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Abstract 

Buildings worldwide consume approximately 45% of primary energy sources, making it the 

single largest energy consumption sector. The importance of improving a building’s energy 

performance was emphasized by the government with the enforcement of sustainable building 

policies. Article 9 of the Directive 2010/31/EU of the European Parliament and the Council (19th 

May 2010) on the energy performance of buildings states the importance of stimulating 

refurbishment of existing buildings into near zero-energy buildings. However, the effectiveness 

of the process depends on the basic building structure and the refurbishment designs. Hence, 

methods to find the effective strategies for retrofitting and modelling to predict energy reduction 

is vital. Unlike the previous studies, this paper presents a method for a deep building retrofit 

based on the whole building’s thermal analysis specifically for cooling demand countries. This 

work set against recommended best practice office building energy benchmarks in Malaysia, and 

following a comprehensive building audit, a retrofit strategy was proposed based on target 

building’s thermal analysis with cooling demand reduction in particular focus. It was found that 

71% of the building’s heat gain emanated from its lighting system and solar heat gain through 

windows. A 40.2% reduction in the building’s cooling load is estimated to reduce 47% of the 

total energy consumption. A comparison of the actual and simulated energy results suggested 

that the simulation made under predicted the energy reduction by 4.3%.  
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Nomenclature 

ACC  annual cooling system’s energy consumption 

AEC  annual energy consumption  

AELC  annual electricity consumption  

AHU  air handling unit  

BEI  building energy index 

BMS  building monitoring system  

COP  coefficient of performance 

COPchiller coefficient of performance for the GDP’s chiller 

CO2  carbon dioxide  

Cp  the ratio of cooling system’s electricity usage per total building’s electricity usage 

CV(RMSE) coefficient of variation of the root mean square error  

CW(RTH)  chilled water consumption in RTH 

DOSH  Malaysia’s Department of Safety and Health  

EEMs  energy efficiency measurements 

Elbuilding(kWh) building’s electricity consumption  

ElCS(kWh)  electricity consumption for the cooling system’s equipment inside the building 

ECW (kWh)  energy consumption by GDP’s chiller in kWh 

FA  conditioned building’s floor area 

G  solar irradiance 

GEO  green energy office 

GF  ground floor 

GDP  gas district cooling plant 

HVAC  heating, ventilation and air conditioning  

kWh  kilowatt hour 

LEO  low energy office  

LOR  light output ratio 

M  meter 

MBE  mean bias error 

MF  maintenance factor 

Mi  measured data at instantaneous i  
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Ni   the count of the number of values used in the calculation 

PL-C  Philips lamp (compact type) 

PL-L  Philips lamp (L type) 

Psys  power consumption by lighting system 

Qi  instantaneous room’s heat gain  

RH  relative humidity  

RTH  refrigeration tonne per hour 

SHGC  solar heat gain coefficient  

SHGW  solar heat gain through windows 

Si  stimulated data at instantaneous i  

T  temperature 

Ta  outside ambient temperature 

Tr  room temperature 

U  lamp’s utilization factor 

Ug  U-value (thermal transmittance) for glazing 

VLT  visible light transmission  

ƞLS  lighting system’s efficiency  

ƞL  lamp efficiency  

ƞg  lamp’s gear efficiency  

ɸ  luminious flux at task area 
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1.0 Introduction  

Buildings account for a large share in global energy demand. They consumed 30% of the 

primary energy in South East Asia [1], 40% in International Energy Agency (IEA) countries [2], 

Europe [3][4] and 50% globally [5]. The figure is expected to increase in the future due to the 

growth in population, development, increasing demand for improved building’s services and 

comfort levels and the rise in time spent in buildings [6]. This statement is supported by the 

building energy demand annual growth rate in several countries (Table 1) extracted from L. 

Perez-Lombard et al (2008) [6] and South East Asia Energy Outlook report by IEA (2013) [1].  

 

Table 1: Buildings energy demand annual growth rate by country. 
 

 

 

 

 

 

 

 

 

The call for improvement in building energy efficiency was highlighted by changes in 

sustainable building policies, legislation and incentives. Due to high numbers of unsustainable 

existing buildings, great interest was paid on building refurbishment to increase energy 

efficiency [7]. In many cases this process is more economical and has a less environmental 

impact compared to a complete demolition and rebuild [7][8][9]. However, the effectiveness of 

the process depends on the basic building structure and the refurbishment designs [8][10]. 

Hence, methods to find effective strategies for retrofitting and modelling to predict energy 

reduction are vital [9][10]. General energy retrofit guides and energy efficient measures (EEMs) 

were published by various institutions including the US Department of Energy (US DOE) and 

ASHRAE (in collaboration with other institutes) [11][12][13] as a response to the increasing 

demand for building refurbishment. Nonetheless, retrofit measures may have different impacts 

on different buildings due to the variance in design and sub-systems, making the retrofit 

selection very complex [9].  

Country  Buildings energy demand  

annual growth rate (%) 

Sources  

Europe 1.50 [6] 

USA 1.90 [6] 

UK  0.50 [6] 

Malaysia  3.10 [1] 

Spain  4.20 [6] 

Indonesia 1.00 [1] 

Thailand 2.40 [1] 

Philippines  2.00 [1] 
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In previous studies, buildings were audited to determine the area of concerns before applying 

EEMs [14][15][16][17][18][19] selected based on the multi-objective optimization methods 

[9][10][20][21][22] or cost-benefit analysis [23][24]. Mainly, the audit process concerns the end-

use energy consumption to determine sector that requires retrofitting but not in depth holistic 

approach to define the building’s parameters that contributing towards the large energy share 

from the sector. Whereas in early design phase, sensitivity analysis is widely adopted to 

determine parameters which significantly contributes towards the performance of the design 

solution [25]. Andarini et al [26] used a sensitivity analysis to obtain parameters that can 

significantly reduce cooling demand in a shophouse design for Indonesia climate. A sensitivity 

analysis was also performed by Yildiz et al [27] to define parameters in an apartment’s design 

which greatly contributes towards heating and cooling load. While Heiselberg et al [25] studied a 

wider range of input parameters to determine their impact on the total energy performance of an 

office building design. Normally, heating and cooling load were assigned as the output variables 

for the sensitivity analysis as it is a significant energy performance indicator and the major 

building’s energy consumer globally [6][25][26][27][28][29]. Whereas, in cooling-dominated 

countries, air conditioning dominated the building’s energy share [15][27][30]. A study by 

S.Aun et al [31] concluded that Malaysia’s office buildings used 64% of the total building’s 

energy for air conditioning. Meanwhile other tropical countries such as Indonesia, Thailand and 

Singapore, spent 51% to 59% of the building’s energy budget on air conditioning [15][26].  

 

Against this background, this study proposed a retrofit methods based on a whole building 

thermal analysis to determine parameters contributes towards heat gain. It was developed to cater 

buildings in cooling dominated countries encompassing a building audit, simulation based whole 

building thermal analysis, devise energy saving options to reduce the heat gains and hence 

cooling loads while adhering to thermal comfort and stakeholder’s requirement. It is hoped that 

the steps followed could provide assistance to stakeholders involved in building retrofits 

(focusing on buildings with cooling systems as its highest energy user) within high-density urban 

areas in climates similar to that of our case study building.  
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2.0 Methods 

The proposed method consists of four steps as summarized in Figure 1. The process is 

further elaborated in section 2.1, 2.2, 2.3 and 2.4.  

 

2.1 Building Energy Audit  

The Building Energy Index (BEI) was used as a benchmark to compare the current building 

energy performance with the low energy office (LEO) suggested by the Malaysian government 

[31][32]. BEI is calculated using equation (1) [15][30] while the annual energy consumption for 

the building is expressed by the equation (2). It is a sum of the building’s annual electricity 

consumption and the estimated energy used for chilled water supplied to the building. The 

estimated energy used by the external Gas District Cooling Plant (GDP) chiller is shown in 

equation (3) [33][34]. The chilled water usage is recorded in RTH. Therefore, the values are 

converted to kWh (1 RTH is equivalent to 3.5 kWh). It is assumed that there are no energy losses 

while the chilled water travels from the GDP to the building.   

 

BEI = ΣAEC/ΣFA    (1) 

AEC = Σ Elbuilding(kWh) + ΣECW(kWh)  (2) 

ECW (kWh) = (CW(RTH) × 3.5)/ COPchiller (3) 

 

The building’s energy usage and the indoor environmental measurement (air temperature, 

humidity, carbon dioxide level and lux) were referred to the building audit report ([34]) and 

BMS. The equipment used for the measurement is listed in Table 2.  

 

Table 2: List of equipment used for indoor environmental measurement. 

Equipment model  Usage Accuracy  

Testo 540 Illuminance  All measurement:  +/- 3% 

pSENSE RH CO2  For 0 to 2000 ppm measurement: +/- 5%  

HT305 Air temperature and 

humidity  

RH measurement : +/- 3%  

Air temperature measurement: -0.8°C 
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2.2 Building Modelling and Calibration.  

A model of the case study building was constructed using the Design Builder software version 

4.2.0.034. It is the most comprehensive Graphical User Interface to the Energy Plus simulation 

engine (from US DOE) which has intensively used for building modelling in previous research 

[35][36][37][38][39][40]. It provides an intuitive interface and high-resolution data output on 

energy consumption, carbon emissions, occupant comfort, and daylight availability [41]. 

Modelling complex buildings involves inaccuracies and errors due to various input requirements 

and limitations [35][36]. Studies on building modelling presented ways of increasing the model’s 

prediction accuracy [35][36] and ASHRAE Guide 14 [42] is an established method for 

measuring a model’s accuracy [14][35][36][38]. It is suggested that with instances of monthly 

data, a building is considered accurate if the CV(RMSE) for monthly values is below ≤+15% and 

MBE of monthly values is within  ±5% [42]. If these tolerances are met, EnergyPlus was 

demonstrated to be capable of predicting space air temperatures within zones of interest with an 

accuracy of ± 1.5°C for 99.5% of the time [35]. In this study, the input data listed below was 

collected by the help from building’s facility management and onsite visits to ensure the model 

reflects the actual building in:  

 Geometry: The building’s floor plan, geometry and fabric (derived from architect’s 

drawings. DXF files created from the architect’s drawings  (AutoCAD) to import into 

Design Builder [36].  

 Equipment data: Power rating, operation’s schedule, equipment quantity in every office 

floor.  

 Lighting: lux measurement, operation’s schedule, lamp and luminaire types.   

 Occupancy in every floor: number of occupants, type of activities and schedule.  

 Local weather data was collected from Malaysia Meteorological Department [43] and 

ASHRAE global weather repository.  

 HVAC system: the building HVAC system schematic drawing, HVAC system and 

chiller’s COP, the average zone’s temperature measurement for every office floor and 

average chilled water temperature for every AHU’s was extracted from the building audit 

report and prepared by facility management [33][34].  
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This software simulates the total energy for the cooling system as ‘district cooling’ while the 

building’s chilled water was supplied by a district cooling plant. Hence, the actual energy 

consumption by the cooling system was calculated using equation (4) where the monthly electric 

consumption by the cooling system (ELCS(kWh)) is calculated using Equation (5). Equation (6) 

calculates CV(RMSE) and equation (7) calculates MBE between the simulated and actual results 

[35]. Model parameter inputs were refined until the tolerance range was met.  

 

ACC  = ELCS(kWh) + ECW (kWh)   (4) 

ELCS(kWh) =    (5) 

CV(RMSE)  =    (6) 

     (7) 

 

2.3 Building thermal analysis.  

Three steps of thermal analysis were used. Step 1 aimed to define the zones with the highest 

cooling load and cooling load intensity, step 2 aimed to discover the main heat sources in those 

zones and step 3 aimed to diagnose what causes these components to emit such a high amount of 

heat which contributes towards the retrofit strategies.  

 

2.4 Cooling load reduction strategies, cost analysis and actual implementation 

The strategies were proposed to the facility manager for implementation. The energy data after a 

year of implementation was analysed. The economic analysis is a comparison of the initial cost 

per 1 kWh annual energy reduction (equation (8)). The initial implementation costs are derived 

from Design Builder’s cost analysis package.  

 

Energy reduction cost (GBP/kWh) = Initial cost / annual energy reduction (8) 
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Figure 1: The retrofit method based on the thermal analysis. 
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3.0 Case-study building    

 

Figure 2: An image of the case study building taken during a field visit. 
 

An office building in Putrajaya, Malaysia, was taken as the building case study (shown in Figure 

2) as it represents cooling-dominated nature of modern offices in Malaysia. The building data 

was gathered through personal interviews with the building’s energy manager, site visits, online 

building consumption input system (BCiS) and the annual audit reports which were performed 

by a qualified energy consultant and the facility management company. The findings concerning 

the building specification are summarized in Table 3. Only the building’s communal areas and 

offices in the North block were studied. It consists of two underground floors and a ground floor 

that connects the North and South building and seven office floors in the North building. The 

building’s fabric and floor plan were derived from the architect drawings.  
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Table 3: Summary of the case study building specification gathered from [33] and architect’s 
drawings. 
 

 

3.1 HVAC Services and Building Monitoring System (BMS)  

The air conditioning is provided by a unitary constant air volume system, AHU systems on every 

floor, fan coil air conditioning units for the lifts lounge and the chilled water was supplied by an 

external Gas District Cooling Plant (GDP) [33][34]. The building is equipped with a monitoring 

system (Circutor Power Studio Scada by Monitor Power Energy) that covers all small power, 

lighting, ventilation, auxiliary elements of electricity consumption, each zone temperature and 

chilled water temperature for every AHUs. Also, the cooling energy consumption is logged 

separately by the district provider since the chilled water is supplied by a GDP. A combined heat 

and power chiller is used by the GDP, and the chiller’s coefficient of performance (COP) is 4.0 

[33][34].  

 

4.0 Results and discussion. 

4.1 Energy and indoor environmental quality  

The average BEI over four years from 2009 to 2012 was 238.53 kWh/m²/year [33][34]. It is 

slightly lower than the typical BEI for Malaysian office buildings (250 kWh/m²/year) [30][44] 

Component  Description  

Weather Hot and humid (tropical weather)  

Conditioned Floor area 36,750 m² 

Occupants  351 (peak time) 

Major zones  Lobby, corridors, toilets, AHU rooms, janitor rooms, offices, IT 

rooms, pantries, parking areas, kitchen, cafeteria, cold room, 

auditorium, data center and communal hall.  

External wall  Brick and cement construction. U-value : 2.898 W/m²K 

Glazing Green float glass (8mm). 85% glazed with local shades. 

Lighting  Provided by 3119 lamps (84.4% of PL-L 36W recessed and surface 

mounted. Average lighting density in office zones is 4.85 W/m²).  
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and in range with the BEI of Malaysian public hospitals (234 kWh/m²/year) as studied by Saidur 

et al [15]. Interestingly, the BEI value is comparatively lower when compared to the average 

office’s BEI in Europe (306 kWh/m²/year) [45]. The annual BEI values in 2009 to 2012 are 

listed in Table 4.   

 

Table 4: The building annual energy index (BEI) over four years [33][34].  

Year  BEI 

(kWh/m²/year) 

2009 241.78 

2010 241.12 

2011 254.3 

2012 216.9 

 

In 2012, cooling was responsible for 58.9% of the building total energy consumption. The 

energy intensity from the cooling system was 127.89 kWh/m²/year that is higher than the BEI 

benchmark for LEO buildings (114 kWh/m²/year) [32] and passive buildings (120 kWh/m²/year) 

[2]. The building end-use energy intensity by sector is shown in Table 5. The building needed to 

reduce its total energy consumption by 46.9% to become a LEO building, and this was found to 

be possible primarily through cooling load reduction.  

 

Table 5: End-use energy intensity by sectors in 2012 [33][34]. 

 End-use Energy Consumption  

Sectors Energy intensity 

(kWh/m²/year)  

Percentage of total 

energy (%) 

Cooling system  128 58.9 

Lighting  62 28.6 

General sockets  15 6.9 

Data centre  12 5.5 

 

The building indoor environmental quality analysis (in office zones) was extracted from the 

building energy audit report and measured by a variety of sensors listed in Table 2. The results 
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(Table 6) shows that 6 out of 8 office spaces have lower than the minimum room temperature 

suggested by MS1525:2007 [46]. Average luminance in 5 out of 8 office spaces was lower 

than the minimum requirement. The relative air humidity (RH) and the carbon dioxide (CO2) 

level were within the suggested range [47]. 

 

Table 6: Measured indoor environment’s condition in office zones [34]. 

Floor Luminance 

 (lux) 

T  

(°C) 

R.H  

(%) 

CO2  

(ppm)  

G 315.2 23.3 57.5 671.2 

1 201.2 23.3 62.6 645.8 

2 347.7 22.5 64.2 678.2 

3 363.2 22.3 60.7 802.0 

4 244.5 21.8 63.9 583.8 

5 237.0 22.1 66.8 639.0 

6 256.0 22.6 67.0 609.8 

7 259.0 22.2 66.9 539.6 

Recommended by MS1525:2007 and DOSH 300 23-26 55-70 <1000 

 

4.2 Building modelling  

 

Figure 3: The building model built in Design Builder Software. 

 

The comparison of actual energy usage and simulated energy usage using the ASHRAE Guide 

14 shows the building model prediction to be within the acceptance range. The estimated MBE 
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was +1.31% (acceptance criteria is ±5%), and the CV (RMSE) value was 8.33% (less than the 

15% requirement). Total energy consumption in 2012 was 7.33 GWh while the simulation 

results predicted it to be 7.24 GWh. The comparison of monthly actual and estimated energy 

usage and its percentage deviation is shown in Figure 4. The average deviation was +1.31% with 

the highest deviation on August (over predicted by 18.1%). Greater uncertainty in occupancy 

levels during the celebration month leads to the over prediction.  

 

 

 

Figure 4: Comparison of the actual and simulated monthly energy consumption. 
 

4.3 Thermal analysis  

Zones with the highest overall cooling load and cooling load intensity were defined (shown in 

Table 7) for a further heat source analysis.  It is found that zones with heavy duty equipment 

(data centre and IT rooms) were deemed to have the highest cooling load intensity (annual 

cooling load per zone’s area) while total annual cooling loads are largest in bigger areas. Further 

analysis on the heat sources in the main cooling areas area shown in Table 8. It can be seen that 

heat distribution in every area varied depending on the zone’s internal equipment type, 
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architectural design (fenestration and area), type of activities and operational schedules. In this 

case study, four important components contributing to the heat gain were highlighted as the 

lighting system, windows, and equipment and operation settings. An in-depth holistic analysis 

was carried out and discussed in section 4.3.1, 4.3.2 and 4.3.3 to obtain the causes for the 

components’ high heat emission rate.  

 

Table 7: Annual cooling load in different cooling zones. 

Cooling zones Annual cooling load (kWh) Cooling load intensity (kWh/m²/year) 

Offices 2,666,685 193 

Data centre 468,459 5545 

Corridors 393,208 119 

Cafeteria 201,989 348 

IT rooms 78,812 938 

Hall and auditorium  7,354 6 

Total  4,082,655 10,848 

 

Table 8: Heat gain distribution in different zones.  

 

 Annual heat gain distribution (%) 

Zones SG L Eq Occ 

Office 26 47 22 5 

Data centre  0 23 76 1 

Corridors 13 85 0 2 

Solar gain from external windows (SG), lighting (L), Equipment (Eq) and Occupancy (Occ)  

 

4.3.1 Lighting system   

Despite the fact that the majority of the office zones received lower than the MS1525:2007 

recommended light luminance level, the heat emitted and energy consumed by the lighting 

system was high. This finding highlighted the actual inefficiency of the lighting system and 

potential for improvement. An example of the luminance in office areas is shown in Figure 5. 

The actual lighting system efficiency was calculated using equation (9) which was derived from 

the equation (10) [45]. The results are listed in Table 9. 
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ȠLS = measured lumen/ total power used  (9) 

ɸ = (MF×U×LOR×ȠL× Ƞg ) × Psys  (10) 

 

Table 9: Measured efficiency of the lighting system. 

 

 

 

 

 

 

 

 

 

 

 

The low average lighting system efficiency in office areas explains the high heat gain as the lamp 

power losses are emitted into space as heat (radiation and convection) [39]. Previous studies (P 

Hanselear et al) [48] suggested that the light’s utilization factor (utilance) is more important than 

the lighting output ration in reaching energy efficiency and it depends on:  

a) the arrangement of the luminaires in the room concerning the position of the task area 

b) the luminous intensity distribution of the luminaires and the spacing to height ratio  

c) the reflectance of the surroundings, which determined the indirect contribution.  

 

Therefore, besides lamp efficiency, their arrangement, maintenance, lamp’s control gear 

efficiency, as well as the construction and space design play a major part in determining the 

efficiency of the whole lighting system in delivering the minimum required lumen to space. Most 

of the lamp types used were PL-L (36W) lamps 2008’s version that has low lamp efficiency and 

used a recessed type configuration. Typical fluorescent lamps emit 21% of its input power to 

visible light, 37% radiant heat and 42% convective heat [39].  

 

Office zones ƞLS 

(%) 

Power rating  

(W/m²) 

Level 1 1.94 6 

Level 2 4.02 5 

Level 3 4.20 5 

Level 4 2.82 5 

Level 5 3.42 4 

Level 6 2.96 5 

Level 7 3.74 4 
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Figure 5: Lighting in a typical office and associated circulation areas taken during a field visit. 

 

The curtain wall windows in corridors and office areas allowed high daylight luminance to light 

up the spaces without depending on the artificial light. The recommended luminance level for a 

corridor is 50 lux and 100 lux for lift lobbies [46] whereas the daylight luminance measurement 

in those areas (as listed in Table 10) were in the range of 502 lux to 25,001 lux. In practice, 

lightings in these areas were switched on 24 hours a day even though it could benefit from the 

high levels of daylight. A daylight linked installation could have eliminated the unnecessary 

energy usage and excessive internal heat gains. 
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Table 10: Daylight luminance measurement. 

Zone Luminance  

(lux)  

Corridor level 2 21,000 

Corridor level 3 25,001 

Corridor level 4 14,840 

Lift lobby level 2 502 

Lift lobby level 3 503 

Lift lobby level 4 396 

 

4.3.2 Windows 

For countries requiring high cooling demand, windows are an important element in ensuring the 

occupants’ thermal comfort and in providing daylight illumination into the building. Malaysia 

receives an average of 4.67 kWh/m² average of daily solar radiation [31] where the incident solar 

radiation on a building’s glazing is partially reflected and partially transmitted into the building 

depending on the glazing properties [49][50]. Despite a degree of overlap, the infrared 

component of the incoming daylight transmitted into the building materialises itself in the form 

of internal heat gain whereas the visible light spectrum (which in its lower bands overlaps with 

the near infra-red) increases daylight luminance. In a cooling-dominated country, glazing with 

high visible light transmittance, low U-value (heat loss value) and low SHGC is preferable to 

maximise daylight luminance and reduce heat gain. The instantaneous room heat gain is 

governed by the equation (11) [49].  

 

Qi =Ug * (Ta −Tr)+ (SHGC * G)   (11) 

 

Even though the building has an 85% window to wall ratio, it benefits from its architectural 

selection of window pane and shading designs that managed to offset a major fraction of the 

external solar heat gain. The building windows were made from single panel green float glass: 8 

mm thick, SHGC value of 0.447, VLT 0.237 and U-value of 5.7 W/m². However, a further 

reduction of solar heat gain through windows is achievable by selectively adding a second pane 
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to the existing window to create double panel windows with a lower SHGC and U-value while 

maintaining the VLT to maintain the daylight received.  

 

4.3.3 Equipment and operation settings 

The heat gain analysis revealed that zones with heavy duty equipment (data centre and IT rooms) 

had the highest cooling load intensity (annual cooling load per zone area) that reached up to 5545 

kWh/m²/year for the data centre and 938 kWh/m²/year for the IT rooms. The equipment high 

rating power and 24 hours operation released substantial amounts of heat into the surroundings 

which in turned requires the building manager to set the cooling set point temperature at 21°C at 

all times in these zones to avoid equipment overheating and ensure good operating conditions. In 

the office areas, equipment was responsible for 22% of the total annual heat gain. 529 pieces of 

office equipment were used in the building with mainly desktop computers (256 units) and small 

printers (137 units). Office pantries at each level used refrigerators that constantly operate and 

most of the desktop computers did not have Energy Star rating. Inefficient equipment increased 

heat gains, which in turn exacerbated the cooling load. The air conditioning in office areas was 

set to 22°C, which is 1°C to 4°C lower than the suggested value by MS1525:2007. While the 

cooling system and lighting were scheduled to turn on at 7.00 am that is an hour earlier than the 

office opening time.  

 

4.4 Strategies to reduce cooling load. 

The retrofit plans suggested for this building are categorized into five different types that are the 

lighting system, glazing, equipment, operation settings and on-site renewable energy. Each 

modification is discussed below: 

 

a) Lighting System: A lighting system that includes automatic daylight dimmer in corridors and 

office zones as well as replacing existing lamps with high-efficiency LEDs [39]. Luminance 

in the office zones were adjusted to 300 lux by the recommendations from previous studies 

[45] and MS1525:2007 [46]. Lighting operating schedule was proposed to accommodate the 

employees when the area is occupied (i.e. 0730 hours to 1800 hours).  
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b) Glazing: A 6mm thick low emissivity (Low-E) glass panel was added to the existing model 

as an internal layer to the existing green float glass with a 16mm air gap between them. The 

commonly used clear glass window panels were also examined for comparative studies. The 

impact of different glazing types on building solar heat gain is detailed in Table 11. 

 

Table 11: The impact of different glazing types on the building solar heat gain through external 

windows. 

Glazing type SHGC U-value 

(W/m²) 

SHGW 

(kWh) 

Single panel clear float glass (8mm) 0.815 5.7 2,014,444 

Single panel green float glass (8mm) 0.447 5.7 598,054 

Double panel (retrofit) 0.325 1.8 274,900 

  

c) Equipment: The office equipment in the model was changed so as to represent the latest 

generation of energy-efficient ICT devices. While the original HP desktop used 300W of 

power, a 216W Energy Star rated HP desktop computer was chosen as a replacement. Also, 

Aficio™ MP C2051 by RICOH multifunction printers (rated power 1680 kWh) were 

changed to HP Color LaserJet Pro MFP M476dw printers (rated power 640 kWh). Finally, 

the chest freezers in the kitchens were changed from band F energy rated to band A+.  

 

d) Operation settings: 24 °C was chosen as the new set point temperature while the new 

operation schedule for the cooling system is shown in Figure 6 and lighting systems in office 

zones were set to 0730 to 1730 hours. This new set point temperature was chosen based on a 

discussion with the building energy manager concerning the occupants’ thermal comfort. 

Previously, a series of trials were conducted by the building energy manager to appraise the 

sensitivity of the office workers to increases in internal office temperatures. The cooling 

temperature set points were adjusted within the suggested guideline by MS1525:2007 [46]. 

Based on the information provided by the building energy manager, 24 ᴼC was the maximum 

temperature set point for office areas that was voted acceptable in occupants’ feedback trials 

(the building management increased cooling temperature set point to 24 ᴼC and 25 ᴼC to 

examine space thermal acceptability range). The employees launched complaints when the 
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cooling set point was raised to 25 ᴼC, but interestingly no negative feedback was received 

when it was set to 24 ᴼC. Although this does not conclusively elucidate the neutral thermal 

point of the occupants, it demonstrates the possibility of raiding zone target temperatures 

while maintaining occupant satisfaction.  

 

 

Figure 6: Modified cooling operation schedule for office zones from the Design Builder 

software. 

 

e) Renewable Energy: Installation of solar panels (15% efficiency) on the South building roof 

utilising 3681 m² area to aid operational de-carbonization and limit building envelope heat 

gain.  

 

4.5 Estimated Energy Reduction   

The cumulative effect of all the strategies was estimated to reduce 57% of the annual primary 

energy demand and 40.2% of the total cooling load. The energy performance and the initial cost 

for the suggested methods are summarised in Table 12, and the comparison of end-use energy 
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consumption before and after retrofit is shown in Figure 7. Notably, besides having no cost 

implication, modification in operational regimes is estimated to be more effective in reducing 

cooling load compared to modification in glazing and equipment. While from the economic 

perspective, modification in operation settings and lighting system deemed to be the most 

economical compared to other strategies. The installation of solar PV panels is estimated to 

supply 12% of the total building annual energy demand besides reducing cooling load by 0.3%.  

 

Table 12: The estimated energy performance and initial cost for the suggested methods. 

Method Total energy 

consumption 

 

 

(kWh)  

Renewable 

energy  

 

 

(kWh) 

Total 

cooling  

load 

 

(kWh) 

Energy 

reduction 

cost  

 

(GBP/kWh)  

Primary 

energy 

reduction  

 

(kWh) 

Primary 

energy 

reduction  

 

(%) 

Cooling 

load 

reduction  

 

(%) 

Initial  7224042 - 4082655 - n/a n/a - 

Operation  6594767.09 - 3570735 0 629275 9% 12.5% 

Lighting  4726123 - 3137779 0.96 2497919 35% 23.1% 

Glazing  7095982 - 3954596 3.21 128059 2% 3.1% 

Equipment  6855625 - 3941439 n/a 368417 5% 3.5% 

PV 7210797 746703 4069411 2.91 759948 12% 0.3% 

Combine  3830363 746703 2439678 n/a 4140382 57% 40.2% 

 

By switching on only 60% of the cooling system at 0730 hours as pre-cooling, peak latent load 

that arises due to the high outside humidity at that hour [51] can be significantly reduced. These 

changes resulted in a significant reduction in peak cooling load that occurs in the morning. The 

comparison of hourly building's cooling load before and after retrofit is shown in Figure 8. While 

a comparison of the hourly measurement of indoor air temperature before and after the retrofit 

during work days in January (shown in Figure 9) suggested that 98.9% of instances of indoor air 

temperature (during office hours) measurements satisfies MS1525:2007 Guidelines.   
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Figure 7: The comparison of end-use energy consumption for the initial and after the retrofit. 
 

 

Figure 8: The simulated hourly building's cooling load before and after retrofit - 450 hours data 

(01/01 to 19/01) 
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Figure 9: Hourly estimated indoor air temperature for an office zone on Level 4 during work 

days in January. 

 

4.6 Actual building implementation  

The simulation results were presented to the building energy manager for an actual application. 

The methods implemented by the building management in 2014 are listed below:  

 Cooling set point temperature was increased to 24°C, and the cooling system was 

operated from 0800 to 1300 and 1330 to 1730 hours during work days.  

 56 fluorescent outdoor lamps were changed to LED lamps and office lighting was 

operated from 0730 to 1800 (unless requested by the employee for extension time). 

 Promoted energy saving awareness. 

 

These modifications resulted in an 18.8% energy reduction when compared to the energy 

consumption in 2012. The same methods used by the building were applied to the building 

model and yielded an estimation of 14.5% energy reduction. The simulation takes into account 

changes in hall and auditorium schedule usage in 2014 but could not predict the impact of energy 

saving awareness on occupants’ reaction. Hence, the actual result showed a greater energy 

reduction compared to the simulated result. The comparison of actual and simulated results 
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suggested the estimation made under predicted the energy reduction by 4.3% that is quite close 

to the mean bias value (+1.31%).  

 

5.0 Conclusion  

Reducing building cooling load and increasing the cooling systems efficiency is a major 

component in the de-carbonisation of buildings in tropical countries. Within this work, a building 

was audited and modelled using EnergyPlus where notably 58.9% of the total energy 

consumption were cooling-related. Sensible cooling load arises from the need to remove heat 

gain in a building as to maintain a comfortable thermal condition. Managing the heat sources and 

cooling system operation settings proved successful in reducing a significant amount of cooling 

load. The thermal analysis method proposed in this study enables heat gain components to be 

mapped, allowing the design of effective strategies to reduce the cooling load. This holistic 

approach results in 57% overall primary energy reduction and a reduction in peak cooling load 

while adhering to indoor comfort requirements (MS1525:2007). An actual implementation of 

selected strategies (operation settings, energy saving campaign and changes in outdoor lamps to 

LEDs) resulted in 18.8% energy reduction that was predicted by modelling analysis to be 14.5%. 

The simulated energy reduction was under-predicted by 4.3%. Though every building is unique, 

it is hoped that the proposed method will assist retrofit designers in selecting the most effective 

strategies, in particular with regards to energy reduction in cooling dominated countries.  

 

Modern architecture has evolved towards typical office buildings with large fenestration to 

optimise daylight [49] findings in this study show that the lighting system could not benefit from 

this design without the application of automatic dimmers to adjust the artificial lamp luminance 

level. Another area of concern is the high cooling load intensity in the data centre and IT rooms 

due to equipment’s energy intensity. Most of the government buildings in Malaysia have a data 

centre and IT rooms to manage building’s energy, systems and indoor environmental quality. 

However, these rooms require a high cooling capacity to maintain their performance that results 

in high energy usage. Managing heat gain in these rooms (ventilation and improvement in the 

equipment efficiency) will be beneficial for the building sector. While, improvement strategies 

that relate to occupant behaviour (i.e. sensors based human occupancy detection) are not yet 

possible within whole building simulation software, limiting the number of strategies presented 
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for this specific building case study. A specific study on building energy simulation using 

occupancy detection sensor deployment could be addressed in future research.  
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