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Abstract 

 
Image reconstruction from projections plays an important role in monitoring flow regimes by ultrasonic 

transmission mode tomography (UTMT) system. Fast and more accurate methods are necessary in case of 

on-line process e.g. bubbly flow regimes. In this work, analytical image reconstruction methods such as 
linear back projection (LBP), filter back projection (FBP) and convolution back projection (CBP) in bubbly 

flow regime is investigated and found that CBP is superior to other methods. Furthermore, different filters 

were applied to CBP to investigate the image quality improvement. Among different types of filters for CBP 
method, Ram-lack outperforms the others for UTMT. The peak signal to noise ratio (PSNR) of reconstructed 

images in this particular experiment was improved using Ram-lack in noiseless data.   
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1.0  INTRODUCTION 

 

Ultrasonic tomography (UT) system was introduced as a non-

intrusive and non-invasive testing tool for industrial process 

monitoring [1]. The hardware drawbacks of UT systems are their 

physical size limitations of sensors and sound limitations in 

materials [2]. The first reduces the number of sensors mounted 

around the peripheral of pipe while the second limitation decreases 

the quality of reconstructed image in motion flow and also increase 

the time of data gathering from sensors. During last decades there 

are many attempts have been done to improve the image quality 

and increase the speed of monitoring by development of the 

ultrasonic system hardware [3-9]. Up to now, different types of UT 

system configurations with different excitation frequencies have 

been studied to improve the process monitoring.  

  In gas/liquid bubbly flow regime where the acoustic 

impedance between two medium is high, the use of UT system is 

more attractable than other methods [10]. The limitation of UT 

systems in detection of bubbles size in bubbly flow is a problematic 

issue. Bubble size detection depends mostly on the ultrasonic signal 

frequencies such that higher frequencies increase the resolution but 

causes the sensing received signals amplitude to be reduced. 

Therefore a compromise has to be made between the increasing of 

frequency and bubble detection size limitation. 

Besides hardware limitations, image reconstruction for bubbly flow 

monitoring by UT systems is still a challenge and need more 

investigations. The problem arises because of environmental noise, 

data gathering speed and small number of sensors mounted around 

the pipes. Therefore a fast and accurate image reconstruction 

method is necessary in such a case. There are a lot of image 

reconstruction methods in different areas which have been 

introduced during the past decades [11-13]. These methods are 

used to overcome the experimental problems of data collection 

(different types of sensors have own problem e.g. in X-ray the 

probabilistic phenomena and or beam hardening of photons or 

noise in Ultrasonic Systems) or problems during image 

reconstruction procedures such as artifacts. There are two 

important types of image reconstruction algorithms: analytical and 

iterative methods [14]. As a very important member of image 

reconstruction methods, analytical methods which include linear 

back projection (LBP), filter back projection (FBP), convolution 

back projection (CBP), Linogram, filtered Layergram and so on, 

show their strong ability when a fast reconstruction method is 

needed (online monitoring e.g. bubbly flow). Therefore in online 

monitoring where the time consuming is vital, analytical methods 

have better performance than iterative methods e.g. algebraic 

reconstruction technique (ART) and simultaneous algebraic 

reconstruction technique (SART). 
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In this paper, we concern on analytical methods for transmission 

mode UT systems in bubbly flow regime. The mathematical 

theories of analytical methods have been studied briefly, and two 

common methods i.e. LBP and CBP have been compared on some 

different bubbly flow phantoms. These phantoms experiments are 

resembled with real bubbly flow in 2-D structure and allow us to 

study the performance of different methods in arbitrary selected 

situations and different sizes. The aim is to find the best filter for 

fast and accurate image reconstruction. 

 

 

2.0  THEORY 

 

The mathematical foundation behind all analytical methods for 

image reconstruction is Radon transform, the inverse Radon 

transform and projection slice theorem. Figure 1 shows the Radon 

transform space of a single projection when it passes through an 

object. 

 

 
Figure 1  Radon transform of a two dimensional function f(r, φ) 

 

 

  As it is shown in Figure 1a 2-D cross section of an object 

f(r, φ) mapped to 1-D Radon transform space 𝑅{𝑓}. The following 

equation shows the mathematic of Radon transform 

 

𝑝𝛾(𝜉) = ℛ{𝑓} = ∫ 𝑓(𝑥, 𝑦)𝑑𝐿 ⇒
𝐿(𝑟,𝜑)

𝑝𝛾(𝜉) = ∫ 𝑓(𝜉𝑐𝑜𝑠(𝛾) −
∞

−∞

 𝜂 sin(𝛾) , 𝜉𝑠𝑖𝑛(𝛾) + 𝜂cos(𝛾))𝑑𝜂                                    (1) 

 

pγ(ξ) is the attenuated values of all parallel rays which is rotated 

by γ angle to (ξ, η)  coordinate which are given by spatial 

distribution of f(r, φ).  

  When all projection values from all angels are collected then 

an inverse Radon transform is used to reconstruct  f(r, φ). The 

reconstructed object is an approximation of real object because of 

limitation in the number of projection and angles. The inverse 

Radon transform is as: 

 

f(r, φ) = R−1{pγ(ξ)} =
1

2π2 ∫ ∫
1

rcos(γ−φ)
 pγ

′ (
∞

−∞

π

0
 ξ)dηdγ         (2) 

 

which is a partial differential of p with respect to first variable, a 

Hilbert transform of it , a back projection of Hilbert transform and 

finally multiply by (1/2π) [14].   
 

2.1  Linear Back Projection 

 
Linear Back Projection (LBP) does not consider the Hilbert 

transform and partial differentiate of 𝑝 as it is denoted in Equation 

(2) and only use back projection operator. The LBP is based on 

following equation:  

BP(x, y) = ∫ pγ(ξ) d
π

0
γ             (3) 

 
  The procedure is done by setting all the image pixels along the 

ray to the same value. The final back projected image is then taken 

as the sum of all the back projected rays. BP is computationally fast 

and simple but it is much unsophisticated and the resulting image 

is very blurry as it is shown in Figure 2. 

  
                                      (a)                                         (b) 
Figure 2  (a) original image of 3 bubbles in cross section of a pipe (b) 

blurring image result of Simple Back Projection method 

 

 

  To overcome the blurring image some methods have been 

introduced. 

 

2.2  2-D Fourier Transform 

 

To achieve f(r,φ) from its projections pγ(ξ), by using Fourier slice 

theorem in frequency domain we need to calculate the Fourier 

transform of pγ(ξ) denoted by Pγ(q). Then Pγ(q) must be 

rearranging from Polar space to Cartesian space to construct a 2-D 

Fourier transform of  𝑓(r,φ) which is called "regridding" [13].    
The procedure is shown in Figure 3: 

 

 
 

 

𝑅{𝑓} 
𝑓(𝑟, 𝜑) 

𝐿(𝑟, 𝜑) 𝜉 

𝛾 

 

Figure 3  2-D Fourier transform reconstruction method 
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The interpolation (e.g. bilingual and nearest-neighbor) is needed 

during the rearrangement of Pγ(q) from Polar to Cartesian in 

Fourier space [15]. This interpolation caused error in high spatial 

frequencies and decreases the image quality. Moreover the 

implementation of 2-D Fourier transform is complex and 

computational. 

 

2.3  Filtered Back Projection 

 

In frequency domain Equation (2) can be written in Cartesian space 

as: 

f(x, y) = ∫ ∫ Pγ(q)e2πiqξ|q|
+∞

−∞
dqdγ

π

0
                                         (4) 

 

where Pγ(q) is the Fourier transform of pγ(ξ) 

Let  

hγ(ξ) = ∫ Pγ(q)e2πiqξ|q|dq
+∞

−∞
                (5) 

then  

f(x, y) = ∫ hγ(ξ)dγ
π

0
               (6) 

  Equation (6) is the back projection of hγ(ξ)  and Equation (5) 

is a high pass filter in frequency domain. Unfortunately, |q| is not 

a square integrable function. Therefore, the mathematical recipe 

using a convergence-generating regular sequence of functions must 

be applied. One way is to use windowing and also a high pass filter 

in frequency domain. Figure 4 shows some of filters e.g. Ram-lak, 

Hamming and Hanning in a specific window in the frequency 

domain and time domain. 

 

 

                                                    (a)                 (b) 

Figure 4  (a) Ram-Lak, Hamming and Hanning filters in frequency domain (b) Ram-Lak, Hamming and Hanning filters in time domain 
 

 

2.4  Convolution Back Projection 

 

Equation (5) in time domain is a convolution of two functions and 

can be written as follows: 

hγ(ξ) = ∫ pγ(ξ)g(ξ − z)dz
+∞

−∞
          (7) 

where g is the inverse Fourier of |q| (Figure 4a and b). 

  This time domain version is called convolution back 

projection (CBP) which is used in all commercial tomography 

systems. The reason is that the function g can be calculated and 

saved in a vector and then can be used easily in image 

reconstruction process. 

 

 

3.0  METHODOLOGY 

 

We compare reconstruction images obtained by LBP and CBP in 

bubbly flow regime. A discrete version of Equation (3) is used to 

apply LBP to projections values extracted from phantom images. 

The discrete LBP can be defined as: 

 

X = ∑ Si,j. yj
N
i=1           (8) 

 

where : 

𝑋 is the reconstructed image,  

𝑆 is the sensitivity map from transmitter i to receiver j  
y is the value of receiver j  
𝑁 is the number projection in all angles 

 

  Among many types of filters only three filters are selected 

to apply to the projections values in CBP reconstruction 

algorithm; Ram-lak, Hanning and Hamming. The Ram-lak filter 

is a ramp filter with the frequency response of | q | as it is denoted 

in Equation (5).  

Hanning Filter can be written as: 

w(n) = 0.5(1 − cos (
2πn

N
))      0 < 𝑛 ≤ 𝑁          (9) 

where w is the Hanning window, and N+1 is the window length. 

Hamming filter can defined as: 

w(n) = α − β cos (
2πn

N
)     0 < 𝑛 ≤ 𝑁       (10) 

where w is the Hamming window, α, β  is the positive constant 

within the [0,1] interval and N+1 is the window length. 

 

We considered α = 0.54  and β = 1 − α = 0.46  for Hamming 

filter.  

  For evaluation of different reconstruction methods in 

ultrasonic transmission mode, two dimensional phantoms of 

bubbly flow regime have been simulated using Matlab software. 

Common projection geometries or sensors arrangement include 

parallel beam, fan beam and cone beam. Therefore, 32 ultrasonic 

sensors mounted peripherally around a pipe to form a fan beam 

configuration of real ultrasonic system in transmission mode. 

Moreover fan beam data convert to parallel beam to simplify the 

implementation of CBP. 

  To measure the quality of reconstructed images, two image 

assessments were used, peak signal to noise ratio (PSNR) and 

mean square error (MSE) of reconstruction images. MSE 

calculated by following formula: 

 

𝑀𝑆𝐸 =
1

𝑀2
∑(𝐴 − 𝐵)2        (11) 

 

where A is original phantom, B is reconstructed image and  M is 

the number of rows or columns of images.  
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PSNR is defined as: 

 

𝑃𝑆𝑁𝑅 = 10log (1/𝑀𝑆𝐸)      (12) 
 

 

4.0  EXPERIMENTAL RESULTS AND DISCUSSION 

 

Phantom images were simulated using Matlab R2012b to 

evaluate reconstruction quality of different image reconstruction 

algorithms. Four image phantoms; an image with four same size 

bubbles, and three images include three, four and five bubbles 

with different sizes were simulated as it is shown in Figure 5. The 

size of phantom images considered as 128*128 pixels as well as 

reconstructed images. All images consist of two values 0 and 1 

for background and bubbles respectively. The image 

reconstruction procedure contains two parts; forward problem 

and reconstruction problem. for forward problem a 32 UT sensors 

with 10 mm length of each sensor, simulated around a circle with 

110 mm external radius. The value of each receiver sensor can be 

calculated as the summation of all pixels values in the path of 

projections from transmitter to receiver. Each projection has their 

own sensitivity matrix which includes 0 and 1 value. Figure 6 

shows the sensitivity map from transmitter S4 to receiver S23, 

typically. 

 

                 Method 

        phantom 

LBP 

(a) 

CBP (Ram-Lak) 

(b) 

CBP (Hanning) 

(c) 

CBP (Hamming) 

(d) 
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Figure 5  Reconstruction of different bubbles phantom using LBP and CBP (Ram-Lak, Hanning and Hamming). The four images in each column represents 

reconstruction image from a single method 

 

 

 
 

Figure 6  A sensitivity map from sensor S4 to sensor S23 

After projection values from all sensors have been calculated the 

reconstruction procedure based on Equations (4), (8), (9) and (10) 

is applied. Figure 5 shows the results of reconstruction methods. 

From Figure 5a it is obvious that LBP cannot reconstruct a high 

quality image and the results is a blurry image. As it is seen in 

Figure 5c and d there are not very visually difference between 

Hanning and Hamming filters while the Ram-Lak filter shows a 

good performance in such noiseless data. Figure 5b indicates that  

the performance of Ram-Lak filter is higher than others and in 

case of same size bubble it has a great visually appearance than 

others. Figure 5 also shows that when the size of smaller bubble 

and big bubble in the original image (Figure 5 phantom 4) is very 

far from each other, small bubble removed in the reconstructed 

image. Therefore an image processing e.g. adaptive threshold 

method is needed to detect this small size bubbles. 
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Figure 7a and b and Table 1 shows the PSNR and MSE results of 

reconstructed images by different methods. It is obviously clear 

that in all cases the maximum PSNR belong to Ram-lak filter.  

  From Figure7b one can see that the maximum MSE belong 

to LBP method and it is illustrated that the LBP method cannot 

be a qualify image reconstruction method.  

From Table 1 it can be understood that the reconstructed images 

have a low PSNR even when a Ram-Lak filter is used. In real 

tomography system, the void fraction is very important and t such 

reconstructed image cannot be helpful. Therefore in bubbly flow 

regime where only two materials are combined a threshold 

method is used to separate gas and liquid from each other in 

reconstructed image. 

 
Table 1  PSNR and MSE of different reconstructed images 

 

  Phantom1 Phantom 2 Phantom 3 Phantom 4 

 

 

 

PSNR 

LBP 8.93 5.75 8.185 7.624 

CBP (Ram-Lak) 10.86 9.43 10.485 10.485 

CBP(Hanning) 10.26 7.93 9.962 9.518 
CBP(Hamming) 10.35 8.16 10.067 9.637 

 

 

 

MSE 

LBP 0.41 0.563 0.441 0.466 

CBP (Ram-Lak) 0.34 0.39 0.351 0.351 

CBP(Hanning) 0.36 0.453 0.369 0.386 

CBP(Hamming) 0.365 0.442 0.365 0.381 

 

       
                                                         (a)                              (b) 

Figure 7  (a) PSNR of different phantoms (b) MSE of phantoms 

 

 

5.0  CONCLUSION 

 

We have investigated the analytical methods of image 

reconstruction for online monitoring of bubbly flow regime using 

ultrasonic transmission mode tomography. Moreover a 

comparison of reconstructed images quality between LBP and 

CBP with different filters has conducted. For image quality 

assessment, two different criteria PSNR and MSE of 

reconstructed images have used respect to original phantoms 

which were implemented in Matlab software. The CBP with Ram 

Lak filter shows superiority to other filters and LBP in terms of 

PSNR in this study and produced sharper edges bubbles. 

Therefore CBP with Ram-lak filter is the suitable image 

reconstruction method for ultrasonic tomography in noiseless 

conditions.  
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