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Abstract
Physiological tremor is an involuntary oscillatory movement of
body parts particularly exhibited in hands. The unintended vi-
brations due to tremor causes tip of the microsurgical tools to
fluctuate unnecessarily causing unacceptable imprecisions in
micro-surgeries. All the existing algorithms such as weighted
Fourier Linear Combiner (wFLC), and its extensions, treat
three x, y and z axes of tremor as three independent channels.
However our correlation and coherence analysis showed that
there is significant coupling between tremor channels. More
importantly grip force by which a surgeon holds a surgical de-
vice also shows significant coupling with three tremor chan-
nels, which has never been investigated before. We first mod-
elled the tremor in 3 dimensions (3-D) using quaternion alge-
bra, and found 27% improvement which we have presented in
our previous work. In this paper, we show modelling tremor
in 4 dimensions by incorporating grip force and three tremor
channels further exploits the cross-channel coupling informa-
tion which is naturally inherent between force and xyz tremor
channels. Using quaternion algebra we extract this coupling
information to improve the tremor modelling performance. We
show that estimation performance of tremor improves by 45%
using 4-D model instead 3-D, yielding overall improvement of
65% from 1-D to 4-D.

1 Introduction
Physiological tremor is unintentional oscillatory movement of
the body parts which is mainly exhibited in human hands [1].
Unlike pathological tremor which is mainly caused due to
severe clinical conditions, the physiological tremor can be
present in all healthy human beings. It is quasi-periodic with
roughly sinusoidal nature. Its frequency of oscillation can vary
from 6Hz-14Hz with dominating frequency components lying
between 8Hz-12Hz [1,2]. The amplitude of physiological hand
tremor ranges from 50µm to 100µm in each xyz axes. Be-
ing low in amplitude, the physiological tremor is not so much
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Fig. 1: A position of the tip of the microsurgical device in the
x axis while holding the device still in a fixed position
(A), the physiological tremor calculated by bandpass
filtering between 5Hz and 20Hz (B). FFT of the volun-
tary motion (C) and FFT of the associated tremor (D)

of a problem for performing daily tasks [2]. However, tasks
which requires high precision such as microsurgeries where
micro-manipulation of tissues and nerves is required, the hand
tremor becomes a major problem. For an example in vitro-
retinal surgery position accuracy of 10µm is required, [3] but
tremor can lead tip of microsurgical device to oscillate up to
100µm. This causes undesirable actuation artifact of the wrong
cite resulting tissues and nerve damage. Hence the physiolog-
ical tremor restricts a number of qualified surgeons, as a re-
sult teleoperation and steady-hand robotic surgical options are
often proposed [4]. Although direct hand surgery is still pre-
ferred over teleoperated and steady hand robotic surgery, due
to natural feel, fast correspondence between surgeon’s hand
movement and visual observation and its lower cost [1, 5].
Hence the complete suppression of physiological tremor from
the fully hand held microsurgical instrument has been a re-
search interest among scientists from last few decades. Such
effective tremor suppressing system in hand held device would

1



result high precision with accurate micro-manipulation, hence
less tissue damage, smaller incision, and better surgical out-
comes [1].

The voluntary movement of upper-limb is a combination of
regular sub movements with frequency of movement residing
below 4Hz [6]. Hence there is clear distinction in frequency
spectrum between tremulous and voluntary movement, which
motivated early researchers to filter out voluntary movement
with a linear low-pass filter. However the performance of the
linear filter depends on sharpness of the cut-off, which in turn
depends on the order of the filter. The larger filter length in-
troduces delay in the filtering system at the cost of filtering
performance [7], which deteriorates the performance of the
real-time tremor cancelling systems. Physiological tremor is a
non-stationary signal: its amplitude and frequency varies con-
tinuously with time. Hence adaptive noise cancelling system
is best-suited for tremor compensation.

Figure 1 shows primary motion (voluntary + tremor) record-
ing of a hand while holding an instrumented device, filtered
out tremor signal exhibited during the process and Fast Fourier
transform (FFT) of voluntary and tremulous signals.

Riviere and Thakor [2] proposed a model of an intelligent in-
strumented device to attenuate the tremor from the tip of a
hand-held micro-surgical tool. This systems first senses its
own motion, then learns the varying amplitude and frequency
of the tremor to generate equal but opposite tip motion which
effectively subtracts the tremulous motion, only allowing the
tip to actuate according to the voluntary motion. Their adaptive
model was based on the least mean square (LMS) algorithm,
and was called weighted Fourier Linear Combiner (wFLC).
Due to quasi-periodic and roughly sinusoidal characteristic of
the tremor, they proposed that the tremor can be modelled by
dynamic truncated Fourier series [2]. Such Fourier series is
dynamic meaning its frequency components and amplitudes
are formed by dynamic filter weights, which adapts to vary-
ing tremor with speed of convergence controlled by the filter
learning rates. However in order to learn to adapt the tremor
accurately; such adaptive algorithm requires a reference signal
which should be highly correlated with the tremor. Hence the
pre-filtering of the primary motion was essential in order to ex-
tract the original tremor as a reference signal. This algorithm
has be been most effective to date and it has been also imple-
mented and extended for tremor estimation and prediction by
other researchers already [8].

All the existing adaptive algorithms such as wFLC and its ex-
tensions are blind to inherent dynamic coupling present in x,
y, and z tremor channels. Through our correlation and coher-
ence analysis we found that x, y, and z tremor channels are not
independent time series and there exists a subject-specific and
task-specific coupling between axes. Hence we hypothesized
that adaptive algorithm which exploits such cross-channel cou-
pling information could lead to better estimation accuracy.

Quaternion adaptive filtering techniques based on LMS
(QLMS) has been recently shown useful for various real world

data [9].The quaternion algebra preserve natural representation
of 3-D or 4-D data and takes into account available coupled in-
formation within channels. It was shown that QLMS incorpo-
rates both pseudo-covariance and covariance of multidimen-
sional data while adapting new filter parameters [9]. Hence
it can improve modelling or prediction compared to 1-D or
complex-valued LMS [9]. Due to such advantages quaternion
operation has been highly popular over the last decade in many
areas, e.g. image processing [10] and wind modelling [11].
Motivating by this, we extended the existing wFLC into three
dimensions and called it QwFLC-3D which yielded 27% im-
provement in tremor modeling [12]. We further looked at the
coherence between the grip force (force exerted by hand while
holding a device) and three xyz tremor channels and found
significant coherence between them. Based on this we further
extended our QwFLC-3D into QwFLC-4D to incorporate cou-
pling between xyz tremor channels and grip force.

In this paper we present our novel QwFLC-4D model which
we extended from our QwFLC-3D model [12]. We test
the performance of this QwFLC-4D against QwFLC-3D and
QwFLC-1D using hand data recorded from five novice sub-
jects performing a pointing task (detailed in method section).

2 Methods

A brief description of the acquisition and experimental proto-
cols is presented in this section. We then review the FLC and
wFLC algorithms and present the proposed QwFLC-4D algo-
rithm. Finally we describe performance analysis method we
used to analyse the results.

2.1 Experimental Setup

Tremor recordings were performed with a Micro Motion Sens-
ing System [13]. The system used a pair of orthogonally placed
position sensitive detectors to track 3-D displacement of the tip
of an instrumented stylus in a 10 × 10 × 10mm3 workspace.
The stylus had a similar mass characteristics to a typical surgi-
cal forceps. A force sensor (FSG15N1A, Honeywell Sensing
and Control, USA) was also mounted on this stylus to quantify
the grip force that ranged from 0N to 15N. The force data was
digitized with a data acquisition card (PD-MF-16-150, United
Electronic Industries, Inc, USA) at 16 bits resolution. An IR
diode illuminated the workspace, and 3D displacement of a
small white ball which was placed at the stylus tip, was cal-
culated by the centroid position of the reflected infra-red rays
onto the position sensitive detectors. The position and force
data were both digitized at 250 samples per seconds. Hand
tremor recordings were performed from 5 healthy novice sub-
jects while performing a pointing task. Subjects were asked
to take a comfortable seating position and rest their wrist on
a platform. They were asked to hold the stylus between their
index finger and thumb, and were asked to point the laser light
at the center of the workspace for 30s.
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2.2 Fourier Linear Combiner

In 1994, Vaz et al. [14] proposed that any periodic or semi-
periodic biological signal s of known fundamental frequency
ω0 can be represented by dynamic truncated Fourier series ŝ.
This dynamic series is combination of sine and cosine signals
which amplitude (Fourier coefficients) are formed by adaptive
weights.

ŝt =

H∑
h=1

[wh,t sin(hω0t) + wh+H,t cos(hω0t)] (1)

where t denotes the time, H is the number of harmonics in
the model ŝ. The filter weights are then adjusted adaptively
as, wt = [w1,t, w2,t, · · · , w2H,t]

T . In general physiological
tremor consists of more than one unknown frequency which
is also time varying and subject dependent; hence this FLC
method is not realistic for real-time tremor estimation.

2.3 Weighted Fourier Linear Combiner

Extending Vaz’s work, Riviere [2] proposed a method to model
multiple tremor frequencies by running sum of fundamental
frequency. FLC with fixed ω0 is extended to its time-varying
form ω0,t The modelled signal is mathematically formulated
as

mh,t =

{
sin(h

∑t
t=0 ω0,t) 1 ≤ h ≤ H

cos((h−H)
∑t

t=0 ω0,t) H + 1 ≤ r ≤ 2H
(2)

ω0,t+1 = ω0,t + µωet

H∑
h=1

h(wh,tmh+H,t − wh+H,tmh,t) (3)

The second set of adaptive weights wt is adjusted again by
another adaptive system to track the tremor amplitude, given
by wt+1 = wt + 2µwetmt, where the adaptation error et is
given by

et = st − ŝt = st −wT
t mt (4)

where st and ŝt are the original tremor signal and the modelled
tremor signal. µω and µw are the learning rates of two adaptive
systems which determine speed of convergence to the tremor
frequency and amplitude and mt is a vector of 2H elements:
mh,t.

2.4 Quaternion Weighted Fourier Linear Combiner

In [12] we have explained how we modelled 3 xyz tremor
channels in 3-D quaternion form and showed the proposed new
model improves the estimation performance. Extending our
work from there, using same quaternion algebra we further ex-
tend our algorithm into 4-D as shown in Figure 2.

Vectorically combining force sf,t as real and three xyz tremor
channels sx,t, sy,t, and sz,t as imaginary components, we
formed a quaternion signal St at a time t given by

St = sf,t + sx,ti+ sy,tj + sz,tk (5)

Ԑ 
∑

sin(H .)
+

ʃ

Ω0,x,t

sin(H .)
Ω 0,y,t

Ω0,z,t

∑

t

Wt
+

+

.

.

.

.

.

.

.

.

.

.

.

.

X

Ω0,t

sin(.)

sin(H .)

cos(.)

cos(H .)

+

.

.

.

.

.

.

Ω  0,f,t

sin(H .)

.

.

.

.

.

.

QLMS
eq. 6

QLMS
eq. 7

S   = s    +s     i + s     j + s    k  x,t y,t z,tf,tt

St
˄

cos(H .)

cos(H .)

cos(H .)

sin(.)

cos(.)

sin(.)

cos(.)

sin(.)

cos(.)

Mt

Wt

Mt

Force

x-axis

y-axis

z-axis

Fig. 2: A block diagram for the QwFLC algorithm. Symbol
∫

denotes the integration operation.

In this quaternion model, each previous parameter of wFLC,
w, mt, ω0,t and et are now transformed into quaternion form
W ,M, Ω0,t and Et respectively. QuaternionsWt and Ω0,t are
updated using two separate QLMS blocks given by equation 6
and 7 below,

Wt+1 =Wt + µW(2EtM∗t −M∗tE∗t ) (6)

The frequency update equation in the quaternion domain will
be

Ω0,t+1 = Ω0,t + µΩ(2EtG∗ − G∗E∗t ), (7)

where G =
H∑

h=1

h(Wh,tMh,t+H − Wh,t+HMh,t) and the

quaternion adaptation error is Et = St −WT
t Mt.

The learning rates of two QLMS algorithms µW and µΩ are
fixed across all channels for simplicity. The detailed quater-
nion derivations can be found in [9].

2.5 Performance Analysis

To quantify the modelling performance of the proposed new al-
gorithm against QwFLC-3D and wFLC-1D, we compute root
means square error (RMSE) between the actual and estimated
tremor:

RMSE =

√√√√√ L∑
i=1

(Xorg,i −Xmod,i)2

L
. (8)
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Where Xorg,i and Xmod,i represent the i-th sample of the ob-
served and modelled quaternion signals and L denotes data
length.

3 Results

We quantified the modelling performance of three algorithms
computing the average RMSE across x, y and z channels for
all five subjects. In order to rigorously verify the performance
of the algorithms against range of filter parameters, we varied
µW and µΩ and computed the RMSE in each of those values.
Figure 3 shows the RMSE surface plots of three algorithms,
showing the lowest RMSE obtained using QwFLC-4D, the er-
ror rises further using QwFLC-3D with wFLC-1D yielding the
highest error. From Figure 3 we found the reduction of estima-
tion error is in average 27% using QwFLC-3D instead wFLC-
1D, the error further drops down by 45% in average by us-
ing QwFLC-4D instead QwFLC-3D. Hence overall improve-
ment in the estimation performance is 65% from 1-D to 4-D.
This result strongly justifies our hypothesis that inclusion of
grip force in modelling enhances our previous 3-D model, and
hence the estimation performance. Hence the inclusion of this
extra channel of grip force facilitates to exploit the additional
coupling information between the force and tremor channels.
Using quaternion modelling to incorporate all tremor channels
plus force preserves the inherent inter-channels information,
which leads to improved estimation performance.

4 Discussion and Conclusions
We investigated the time-domain correlation and frequency-
domain coherence between tremor channels and force, and
found significant subject-specific interactions. Based on this
we hypothesized that inclusion of grip force by which a sur-
geon holds a device into quaternion tremor modelling can yield
better performance. We then extended our earlier QwFLC-3D
model into QwFLC-4D by incorporating hand grip force as
real component of quaternion algebra and three xyz tremor
channels as imaginary components. We tested our new algo-
rithm with recordings from five novice subjects while they per-
formed the pointing task. We showed that exploitation of such
cross-channel information between force and tremor enhances
estimation performance significantly.

Although QwFLC-4D outperforms conventional wFLC-1D,
computational complexity offered by QwFLC-4D is O(82H)
compared to O(27H/2) offered by 3×wFLC, where H is the
filter length. Hence the complexity of our algorithm is 6 times
higher compared to conventional wFLC.

Our quaternion modeling provided significant performance im-
provement. We however use a linear band pass filter in order
to generate the reference signal. The delay induced by this fil-
ter is approximately 20ms. For real-time applications we have
to consider hardware delay in sensors and actuators which is
about 4ms [8]. This delay can largely deteriorate tremor esti-
mation and cancellation. One approach to overcome this issue
is to implement a predictive mechanism.
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