Rossi, Boris Dimitrov, and Facebook’s

communication team for their insightful comments.

References
1. B. Atikoglu et al., “Workload Analysis of a Large-

Scale Key-Value Store,” Proc. 12th ACM SIGMETRICS/

Performance Joint Int’l Conf. Measurement and Model-

ing of Computer Systems, ACM, 2012, pp. 53–64.

2. “Exploring the Software Behind Facebook, the World’s

Largest Site,” blog, 18 June 2010; http://royal.pingdom

.com/2010/06/18/the-software-behind-facebook.

3. A. Thusoo et al., “Data Warehousing and Analytics

Infrastructure at Facebook,” Proc. SIGMOD Int’l Conf.

Management of Data, ACM, 2010, pp. 1013–1020.

4. D.G. Feitelson, “Perpetual Development: A Model for

the Linux Kernel Life Cycle,” J. Systems and Software,

vol. 85, no. 4, 2012, pp. 859–875.

Figure 8. The Facebook deployment pipeline. Multiple controls exist over new code.

Code
development
and testing
by engineer

Check-in and
automated
regression

testing

Bug
�xes

H2 deploy
(1% users)

H3 deploy
(full)

H1 deploy
(internal)

Push

Tuesday afternoon
(contributing

engineers on call)

Gatekeeper
switch on
(full or
selected
subset

of users)

“Latest”
(internal use)

Release
and Per�ab

testing

Sunday afternoon
Monday

Requested
changes
and �xes

Review by
peer engineer

using
Phabricator

Further Reading

Various online sources describe Facebook’s software development
practices:

•	 J. O’Dell, “Move Fast, Break Things: Four Stories for Hackers
from Facebook,” 26 June 2012; http://venturebeat.com/2012/06/26/
facebook-hacker-stories.

•	 A. Bosworth, “Facebook Engineering Bootcamp,” 19 Nov. 2009;
www.facebook.com/note.php?note_id=177577963919.

•	 S. Grimm, “Facebook Engineering: What Kind of Automated
Testing Does Facebook Do?” 29 June 2010; www.quora.com/
Facebook-Engineering/What-kind-of-automated-testing-does-
Facebook-do.

•	 M. Schroepfer, “Culture of Innovation,” Nov. 2010; www.youtube
.com/watch?v=DfN1YaYdgRg.

•	 “Release Engineering and Push Karma: Interview with Release
Engineer Chuck Rossi,” 5 Apr. 2012; www.facebook.com/note
.php?note_id=10150660826788920.

IC-17-04-Frach.indd 16 6/5/13 12:14 PM

Fig. 1. Facebook’s deployment pipeline [7].

opment and operations teams and automate the build-test-deploy-release cycle.
The motivation is to achieve frequent releases, reduce conflicts and therefore,
reduce cost. To achieve such automation, teams should follow certain practices
and use supporting tools/platforms. Humble and Farley [10] set the principles
and technical practices for successful implementation of Continuous Delivery. We
use Facebook’s deployment pipeline [7] as an example of a Continuous Delivery
process for large projects. Facebook is an example of a complex software that
requires rapid innovation and release of new features. As shown in Fig. 1, the
release cycle for each new feature starts by engineers coding a new feature or a
bug fix. The code is then reviewed by a different engineer using the Phabricator
code review tool. Tools such as distributed source control and automated testing
packages are used. The code is released on stages: first it is released to internal
employees to test it and is also tested for performance issues using Preflab. Then
(after fixing any discovered issues), it is released to a small portion of users using
the Gatekeeper tool. Only after these stages have passed successfully, the new
feature would be released to all users.

Discussion Facebook is delivered through the Internet and changes and new
features are continuously pushed to users transparently. This means that devel-
opers will be committing and integrating code very often (sometimes on daily
basis). The benefits of such frequency includes maintaining a bug-free code base
and easier bug fixing (since searching for bugs is limited to last pushed code).
Automation and repeatability of the software build-test-deployment-release are
a key enabling factor to Continuous Delivery. To pick up the fruits of Continuous
Delivery, the social/organizational aspect must be considered. For example, if
developers do not commit their code regularly, the Continuous Delivery chain
is broken. Therefore, there is a need for convergence and monitoring support to
ensure certain processes and practices are followed.

2.2 Software Outsourcing

The Post-PC era is also a globalized era. Software development outsourcing
was driven by business and economic factors (e.g. exploiting low-cost developers
and reducing the time-to-market). In addition, companies tend to outsource the

tasks that they lack the skills or expertise to perform. Outsourcing can take place
either within the same organization (intra-organization) or across organizations
(inter-organization).

This example is inspired by the railway system development. In this sce-
nario, there are two companies cooperating on system development. Company
A is a contractor that runs large industrial projects for designing/redesigning
railway networks. Among various tools the company uses a number of simula-
tion tools to visualise and analyse the systems it is building, to debug them,
to check their characteristics (such as throughput, energy consumption, perfor-
mance and capacity). During such projects company A develops a wide range
of models, diagrams, documents and blueprints that will be used for building
the network. As part of this work, company A needs to develop a safe signalling
software to operate the network by following a stringent software process. To
ensure the system safety, company A would like to use industry-strength for-
mal technologies. Company A does not have expertise in conducting large-scale
formal verification of complex systems so it decides to outsource this work to
small independent company B that has the right skill set. Conducting this type
of verification is the main business of company B. The artefacts to be used by
company B include layouts, infrastructure data, service patterns, timetables and
control tables. Due to the confidential nature of these artefacts, company B signs
a non disclosure agreement and a Service Level Agreement (SLA) with company
A and as a precaution, it undertakes all its processes on a private infrastructure.
Both companies (A and B) only exchange relevant artefacts and do not know
each other’s internal processes.

Discussion In reality, large scale projects may include intra and inter-organizat-
ion outsourcing with other teams/partners. Management of such projects can
be tedious and consumes enormous resources (time and effort) to monitor and
synchronize the different outsourced sub-projects. Several issues may arise. Small
issues such as using different tool versions by different teams may easily go
unnoticed till a late stage of the project at which it will become very costly to
fix. Other concerns include how to ensure the quality of the outsourced tasks
and how to monitor that they have been performed according to SLAs. Process-
state-awareness and communication is vital for the success of such distributed
development projects [8]. Therefore, there is a need for efficient management and
monitoring of such projects.

3 Characteristics of the Post-PC Era

The term Post-PC era was used to describe the fall of PC sales due to the rise
of mobile devices. When David Clark used the term for the first time in a talk
called ”The Post-PC Internet” in 1999, he predicted that the future will be ”in-
evitably heterogeneous” and ”a network full of services” 4. Today, we can see this

4 http://www.nytimes.com/1999/04/18/business/economic-view-is-mr-gates-
pouring-fuel-on-his-rivals-fire.html

prophecy taking place in the form of heterogeneous mobile devices and services
while PCs are becoming more portable and low-specification. The technology
shift in this era is enabled by cloud computing technology and the Internet.
This shift has changed the way users access and interact with technology. We
categorize the characteristics of the Post-PC era into two categories: a) technical
and b) organizational:

3.1 Technical Characteristics

The Rise of Mobility. Over the past few years, mobile devices have been
shaking the dominance of PCs. Users use mobile devices for many daily activities.
This has enabled new business models and new software distribution platforms
(e.g. app stores) [8]. Consequently, users became more mobile and have adopted
new interaction patterns for interacting with technology (e.g. touch and voice).
This increasing mobility impacts software development in two ways: one impacts
the produced mobile software (e.g. to have less power consumption) and the other
impacts the development process itself. The new interaction paradigms that
came with mobile devices have driven new works on unconventional development
methods. Microsoft TouchDevelop [4] platform enables programming on the go
using only mobile phone touch screens. Another trend is using voice recognition
to input code 5. The Cloud as the Development and Operation Platform.
Mobile devices have limited computing power. To overcome this challenge, mobile
applications delegate the processing and storage to cloud platforms over the
Internet. Cloud computing allows acquiring computing resources on the fly and
on a pay-as-you-go pricing model. This paradigm has enabled Software, Platform
(hardware, OS, etc.) and Infrastructure to be offered as services over the Internet.
Consequently, software development is increasingly relying on Internet services
which enable collaboration and integration between development teams (e.g.
Github 6). Open source software and crowdsourcing are examples of how the
Internet (powered by the cloud) enables collaborative development. In addition,
many software systems are now built by aggregating other services from the
Internet. Cloud is becoming the development and the operation environment for
software. This trend raises the need for alternative methods and technologies to
conceive, design, develop, test, deploy and evolve software [8].

3.2 Organizational (Business) Characteristics

On Demand Infrastructure and Tools Acquisition. With cloud and ser-
vices, traditional software distribution models have changed. Desktop clients are
being changed to cloud-based tools and mobile applications. Computing infras-
tructure is now only acquired and scaled up/down as needed. Along with this
shift, pricing models have also changed from the desktop client licence model
to in-app purchases and pay-as-you-go models. Globalized Development. As
mentioned earlier, the Post-PC era is driving the development and operation

5 https://www.youtube.com/watch?v=8SkdfdXWYaI
6 https://github.com/

to take place in the cloud. This has facilitated undertaking global software de-
velopment projects. Software development outsourcing helps reducing costs and
development time, but also introduces management challenges to overcome spa-
tial, cultural and geographical distances in order to ensure the quality of the
product and effective communication between development teams. Dissolving
Boundaries. The Internet has made geographical boundaries within or between
companies disappear. In addition, team boundaries are also fading [8]. Design,
development, testing and operations are no longer isolated tasks. Trendy devel-
opment paradigms such as DevOps calls for tight collaboration and integration
across these tasks.

4 Software Development in the Post-PC Era

The characteristics listed in the previous section affect how software development
is going to be conducted in the near future and raises the need for new methods
and tools for software development. Here, we list a non-exhaustive list of require-
ments (derived from Sections 2 and 3) for the next software development envi-
ronments. Process Monitoring & Management. Regardless of which process
model you use, the need for process visualization, monitoring the process sta-
tus and detect/predict problems and deviations becomes vital. Considering the
outsourcing scenario in Section 2, visual models of the process would ease com-
munication and understanding between distributed teams. Process monitoring
and status checking would help project managers to identify bottlenecks in the
process. Tools as a Service. The process models contain the tools needed to
support the process. To achieve executability of models, the required tools should
be available as a service over the Internet. While some tools can be automated,
others can be interactive. Interactive tools should provide interaction patterns
over the Internet. Consistency of tool versions used by distributed teams for
development and production is vital. As Humble and Farley [10] demonstrate
(using their experience from a real-world projects), using different versions of
the same package by collaborating teams could create very costly problems.
Provenance, Governance & SLA monitoring. Software development is a
human-centric process and when the involved humans are distributed within
the same or across different companies, effective management becomes essential.
As mentioned earlier, process monitoring and consistency checks are important,
but they are not enough. Data about the process, its enactment environment,
the tools used, the stakeholders involved and the artefacts produced/consumed
should be logged. Such data can be useful for process improvement and account-
ability. Moreover, when multiple companies are involved in a project, the pro-
cesses followed by both parties should comply with the agreed SLA. Therefore,
there is a need for SLA monitoring to assist the management of such collabo-
rative projects and ensure all parties are compliant. Artefacts Management.
Artefacts are tightly related to the previous needs and process models are arte-
facts themselves. Therefore, artefacts should be managed and stored effectively.
They should be accessible from anywhere and available at any time. Changes

made to them should be tracked and different versions of an evolving artefact
should be kept. Automation. The question about how much automation one
can have in a software process is important. The answer is indeed, a limited
portion. However, automation when possible is beneficial. Repetitive tasks such
as the build-test-deploy-release cycle are error prune and their automation can
prevent errors and save time. Non-interactive tasks (e.g. testing or model check-
ing) can be automated. Furthermore, automated background service can be run
to check consistency and compliance and monitor SLAs.

5 Reference Architecture for Enabling SDaaS

Aggregating the previous needs leads to Software Development as a Service
(SDaaS). SDaaS provides tools for modelling, enacting and managing software
processes. It enables orchestrating tools on the fly as services and manage and
store artefacts in the cloud. In addition, it enables utilizing the scalable cloud
resources to run automated processes and meet the needs of computing-intensive
tasks (e.g. code analysis and testing). In this section, we propose a reference
architecture for SDaaS. The architecture is model-driven where processes are
modelled and enacted as workflows.

The architecture complies with the Workflow Management Coalition (WfMC)
reference model [9] and is designed as a service. It consists of three main com-
ponents: a)The modelling and management interface which is offered as
Software as a Service (SaaS) and allows distributed teams to access, model,
enact and manage processes. b)The enactment service which is offered as
a Platform as a Service (PaaS) and handles the instantiation, enactment and
monitoring of process models. And c) Workflow Engines which are deployed
in a set of hybrid clouds and enact the individual workflow tasks/activities.

5.1 Process Modelling (Build Time)

Software processes consist of a set of different types of activities/tasks (e.g.
interactive and automated activities) which are to be enacted by different stake-
holders with different enactment requirements (e.g. privacy, computing power
etc.). These process details need to be captured. Software & Systems Pro-
cess Engineering Meta-model (SPEM2.0) [12] is the Object Management Group
(OMG) standard for modelling software processes. SPEM2.0 lacks explicit sup-
port for expressing cloud-based process enactment and control flow semantics.
Proposed SPEM2.0 extensions (e.g. [6]) do not capture cloud-related enactment
requirements. Consequently, we proposed EXE-SPEM [2] which is an extension
of SPEM2.0 for cloud-based enactment. Software process models modelled in
EXE-SPEM can be mapped to an executable XML notation.

Fig. 2 shows the software process build time components which are packed
as a SaaS solution. The Model Authoring module allows constructing pro-
cess models using EXE-SPEM constructs. The Access & Sync. Service ap-
plies access management policies and ensures the consistency of models that

Model
Transformations

Model
Storage Service

Model
Authoring

Access & Sync.
Service

RE
ST

 A
PI

Ex
te

rn
al

 T
oo

ls

Workflow Engines Registry

Artefacts Manager

External
Workflow

Collaboration

Consistency &
Compliance

Checker

Sc
he

du
le

r

SLA
Monitor

Execution
Manager

Workflow Engines

Tools

Repositories

Build Time (SaaS) Runtime (PaaS)

Fig. 2. Detailed architecture for cloud-based software process enactment.

are being authored by distributed teams simultaneously. This module also no-
tifies collaborators when a model is changed/updated. Once the model is au-
thored, the Model Storage Service allows saving/retrieving the model into
the cloud-based repository through the enactment service API. Finally, models
can be transformed into the executable XML notation from EXE-SPEM using
the Model Transformations module.

5.2 The Enactment Service (Runtime)

The enactment service has an API to interact with the process modelling service.
This way, modelling can be done from SaaS or a plug-in for a legacy desktop
client. Behind the API, the service is responsible for the runtime instantiation
and execution of process models. To do this, the service consists of several mod-
ules as illustrated in Fig. 2. These modules are: The REST API It provides
endpoints for process enactment and monitoring and artefacts storage and re-
trieval. Artefacts Manager software processes involve producing large number
of artefacts such as: code, models and documentation. These artefacts capture
invaluable information about both the software process and product evolution.
The artefact manager stores the artefacts and meta-data about them into the
artefacts repository. The meta-data includes: actors involved, version, tools used
and the date and time the artefact was created/modified on. External Tools
are service blocks performing the process activities. These blocks are either: in-
teractive, control points (providing control flow during the process execution) or
automated fire-and-forget activities. This module provides the necessary infor-
mation on these activities when needed for process execution. The Execution
Manager The execution manager orchestrates the enactment of process models.
First, an instance of the model is created and the ready-to-execute activities are
passed to the scheduler. The scheduled activities are then executed on workflow

engines. During the execution of the process, the execution manager tracks of
the status of the process instance being executed. This module also logs all the
provenance data about each process instance execution. The Workflow En-
gines Registry is responsible for starting, stopping and monitoring workflow
engines based on the activities scheduling policies used by the scheduler. Work-
flow engines are independent applications running on different cloud providers.
Activities get executed in a workflow engine that is deployed on a public or
private cloud. The workflow engine has to meet the execution requirements ex-
pressed in the process model. The execution of activities is a black-box execution
which means that the workflow engine would not know any information about
the process being executed. This reduces the risks of privacy and confidentiality
breaches. In order to decouple the enactment service from the workflow en-
gines, asynchronous communication between them is achieved through message
oriented middleware. The Scheduler handles the planning of process execu-
tion. This involves checking the needed resources (from the process model). The
scheduler should operate using a policy to meet the the enactment requirements
(e.g. enacting an activity on a private cloud) while minimizing the cost. Several
cloud-based workflow scheduling algorithms exist and can be used (e.g. [1]). The
schedules generated by the scheduler determine the expected load of execution
and is used by the workflow engines registry to dynamically scale the number
of workflow engines. The Consistency Checker As explained in Section 4,
automated consistency checking for the process during its execution can allevi-
ate problems early and save time and cost. Discussion of consistency checking
techniques is beyond the scope of this paper. The SLA monitor As explained
in the software outsourcing scenario (Section 2), when two or more organizations
collaborate on a project, SLA monitoring becomes handy to transparently ensur-
ing that all parties are not breaching the SLA. While each organization can have
its own SDaaS environment, these environments can exchange data about the
process state and execution using the External Workflow Collaboration module.
The External Workflow Collaboration allows process execution to incor-
porate invoking processes managed by another workflow system (e.g. from a
different company).

6 Conclusion

The Post-PC era is here and software is embedded in almost every aspect of our
daily life. Software systems have evolved but the way they are conceived still
needs to be rethought to adapt to the new era’s challenges and to embrace its
technological breakthroughs.

In this paper, we have described the characteristics of the new era and its
impact on software development. We also proposed the SDaaS reference archi-
tecture for supporting software processes enactment. To become a reality, this
proposal requires tools to be offered as services. We have developed a prototype
of the proposed architecture consisting of an enactment engine that executes
software processes, a number of off-the-shelf tools deployed as services in our
tool repository and an artefact store. The prototype was used to enact a safety-

related process [3] and a number of verification/modelling processes. Our ongoing
work focuses on implementing larger and more complex processes and evaluat-
ing the architecture proposed. In a longer run we aim at creating a community
of developers extending the architecture and applying it for the development of
complex software systems.

Additionally, Empirical studies are needed to study the effects of this proposal
on the organizational, technical and economical aspects of software development
processes. Furthermore, the effect on different development process models (e.g.
Agile) also needs to be analysed and benchmarked. Usability studies can deter-
mine the effects this approach may have on individual developers, managers and
other stakeholders. Indeed, as Fred Brooks put it, ”There is no silver bullet” and
we can only eliminate accidental difficulties in software development. Inherent
difficulties will continue to exist as software and its development evolve [5].

References

1. Abramson, D., Lees, M., Krzhizhanovskaya, V., Dongarra, J., Sloot, P.M., Wang,
J., Korambath, P., Altintas, I., Davis, J., Crawl, D.: Workflow as a service in the
cloud: Architecture and scheduling algorithms. Procedia Computer Science 29, 546
– 556 (2014)

2. Alajrami, S., Gallina, B., Romanovsky, A.: Exe-spem: Towards cloud-based ex-
ecutable software process models. In: Proceedings of the 4th International Con-
ference on Model-Driven Engineering and Software Development, MODELWARD
’16. pp. 517–526 (2016)

3. Alajrami, S., Gallina, B., Sljivo, I., Romanovsky, A., Isberg, P.: Towards cloud-
based enactment of safety-related processes. In: Proceedings of the 35th Interna-
tional Conference on Computer Safety, Reliability and Security, SafeComp ’16. vol.
LNCS 9922 (2016), to appear

4. Ball, T., Burckhardt, S., de Halleux, J., Moskal, M., Tillmann, N.: Beyond open
source: The touchdevelop cloud-based integrated development environment. Tech.
Rep. MSR-TR-2014-127, Microsoft Research (September 2014)

5. Brooks, F.P.: No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20, 10–19 (1987)

6. Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D., Philippsen, M.: espem -
a spem extension for enactable behavior modeling. In: Modelling Foundations and
Applications, Lecture Notes in Computer Science, vol. 6138, pp. 116–131 (2010)

7. Feitelson, D., Frachtenberg, E., Beck, K.: Development and deployment at face-
book. IEEE Internet Computing 17(4), 8–17 (2013)

8. Fuggetta, A., Di Nitto, E.: Software process. In: Proceedings of the on Future of
Software Engineering. pp. 1–12. FOSE, ACM (2014)

9. Hollingsworth, D.: Workflow Reference Model. No. TC00-1003, Workflow Manage-
ment Coalition (WfMC) (January 1995)

10. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st edn.
(2010)

11. Maximilien, E.M., Campos, P.: Facts, trends and challenges in modern software
development. Int. J. Agil. Extrem. Softw. Dev. 1(1), 1–5 (Jul 2012)

12. OMG: Software and Systems Process Engineering Meta-Model Specification, V2.0
(April 2008)

